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Abstract
Biomarkers are not only of significant importance for cancer diagnosis and selection of treatment plans but also recently 
increasingly used for the evaluation of malignancy development and tumor heterogeneity. Large-size tumors from clinical 
patients can be unique and valuable sources for the study of cancer progression, particularly to the extent of intratumoral 
heterogeneity. In the present study, we obtained a series of post-surgery puncture samples from a breast cancer patient 
with a 4 × 3.5 × 2 cm tumor in its original size. Immunohistochemistry for Ki-67, COX-2, and CA IX was performed and 
the expression levels within the breast cancer tumor mass were evaluated in the reconstructed 3D models. To further 
evaluate the intratumoral heterogeneity, we performed high throughput whole transcriptome sequencing of 12 samples 
from different spatial positions within the tumor tissue. Comparing the reconstructed 3D distribution of biomarkers with 
projected tumor growth models, asymmetric and heterogeneous expansion of tumor mass was found to be possibly 
influenced by factors such as blood supply, inflammation and/or hypoxia stimulations, as suggested from the correla-
tion between the results of Ki-67 and CA IX or COX-2 staining. Furthermore, high-throughput RNA sequencing data 
provided additional information for profiling the intratumoral heterogeneity and expanded the understanding of cancer 
progression. Digital technology for medical imaging once properly integrated with molecular pathology examinations 
will become particularly helpful in dissecting out in-depth information for precision medicine. We prospect that this 
approach, facilitated by rapidly advancing artificial intelligence, could provide new insights for clinical decision-making 
in the future. Strategies for the continuous development from the present study for better performance and application 
were discussed.
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1 Introduction

Breast cancer is a devastating disease that is found to be the second leading cause of cancer-associated death in 
women [1]. Diagnosis of breast cancer at early stages in patients is one of the most important approaches to improve 
breast cancer treatment outcomes. Among various diagnosis platforms, medical imaging systems have provided 
valuable data and are intensively used in patients at hospitals and clinics. Various imaging techniques, such as mam-
mography, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), and 
single-photon emission computed tomography (SPECT) are currently being used for the detection of breast cancers 
at various stages [2, 3]. Unfortunately, imaging results do not usually give direct biological information about the 
causal disease. On the other hand, growing evidence indicates that the initiation and progression of breast cancers 
involve the changes of many biomarker proteins under the influence of various genetic or environmental factors. 
Thus, histopathological examinations remain the primary method in the diagnosis of breast diseases. Pathologist 
reports serve as the golden standard in the classification of breast cancer types and grades and greatly impacted 
the subsequent therapy and treatment [4]. As the field of molecular pathology rapidly progresses, more and more 
biochemical biomarkers, including proteins, DNAs, mRNAs, and microRNAs are considered and employed as new 
diagnostic tools for breast cancers [5]. However, imaging and molecular pathology are gapped under a majority 
of circumstances, where a lot of information is not fully integrated, shared and explored at the case level and this 
might reduce the possibility to joint-force the power of major diagnostic technologies for a better understanding 
the etiology and progression of cancers.

In recent years, a critical challenge of tumor heterogeneity of its impacts on treatment outcomes has been recog-
nized in breast cancer patients as well, but the integrated view of tumor heterogeneity development was obscure 
until high throughput and single-cell level genomic analyses became available and were widely conducted [6–9]. The 
results from these studies have brought up the classification of breast cancer subtypes based on molecular markers. 
The major four clinical types classified by molecular markers are Luminal A, Luminal B, HER2 positive, and basal-like. 
Even within these well-studied breast cancer types, the heterogeneity, particularly intra-tumor heterogeneity within 
the primary tumors with spatial information is still rather unknown [10]. Besides the common theory of cancer stem 
cells and clonal evolution in tumor heterogeneity studies, the importance of cancer markers in the tumor microen-
vironment have also been increasingly recognize [11, 12].

Breast cancer with negative ER, PR, and HER2 expression is defined as triple-negative breast cancer (also called 
triple-negative basal-like breast cancer, TNBC). The clinical characteristics of breast cancers of this type are highly 
invasive, metastasis-prone, and unsuitable for endocrine therapy or targeted therapy [13]. Therefore, it is difficult for 
traditional breast cancer predictors to accurately reflect the biological characteristics of this type of breast cancer. 
Therefore, the study of the biological behavior of TNBC needs to consider the influence of multiple driving factors 
on tumor progression. In clinicopathological diagnosis, tissues covering the primary lesion could be selected to 
determine the expression of biological markers, such as Ki-67 [14]. As a molecular marker for cell proliferation [15], 
Ki-67 (encoded by MKI67 gene) expression was found significantly higher in TNBC than in other histological types 
of breast cancer [16]. The protein levels of Ki-67 can be used as an independent predictor of therapeutic effect and 
prognosis of various breast cancer types [17], and cancers from other tissue origins as well. Another common cancer 
marker of diagnostic importance is Cyclooxygenase-2 (COX-2, encoded by the MT-CO2 gene), which acts as a major 
rate-limiting enzyme in prostaglandin synthesis. Over-expression of COX-2 can be observed in many solid tumors. 
COX-2 is known to functionally involve the occurrence and development of breast cancer by inhibiting apoptosis, 
increasing invasiveness, and promoting angiogenesis of tumors [18]. As another marker for tumor malignancy, Car-
bonic Anhydrase IX (CA IX, encoded by the CA9 gene) can induce the degradation of the extracellular matrix and 
promote the infiltration and migration of tumor cells. CA IX is also considered a reliable hypoxia marker and is closely 
associated with cancer metastasis [19, 20]. Although with a reasonable collection of cancer markers for selection, it is 
still difficult to accurately reflect the biological characteristics of breast cancers in general or to predict the progres-
sion of breast cancer of specific types. It could be even more challenging to evaluate the behavior of TNBC cells with 
the existence of intratumoral heterogeneity, therefore, comprehensive profiling and detailed analyses of multiple 
driving factors (as indicated by the expression cancer markers) which are associated with different aspects of cancer 
cell phenotypes needs to be considered.

In the present study, the spatial distribution of Ki-67, COX-2, and CA IX was analyzed in a case of large-sized 
invasive breast cancer (TNBC) at baseline. The patient was not previously received radiotherapy and chemotherapy 
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procedures. From the reconstructed tumor mass 3D model based on MRI images, the indications of these tumor 
markers on cell proliferation, inflammation, and hypoxia were evaluated comprehensively about the heterogeneity 
development of the examined breast tumor. In addition, we performed RNA-seq of samples from different spatial 
positions within the tumor mass to provide a more complete   gene expression profile, revealing the intratumoral 
heterogeneity and cancer progression. From our report, not only the value of large-sized tumors for understand-
ing tumorigenesis was emphasized, but it was also demonstrated that digital imaging technology in combination 
with molecular pathology examinations can provide new insight to help pathologists and clinicians evaluate the 
heterogeneity of tumors. The principle and procedures presented in this study can be further developed and used 
as an model case for comparable investigations  with similar objectives.

2  Materials and methods

2.1  Collection of tissue specimen

A female patient (aged 62) was diagnosed with clinical-stage breast cancer (cT2N0Mx) in the left breast at Beijing Friend-
ship Hospital. Magnetic resonance imaging (MRI) revealed an enhanced solitary mass with a surrounding area of low 
intensity. The mammogram indicated an irregular mass. From the removed tumor mass of approximately 4 × 3.5 × 2 cm, 
the tissue puncture samples were collected immediately following surgery and stored under −80ºC according to the 
protocol at the Tissue Bank of Cancer Institute of Capital Medical University. Postoperative pathological diagnosis revealed 
that the tumor was basal-like invasive carcinoma, ER (-), PR (-), and HER2 (-). All procedures performed in studies involv-
ing human participants were in accordance with the ethical standards of the institutional research committee and with 
the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by 
the Beijing Friendship Hospital Ethics Committee (2017-P2-006-01). We also confirm that all methods were performed 
in accordance with the relevant guidelines and regulations.

2.2  Immunohistochemistry (IHC)

The needle aspiration samples were collected from the breast cancer mass using a pair of puncture needles in  opposite 
directions around the center of the tumor. The distance between the paired puncture needles was 20 mm in the coronal 
axis (X axis), 17.5 mm in the vertical axis (Y axis), and 10 mm in the sagittal axis (Z axis). The diagram is shown in Fig. 1a, 
b. Each of the frozen puncture samples was sectioned into 5 fragments and cut into slices at a thickness of 5 μm (Fig. 1c). 
A fully automated IHC and ISH instrument BOND-MAX (Leica Microsystems, Wetzlar, Germany) was used for the staining 
of tissue sections, after blocking with 5% bovine serum albumin, antibodies for Ki-67 (1:200) (GB13030-2, Service bio, 
Wuhan, China), COX-2 (1:300) (ab15191, Abcam, Cambridge, UK) and CA IX (1:400) (NB100-417SS, Novus Biologicals, 
Colorado, USA) was used for probing with a negative control without primary antibody. Secondary antibody incubation 
and color development with the diaminobenzidine (DAB) chromogen were carried out using Bond™ Polymer Refine 
Detection (DS9800, Leica Microsystems, Wetzler, Germany). Digital images were acquired using light microscopy (BX43, 
Olympus, Tokyo, Japan). Immunohistochemical staining for positive areas in integral optical density (IOD) (integral opti-
cal density) was measured and independently graded by three pathologists who were mutually blinded to the sample 
grouping information.

2.3  Whole transcriptome sequencing and data processing

Needle aspiration samples were collected from the breast cancer mass using a pair of puncture needles, ensuring that 
the same direction and position were maintained as for the samples used in immunohistochemical (IHC) analysis. The 
obtained samples were then divided into a total of 12 distinct samples, each representing different spatial positions 
within the tumor (coronal-medial-superficial, coronal-lateral-superficial, coronal-medial-deep and coronal-lateral-deep 
for coronal (X) axis; vertical-superficial-foot, vertical-superficial-head, vertical-deep-foot and vertical-deep-head for verti-
cal (Y) axis; sagittal-foot-medial, sagittal-head-medial, sagittal-foot-lateral and sagittal-head-lateral for sagittal (Z) axis, 
respectively, shown in Fig. 3a). These samples were subsequently subjected to RNA sequencing (RNA-seq) analysis. Total 
RNA extractions were performed with the RNA-Quick Purification Kit (ES-RN001, Yishan Biotechnology Co., Ltd., Shang-
hai, China) following the manufacturer’s protocol. The RNA concentrations were determined using a Nanodrop ND1000 
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Fig. 1  The anatomical reconstruction for holistic view of cancer markers. a The needle puncture aspiration samples of breast cancer tissue 
were obtained symmetrically from the center of the tumor along the coronal axis (X axis), vertical axis (Y axis), and sagittal axis (Z axis). b The 
diagram of X X-axis puncture showed in the MRI images. c Each of the frozen puncture samples were cut into 5 fragments and sliced into 
sections at a thickness of 5 μm. d Marker expressions were detected in the total 30 sampling sites of the breast cancer. e The sampling sites 
were marked on the tumor 3D model. The intensity of the dots represented the variances of marker expression in the sampling sites. The 
radius of the dots represented the deviations of the positions of the sampling sites. f The 3D view of the anatomical reconstruction model
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spectrophotometer (Thermo Scientific). The quality assessments and mRNA sequencing libraries were performed in the 
laboratory of VAHTS Universal V6 RNA-seq Library Prep Kit for Illumina (Vazyme Biotech, Nanjing, China), VAHTS RNA Mul-
tiplex Oligos Set1- Set2 for Illumina (Vazyme Biotech, Nanjing, China), VAHTS DNA Clean Beads (Vazyme Biotech, Nanjing, 
China), VAHTS mRNA Capture Beads (N401-01, Vazyme Biotech, Nanjing, China). All prepared samples were subjected 
to paired-end multiplex sequenced (2 × 150 bp) on the Illumina Hiseq X10 platform. Approximately 8 GB of sequencing 
data was generated for each sample. Trimmomatic (Version: 0.39) was selected to input FASTQ  sequences for RNA-seq 
differentially expressed gene flow analysis, and raw data was paired and screened to output clean data. The clean data 
reads were aligned back to the reference genome using HISAT2 (Version: HISAT2 2.2.0). SAMtools (Version: 1.15.1) was 
used for binary conversion and sorting. Pathway analysis was performed using GSEA (https:// www. gsea- msigdb. org/ 
gsea/ index. jsp), all pathway data were downloaded from the C2-Canonical pathways database, and the selected gene 
sets were shown in Supplementary Table 1. String (https:// cn. string- db. org/) was used for functional enrichment analysis 
of cell proliferation, inflammation, and hypoxia-related genes.

2.4  Image processing and anatomical reconstruction

Image Pro Plus 6.0 (Media Cybernetics, Inc., Rockville, MD, USA) was used for image processing of the evaluation of the 
staining intensity of cancer markers. ImageJ 2x (National Institutes of Health, Bethesda, MD, USA) was used to reconstruct 
the holistic view of the intra-tumor distribution of markers according to the spatial coordinate. The plugin modules 
deployed included packages of stack manipulation, 3D draw shape, 3D watershed Voronoi, and image calculator for 
various purposes. The MRI images were used with the patient’s consent for the study to reconstruct the model of tumor 
mass in 3D.

2.5  Statistical analysis

SPSS version 20.0 (SPSS, Inc., Chicago, IL, USA) was used for statistical analyses. The coefficient of variation (CV) = S/ X , was 
calculated to determine the data dispersion, where S represented the standard deviation and X represented the arithme-
tic mean. A threshold of p-value < 0.05 was defined for statistical significance. The Spearman rank test was performed to 
analyze the correlation between expression levels of breast cancer markers from the sampling sites of 30 in total for each 
channel. The coefficient numbers evaluated the correlation between different markers in the reconstructed tumor ana-
tomical models and the projected tumor growth model. For comprehensive analysis, data from multiple measurements, 
including the density readout from MRI images and staining grades of cancer markers, were subjected to clustering 
using a complete linkage algorithm with Cluster 3.0 software and displayed by Java Treeview (Stanford University, USA).

3  Results

3.1  Spatial analyses of semiquantitative expression of cancer in tumor mass

To obtain biological characteristics in aspects of proliferation, inflammation, and hypoxia within the sample breast 
tumor at different spatial locations, common markers of Ki-67, COX-2, and CA IX were probed by immunohistochem-
istry and evaluated for grading based on staining intensity (Fig. 1d, Supplementary Fig. 1). To avoid operational errors 
during experimental procedures, an automated equipment was deployed using the recommended protocols from the 
manufacturers. The semi-quantification of the staining was determined by summarizing the evaluation from multiple 
experienced professionals from the pathology department. The coefficient of variation (CV) of Ki-67, COX-2, and CA IX 
staining from a total of 30 sampling sites was calculated as 36.8%, 44.9%, and 42.6% respectively. The data indicated 
that intratumorally heterogeneity indeed existed among different spatial locations within the tumor mass, nonetheless, 
it was an expected result as the varied biological characteristics in tumors were usually seen to be reflected by these 
commonly used markers. From further analysis of the interconnection between the stained markers, it was interesting 
to find out that all the compared pairings were statistically different, with Ki-67 and CA IX showing a more significant 
correlation coefficient (Table 1). The results could be explained as the outcome of the interplay between rapid tumor cell 
proliferation and hypoxia induction in the local environment. The fast-growing tumor mass often causes local hypoxia 
conditions from insufficiency of oxygen and nutrients from the blood supply. In turn, hypoxia-induced overexpression 
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of transcription factors, signal molecules and secretory protein or inflammatory factors could stimulate tumor cells to 
proliferate with acceleration [21]. The discoordinance of these regulatory mechanisms could eventually cause or at least 
significantly contribute to the development of heterogeneity in tumors.

3.2  Anatomical reconstruction for holistic views of analyzed cancer markers

An MRI series consisting of 128 consecutive scans were converted into a 128-frame image stack and subjected to three-
dimensional (3D) reconstruction using Image J software (Fig. 1f ). Voxels of the tumor mass were extracted by adjusting 
the threshold values for segmentation, and the size and boundary information of the tumor were obtained and used for 
creating the cropped subset of the digitally isolated tumor (Fig. 1e). The scaled quantification from the 30 sampling sites 
of each stained marker was mapped into the 3D reconstructed tumor shape according to the exact measured spatial 
co-ordinance. The expression variances of the markers and the possible error limits of spatial location were calculated 
and marked in Fig. 1e. Using information from limited sampling sites to represent the projected marker staining of the 
whole tumor mass, a 3D Voronoi algorithm was used to determine the section domains where the measured values 
could best describe the located regions. The watershed filling was performed to reassign the adjacent voxels with the 
intensity in grayscales for the projected staining of marker expression. The reconstructed marker expression profile in 3D 
was visualized using the 3D viewer plugin embedded in the software (Fig. 2a). To evaluate the correlation of the marker 
expression levels, a module for voxel colocalization analysis was used and the Ki-67, COX-2, and CA IX signals were com-
pared pairwise as in separate channels. The correlation coefficients were calculated and shown in Table 2, where the 
value for the correlation between Ki-67 and CA IX was the highest (R = 0.770). All markers appeared to have a significant 
correlation with the MRI intensity, especially at the anatomic center region of the tumor, suggesting that the expression 
of different markers was less divergent at the early stages of tumor development.

3.3  Asymmetrical pattern of cancer marker distribution and its implication for tumor growth models

As the large tumor provided a good opportunity to obtain sufficient density data for describing the tumor mass from MRI 
images, it allowed the study to use hypothetical projection to construct possible tumor expansion models. Theoretically, 
the growth of tumor mass would be expected to follow a linear propagation profile without apparent intervention. In 
the case of large tumors with regular shapes, the tumor under investigation in this study could be a suitable sample to 
mathematically evaluate related models. We first generated a voxel data set calculated by a 3D linear propagation model 
and simultaneously determined the edges for the stopping of diffusion (Fig. 2b left). We calculated the anatomical center 
of the tumor from the enhanced MRI images and assumed that the center spot was the primary origin of tumor initiation 
with the maximum values of detected tumor staining signal. By calculating the correlation coefficient of projected marker 
distribution and the measured realistic values at the sampling sites using a colocalization analysis program, we could 
estimate which specific marker better represented the tumor growth profile, or whether the projected model could be 
improved by adjusting the propagation center position for better data fitness.

Considering the irregularity in MRI pixel density at different positions within the tumor mass, we also attempted to 
improve the correlation analyses by calculating the spatial center of mass of the tumor and used for reconstruction of 
the propagation model (Fig. 2b right). No significant improvement was observed as indicated by the small increase in 
coefficient number (Supplementary Table 1). The results showed the correlation of all three cancer markers of their expres-
sion levels exerted the positive values in coefficient measures, indication Ki-67, COX-2 and CA IX indeed significantly 
contributed to the tumor mass expansion as driving factors commonly acknowledged. However, the R values were rela-
tively low in numbers, suggesting that a simple linear model was insufficient to profile the complex behavior of cancer 
growth. Interestingly, COX-2 and CA IX gave larger R(obs) of 0.410 and 0.354 respectively than Ki-67 (R = 0.267). As the 
former is a marker partially reflecting the tumor environmental conditions, we postulated that environmental factors 

Table 1  Correlation between 
Ki-67, COX-2, and CA IX 
expression at different spatial 
locations

n = 30; spearman rank test, **p < 0.01

Correlation Ki-67 COX-2 CA IX

Ki-67 1.00
COX-2 0.669** 1.00
CA IX 0.743** 0.686** 1.00
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Fig. 2  Holistic view of cancer markers and comprehensive clustering analysis of multi-dimensional data. a The reconstructed 3D model for 
holistic view of Ki-67, COX-2, and CA IX. b The construction of the projected tumor growth model amplified from the anatomical center (left) 
and the density center readout from MRI images (right). c Cluster analysis based on multi-dimensional measurements from both imaging 
and pathology for representation, evaluation, and discovery of tumor heterogeneity. d Reconstructed image from vascular enhanced MRI 
images indicating the tumor mass with the overlayed marks of high heterogeneity sites as identified from C 

Table 2  Correlation of Ki-67, 
COX-2, and CA IX distribution 
in reconstructed model

Ki-67 COX-2 CA IX

R(obs) R(rand) ± SD R(obs) R(rand) ± SD R(obs) R(rand) ± SD

Ki-67 1.00 – 0.626 0.061 ± 0.170 0.770 0.099 ± 0.184
COX-2 1.00 – 0.723 0.024 ± 0.181
CA IX 1.00 –
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were unneglectable, including ones released from necrotic cells or the paracrine from adjacent tissues that could influ-
ence to a great extent cancer cell proliferation. For COX-2 which produced the best coefficients, it was known to closely 
relate to the oxygen supply and inflammatory responses requiring blood vessel infiltration (Fig. 2d). Therefore, it implied 
that a large tumor as its growth in size could be significantly related to the angiogenesis process.

3.4  Comprehensive clustering analysis of multidimensional data

Besides the main set of MRI series used for analyses in this study, we also obtained additional two medical digital imaging 
sets with different methods of enhancement from the patient. Combining with the pathology grading results of marker 
staining, multidimensional data grids can be formatted through normalization and subjected to cluster analysis (Fig. 2c). 
From such comprehensive analysis, the similarity and grouping of the characteristics at each anatomic site could be 
globally displayed and reviewed (Fig. 2d). The results showed that the sites at adjacent locations tended to be clustered 
at closer distances, which was expected in large and regular-shaped tumor masses. The Ki-67 associated with CA IX was 
better than with COX-2, which was also reasonable based on reports of their usage as cancer progression markers. These 
results were consistent with our previous correlational analyses on Ki-67, COX-2, and CA IX expression, where the signals 
of COX-2 were more heterogeneous and influenced by peripheral factors. An important readout from the cluster analysis 
(as marked as the branch in red color) was that the tumor heterogeneity could be manifested as the contrast in measured 
values between MRI density and marker staining intensity. The intratumoral heterogeneity of the identified sites could 
be developed surrounding the necrotic regions and did not necessarily have to be adjacent to each other. Here, this type 
of comprehensive statistical analysis demonstrated its great power for tumor heterogeneity studies, and the resolution 
and performance will be improved as more channels of data from either imaging or pathology parameters are provided.

3.5  Whole transcriptome sequencing for holistic views of a more complete gene expression profile

To further clarify factors that drive intratumoral heterogeneity, we performed whole transcriptome sequencing of 12 sam-
ples from different spatial positions within the breast tumor mass tissue (Fig. 3a). Unlike classic studies that used whole 
tumor tissue as experimental samples, all samples used for RNA-seq in the present study were obtained by puncturing. 
Therefore, to avoid operational errors caused by sampling, we first compared the Q30 values of RNA-seq data from the 12 
samples as a quality control. According to the result, it was found that the Q30 values of all samples were above 89.98% 
(89.98%-91.83%), which indicates that the quality of all samples was above the standard for further analysis. Next, we 
performed a comparison of the global gene expression levels by mean FPKM value among all 12 samples to holistically 
demonstrate if there are any transcriptome-wide expression differences. The results indicate a significant intratumoral 
heterogeneity among 12 samples, the sample from the vertical-superficial-foot (ID: Y1) direction has the highest mean 
expression level (mean FPKM: 518.07) and the sample from sagittal-foot-medial (ID: Z1) direction has the lowest mean 
expression level (mean FPKM: 97.05).

During immunohistochemistry and staining intensity analysis, Ki-67, COX-2, and CA IX were used as common markers to 
obtain biological characteristics related to cell proliferation, inflammation, and hypoxia among samples. Based on the results 
of high-throughput sequencing data, we attempted to present high-dimensional data through pathway analysis to confirm 
intratumoral heterogeneity in the expression of genes related to cell proliferation, inflammation, and hypoxia. To achieve this, 
we searched the GSEA C2-Canonical pathways database and retrieved a total of 479 genes in the cell proliferation gene set, 
368 genes in the inflammation gene set, and 117 genes in the hypoxia gene set. Since the CA9 gene was already included 
in the hypoxia gene set, the MKI67 gene was incorporated into our set of proliferation-related genes. Similarly, the MT-CO2 
gene was included in our set of inflammation-related genes for subsequent analysis. Both the MKI67 and MT-CO2 genes had 
been subject to examination in previous immunohistochemical (IHC) studies due to their established connections with cell 
proliferation and inflammatory processes, respectively. According to the pathway analysis results, there is significant het-
erogeneity among the 12 samples in terms of cell proliferation, inflammation, and hypoxia-related pathways. The sample 
with the highest expression level of genes in these three gene sets, indicating the most transcription activity, was from the 
vertical-superficial-foot direction (ID: Y1), with mean FPKM values of 1867.74, 4779.68, and 3706.79 for cell proliferation, 
inflammation, and hypoxia, respectively. In contrast, the sample with the least transcription activity was from the sagittal-
foot-medial direction (ID: Z1), with mean FPKM values of 327.46, 748.34, and 660.43 for cell proliferation, inflammation, and 
hypoxia, respectively. (Fig. 3a, Supplementary Table 2–4). In addition to the pathway analysis, we also calculated the coefficient 
of variation to evaluate the axial asymmetry within each axis in large tumors globally and focused on three different pathway 
gene sets across samples in four directions on each axis. According to the global comparison results, the axial asymmetry 
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among the four samples on the sagittal (Z) axis shows the most variation (with a CV value of 51.91%), while the coronal (X) 
axis has the least variation (with a CV value of 13.15%). Consistent with the global gene expression results, the axial asym-
metry among samples is most pronounced among the four samples on the sagittal (Z) axis (with CV values of 57.53%, 58.24%, 
and 63.01% for cell proliferation, inflammation, and hypoxia, respectively). These findings suggest that there is a significant 
degree of heterogeneity in the expression of genes related to cell proliferation, inflammation, and hypoxia both globally 
within the tumor and across different samples along the sagittal axis. (Fig. 3b and Supplementary Table 5). These findings 
suggest that there is considerable intratumoral heterogeneity and axial asymmetry in the expression of genes related to cell 
proliferation, inflammation, and hypoxia within the tumor samples which are consistent with the results obtained from the 
immunohistochemistry and staining intensity analysis. Meanwhile, the most significant degree of heterogeneity is present 
across different samples along the sagittal axis.

In addition, our study also compared the correlation among the pathways of proliferation, inflammation, and hypoxia. 
We found that the proliferation and hypoxia pathways showed the highest correlation coefficients (R = 0.955), suggesting 
that there may be an interplay between rapid tumor cell proliferation and hypoxia induction in the local environment of 
breast cancer tissue.

Fig. 3    Holistic view of cancer markers and related  gene set  analysis of multi-dimensional RNA-seq data. a The  evaluation  of  expression 
heterogeneity of cell proliferation, inflammation, and hypoxia-related gene set within the tumor mass. Each cubic represent the location 
diagram of the samples selected for whole transcription sequencing including four samples selected from the coronal axis (X1:  coronal-
medial-superficial close to x1a to x3a in IHC assay, X2: coronal-lateral-superficial close to x3a to x5a, X3: coronal-medial-deep, close to x1b to 
x3b, X4: coronal-lateral-deep, close to x3b to x5b); four samples selected from vertical axis (Y1: vertical-superficial-foot, close to y1a to y3a 
in IHC assay, Y2: vertical-superficial-head, close to y3a to y5a, Y3: vertical-deep-foot, close to y1b to y3b, Y4: vertical-deep-head, close to y3b 
to y5b) and four samples selected from sagittal axis (Z1: sagittal-foot-medial, close to z1a to z3a in IHC assay, Z2: sagittal-head-medial, close 
to z3a to z5a, Z3: sagittal-foot-lateral, close to z1b to z3b, Z4: sagittal-head-lateral, close to z3b to z5b). The front view, vertical view, and side 
view of each cubic represents cell proliferation (480 genes), inflammation (369 genes), and hypoxia (117 genes) related gene set, respec-
tively. The color of each dot was assigned by ranking the FPKM value of each gene within 12 samples using 3 color scale formatting (The top 
color represents values larger than 90%, the center color, represents middle values from 55%-90%, and the bottom color represents values 
from 10%-55%). Meanwhile, three key genes (MKI67 gene, MT-CO2 gene, and CA9 gene) were highlighted. b The evaluation of axis asym-
metry of three axes. The front view, vertical view, and side view of the cubic represent Z-axis direction, Y-axis direction, and X-axis direction 
of the original tumor mass. The radar charts’ 3 radial axes respectively represent cell proliferation, inflammation, and hypoxia. Scales on each 
axis are labeled as FPKM values for the genes of each relevant gene set. The median expression level (FPKM value) of each relevant gene set 
for a sample is used to graph that sample



Vol:.(1234567890)

Research Discover Oncology          (2024) 15:564  | https://doi.org/10.1007/s12672-024-01442-x

4  Discussion

Cancer is a devastating disease largely because of its complexity, which can be partly demonstrated by the het-
erogeneity of solid tumors. Heterogeneity can be developed as the tumor grows or rises from the resistance to 
chemotherapies. Understanding the mechanism of heterogeneity development and progression and applying the 
obtained knowledge to clinical diagnosis and prognosis is very important to improve the current cancer treatment 
outcome, ultimately benefiting many patients. Heterogeneity of tumors referred from many studies can be either 
intratumoral (within a tumor mass) or intertumoral (from the same or different patient), where the latter are better 
characterized, ever since the high throughput and large scale sequencing technology became available [22–24]. 
Dozens of biomarkers for cancer driver genes have been identified and a significant portion of which was found to 
significantly associate with heterogeneity development. However, it is generally agreed that intratumoral heteroge-
neity is more valuable in providing information linked to the early or persistent factors to drive heterogeneity since 
the same genetic background and environment exposure of cancerous cells helped to reduce the various influential 
factor that might affect tumor heterogeneity [25–27]. To this end, large-sized tumors are particularly valuable to be 
used for the studies of intratumoral heterogeneity. Unfortunately, with the rapid advancement in technology for 
cancer diagnosis and the aggression for early surgery, large tumors became more and more rare from clinical reports, 
especially for breast cancers of the preventive screens or routine examinations. In the present case, a basal-like inva-
sive breast cancer with a mass of 4 × 3.5 × 2 cm was extremely useful for research purposes. Besides, the patient was 
not treated by any interventions which made it perfect for the study of intratumoral heterogeneity based on the 
characteristics of the tumor tissues.

The digital processing of medical images with 3D reconstruction improves the examination of breast tumors at 
a better resolution with anatomic information than traditional mammography. MRI imaging can be used to display 
the signal intensity, edge shape, invasion range, and internal structures of a given tumor [26, 28]. It was reported that 
differences in structural components identified from MRI between breast tumors and normal breast tissues, or differ-
ences in pathohistological structures could link to the difference in relaxation time of T1 and T2 cancers [29]. Despite 
the low signal areas in MRI images sometimes clinically suggested necrosis of tumors, the density of reconstructed 
voxels was an accepted index to represent tumor mass in correlation with amounts of cancer cells and was used to 
indicate tumor growth [30]. In pathology, the growth and size expansion of solid tumor mass can be recognized by 
the staining intensity of certain cancer markers and predict tumor malignancy. One of the most used markers is Ki-67. 
Attempts to map Ki-67 distribution into tumor mass have been conducted. However, the comparison with other 
biomarkers was rarely reported. Currently in breast cancers, no previous investigation has revealed the correlation 
between cancer markers or tumor mass segments, especially in large-size tumors with the existence of heterogene-
ity. By introducing other markers of COX-2 and CA IX for their expression levels and correlating to the Ki-67 staining, 
we found that the asymmetric growth of the examined tumor was significantly under the influence of blood flow, 
inflammation, and/or hypoxia stimulation. By analyzing RNA-seq data, we could have a similar but transcriptome-wide 
perspective of understanding the role of cell proliferation, inflammation, and hypoxia-related genes/pathways in the 
drive of tumor heterogeneity. The comprehensive analyses of multiple markers representing different cancer-driving 
factors together with the anatomic 3D co-ordinance, as shown by the cluster analysis, enabled quick identification 
of heterogenic regions inside a tumor mass from a holistic view of the characteristics at whole tissue levels. None of 
our analyzed markers was likely to be a direct driver for the development of heterogeneity, thus, to expand future 
investigation by screening other possible causal molecules are necessary to better understand the mechanism of the 
generation of tumor heterogeneity. Nonetheless, we at least learned that common markers of cancer proliferation 
could be used to profile and evaluate tissue heterogeneity from this study.

The strength of using large-size tumors for the investigation of cancer heterogeneity is that it avoids the variance 
among patient individuals. Hypothetically, if  progression heterogeneity obeys certain principles, the profiling of 
intratumoral heterogeneity will have a better chance of revealing it. Several considerations for making such practical 
attempts are, (1) careful selection of proper markers for examination; (2) the use of correlation analysis to produce 
numerical indexes for mathematical evaluation; (3) sufficient data in layers, dimensions, and volume to perform sta-
tistical analysis; and (4) the possibility to derive theoretical models that could be adjusted through recursive fitting to 
the measured realistic data. An interesting result from our study was that the environmental factors seemed to play 
a more important role in defining tumor heterogeneity than initially expected. One of the most prominent aspects 
could be the process of angiogenesis, which is closely connected to inflammation or hypoxia-related pathways and 
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turned out not quite as a surprise. This has raised a question about whether genetic alterations remained to be the 
real cause for heterogeneity development. If one agrees that change in tumor microenvironment is sufficient to 
induce heterogeneity, it still becomes troubling when tumor heterogeneity itself is widely heterogenic as observed, 
which does not seem reasonable among patients with the same diagnosis and receiving the same treatments. We 
argue that the interplay of genetic and environmental factors at the epigenetic level serves as the true driving force 
of tumor heterogeneity. Since the gene mutations in cancers are bulk in numbers, they tend to be averaged out for 
identification, thus leading to the genomic studies on cancer heterogeneity often facing tremendous challenges 
and resulting in vain. Another possibility is that the tumor microenvironment could be also quite different among 
individuals which was previously not realized [31]. Recent studies in high throughput secretomes started to reveal 
the variety from case to case and were suggested as a new aspect for consideration in precision medicine.

To evaluate the difference between tumor heterogeneity in general versus intratumoral heterogeneity in our special 
case, we extracted Ki-67, COX-2, and CA IX expression data from The Cancer Genome Atlas (TCGA) database (https:// 
tcga- data. nci. nih. gov/ tcga) for breast cancers and found that expression of these markers showed high variance in 849 
cases (Supplementary Table 6). Notably, a lower correlation between these markers was found in the recursive tumors, 
especially of the TNBC type (Supplementary Table 7). All of which are more divergent than the results from our present 
study. This verified our presumption that intratumoral heterogene it indeed performs better in the mechanistic profiling 
for tumor heterogeneity. The biological characteristics and prognosis of breast cancer patients with the same histological 
type, similar differentiation, the same pathological stage, and even the same molecular typing may be different [10, 32]. 
Another critical point to be discussed is that heterogeneity is usually defined as a pathology term, whereas the current 
resolution in MRI technology does not reach a similar level for identifying masses in a few cells. It needs to be noted 
that the heterogeneity measures derived from the present study could be more suitable to apply for large tumors only. 
Furthermore, it should be highly noted that the inherent heterogeneity of breast tumors presents a significant challenge 
to treatment decisions based on biopsy or fine-needle aspiration (FNA) samples in the neoadjuvant setting and may 
also limit the outcomes of tumor microarrays in cancer marker validation studies due to the potential variability within 
the tumor. As observed during the preparation of tissue microarrays, it is imperative to conduct a comprehensive H&E 
examination of tissue sections prior to needle puncture sampling. This preliminary step is crucial for verifying whether 
the selected sampling points can represent the specificity of the entire tumor tissue. It is also likely that the heterogeneity 
we displayed might differ from molecular analysis by sequencing techniques. By all means, intratumoral heterogeneity 
deserves more attention, since it is not only in the clinical research and application but also in the research field of basic 
medicine, such as the origin, plasticity, and potency of mammary cell subsets.

By its nature, the present study is that it was only a retrospective case study. The limitations of our technical or manage-
ment issues also restricted our research toward a more productive outcome. As the tumor tissues were primarily reserved 
for clinical pathological assays, we  obtained only a limited amount in puncture forms. Ideally, if single-cell sequencing 
can be performed, it would provide more detailed information on the resolution at cell-type bases, which are frequently 
used to analyze heterogeneous or complex samples. As shown from several studies, additional trajectory analyses might 
implicate the possible dynamics of certain subpopulations of cells [33]. However, due to the technical challenges and 
budget concerns, we were only able to carry out conventional transcriptome sequencing. From our experience, this 
allowed us to be confident about sequencing data quality by Q30 measures, as well as coverage depth for subsequent 
pathway enrichment. Another challenge was  dealing with the operational errors for reliable results from the 3D tumor 
mass reconstruction, model construction, and correlation analyses. Finally, the less completed clinical record filing and 
authority in ethical protocols contributed to the quality of our study as a limiting factor. The MRI images had been erased 
of the label information as a routine at the hospital imaging department, which was claimed to be an act for the protec-
tion of patient privacy. Consequently, professional software for MRI image processing and analysis could not be used 
without the incorporation of tumor feature information. Despite these limitations, the study provides valuable insights 
into the intratumoral heterogeneity and axial asymmetry of gene expression related to cell proliferation, inflammation, 
and hypoxia within breast cancer tissue. It also identifies the interplay between rapid tumor cell proliferation and hypoxia 
induction in the local environment in breast cancer tissue. The study highlights the importance of individual patient sam-
ples for in-depth and comprehensive analyses that can provide critical information to answer important clinical questions.

As a valuable lesson we learned from this study, we would like to emphasize once more the importance of special 
patient populations or unique clinical samples. In-depth and comprehensive analyses of such tissue samples will 
provide critical information to answer important clinical questions. Better documentation or follow-up studies and 
careful experimental design could transform the present investigation from retrospective to prospective, which 
would be far more beneficial to clinical practice. Furthermore, multi-dimensional comprehensive analyses of the 

https://tcga-data.nci.nih.gov/tcga
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combined data from both laboratories and hospitals require consensed perspective views and adapted protocols 
for management. Continuous development needs to be conducted to improve the performance and application of 
such an approach demonstrated in the present study. If more sets of imaging data, such as PET, enhanced MRI, and 
SPECT can be joined with more comprehensive pathological information, such as sequencing results of DNA, RNA, 
and microRNA samples, it will add more weight to this type of case studies. Meanwhile, the design and production 
of special instruments adapted for such applications could soon be in immediate demand, such as puncture needles 
with enlarged diameter and scale labels or computer programs embedded with artificial intelligence for machine 
learning that accept data as provided in this study.

5  Conclusion

Although imaging technology has greatly facilitated the diagnosis of breast tumors, the clinical decision-making for 
cancer classification and selection of treatment plans mainly relies on the information provided by the pathology 
department. As the resolution of functional medical imaging and the automated throughput of molecular pathol-
ogy are rapidly improving, the bridging of these two disciplines with shared and cross-referencing digital data will 
be extremely helpful in solving many current problems in cancer clinics, including the heterogeneity development 
during tumor progression. In this study, the expression of Ki-67, COX-2, and CA IX at the sampling sites of a large-
size breast tumor was detected by immunohistochemistry and RNA-seq and then superimposed onto the 3D recon-
structed tumor mass from MRI images. Simple mathematical models profiling the spatial distribution of cancer marker 
molecules were used to evaluate the intratumoral heterogeneity. Cluster analysis of multidimensional data from 
immunohistochemical grading of cancer pathology, pathway analysis data from whole transcriptome sequencing 
and MRI densitometry information allowed comprehensive representation of a holistic view explaining the synergy 
and regulation of multiple factors, such as cell proliferation, inflammation or hypoxia that could influence tumor 
growth. The present study has provided an example of possible generic approaches to investigate tumor biological 
characteristics using featured clinical tissue samples. We believe that continuous improvements of such protocols and 
expansion of their application will not only greatly support laboratory cancer-related studies but also may directly 
bring immediate benefit to patients and hospital doctors as well, particularly in making clinical decisions under the 
circumstances when significant tumor heterogeneity is observed.
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