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Establishment of Immune-related Gene
Pair Signature to Predict Lung
Adenocarcinoma Prognosis
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Abstract
Tumor microenvironment (TME) has critical impacts on the pathogenesis of lung adenocarcinoma (LUAD). However, the
molecular mechanism of TME effects on the prognosis of LUAD patients remains unclear. Our study aimed to establish an
immune-related gene pair (IRGP) model for prognosis prediction and internal mechanism investigation. Based on 702 TME-
related differentially expressed genes (DEGs) extracted from The Cancer Genome Atlas (TCGA) training cohort using the
ESTIMATE algorithm, a 10-IRGP signature was established to predict LUAD patient prognosis. Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes analyses showed that DEGs were significantly associated with tumor immune response.
In both TCGA training and Gene Expression Omnibus validation datasets, the risk score was an independent prognostic factor
for LUAD patients using Lasso-Cox analysis, and patients in the high-risk group had poorer prognosis than those in the low-
risk one. In the high-risk group, M2 macrophage and neutrophil infiltrations were higher, while the levels of T cell follicular
helpers were significantly lower. The gene set enrichment analysis results showed that DNA repair signaling pathways were
involved. In summary, we established an IRGP signature as a potential biomarker to predict the prognosis of LUAD patients.
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Introduction

Lung cancer is the most frequent malignant carcinoma, as

well as the major cause of cancer death1. Based on histo-

pathologic characteristics, non-small cell lung cancer

(NSCLC) accounts for roughly 85% of all lung carcinoma,

and lung adenocarcinoma (LUAD) is the major component

of NSCLC2. Although LUAD patients benefited from mul-

tiple treatments, including radiotherapy, chemotherapy, and

immunotherapy, the 5-year survival rate was still under

20%3. Therefore, it is urgent to identify novel biomarkers

for early detection, early diagnosis, and better prediction of

LUAD patient prognosis.

Tumor microenvironment (TME) composes of cells

(endothelial, neuroendocrine and immune cells, etc.) and

extracellular components (cytokines, chemokines and extra-

cellular matrix, etc.). TME has crucial effects on the initiation,

development, metastasis, and recurrence of carcinoma4,5. As

the essential ingredients of TME, immune and stromal cells

play substantial roles in signal transduction, immune surveil-

lance, immune escape, and patient prognosis6,7. For instance,

the activation of CD8þ T cells, which are the important com-

ponents of immune cells, could improve the survival in gastric

cancer mouse models8.
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To accurately evaluate the percentage of immune and

stromal cells in TME, Yoshihara et al. calculated the scores

of tumor purity, as well as immune and stromal cell infiltra-

tion in tumor tissues, based on gene expression levels using

the ESTIMATE algorithm9. Previous studies also suggested

that TME-related biomarkers, which were obtained using

big-data-based ESTIMATE algorithm, were helpful in his-

tological diagnosis and prognostic prediction10,11. By this

algorithm, Zeng et al. identified three novel biomarkers

including IL10, IGLL5, and POU2AF1 for therapy targets

and prognosis evaluation in renal cell carcinoma11.

Unlike traditional filtering approaches just separating

high and low gene clusters according to median values, the

ESTIMATE algorithm was applied in our research to screen

differentially expressed genes (DEGs) associated with

immune and stromal scores from TCGA database. This

approach aimed to make connections between TME and the

expression of genes. Increasing evidence suggested that the

application of immunotherapy targeting immune check-

points such as PD-L1 and CLTA4 were beneficial to LUAD

patients in clinic12. Previous studies reported immune-

related gene signatures to estimate the prognosis of head and

neck squamous cell carcinoma, breast cancer, and so on13,14.

Nevertheless, due to the intricate data process and technical

bias of different platforms, these models were difficult to

apply for clinical evaluation temporarily. In this study, we

established and validated an immune-related gene pair

(IRGP) signature, in which the normalization and scaling for

samples were not required.

Materials and Methods

Study Design and Data Collection

The integrated research design was exhibited in Fig. 1. The

LUAD patients’ transcription profiles and clinical data were

obtained from TCGA GDC website15. Another microarray

dataset (GSE68465, n ¼ 462) was downloaded from Gene

Expression Omnibus (GEO) portal for further validation

of the signature. The immune-related gene cohorts

were obtained from ImmPort database (https://immport.

niaid.nih)16.

Screening of DEGs

After normalization of the TCGA dataset, the immune/

stromal/estimate scores were calculated using Estimate R

package (http://r-forge.rproject.org;repos¼rforge;dependen

cies¼TRUE). Bioconductor limma package was applied to

screen DEGs from the immune and stromal score groups.

|log2 fold change (FC)| � 1 and false discovery rate (FDR)

< 0.05 were set as the cut-offs to screen DEGs17. Heatmap

and Venn were drawn using of heatmap and VennDiagram

R packages, respectively18,19.

Functional and Signal Pathways Enrichment Analysis

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses were performed

to explore various functions of DEGs using clusterProfiler R

package. GO analysis was divided into three parts, including

Figure 1. The workflow of current study. The TCGA-LUAD cohort was set as the training dataset, and the GSE68465 cohort was set as the
validation dataset. LUAD: lung adenocarcinoma; TCGA: The Cancer Genome Atlas.
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biological processes (BPs), molecular functions (MFs), and

cellular components (CCs). The enrichplot and ggplot2 R

packages were applied to visualize the results accurately20.

P < 0.05 was considered to be statistically significance. The

Gene Set Enrichment Analysis (GSEA) was conducted with

basic document named c2.cp.kegg.v7.0.symbols.gmt, which

was downloaded from molecular signatures database

(https://www.gsea-msigdb.org/gsea/datasets.jsp)21. The

number of permutations was set as 1,000 times.

Construction of the Prognostic Signature
Based on IRGPs

The stable prognostic model was extracted from TCGA data-

set. Immune-related DEGs were obtained from DEGs using

ImmPort database, and 66 immune-related genes with rela-

tive high variation (evaluated by median absolute deviation

> 0.5) were identified. The expression value of each one was

compared with others’ in the same independent sample. A

total of 2,145 different pairwise combinations were obtained.

If the expression level of former one was higher than the

later one, this IRGP was labeled as 1. If not, it was labeled as

0. Finally, if the score of an IRGP was 0 or 1 in more than

80% of the TCGA samples, it was discarded22. The remain-

ing 359 IRGPs were analyzed with univariate Cox regression

to obtain 15 prognostic-related candidate IRGPs. Lasso-Cox

analysis (iteration ¼ 1,000) and 10-fold cross-validation

were then applied to construct a more stable 10-IRGP model

for prognosis evaluation by glmnet R package. The formula

of the risk score model is described as follows:

Riskscore ¼
Xn

k¼1

bk�Xk

where bk refers to the coefficients of each gene pair, and Xk
represents 0 or 1, which is obtained from the comparison of

expression level in each pair. The optimal cut-off of the

IRGP was determined using time-dependent receiver oper-

ating characteristic (ROC) curve analysis (“survivalROC” R

package) at 1 year in the training cohort for overall survival

(OS). The cut-off value was defined as the risk score corre-

sponding to the minimum distance between ROC curve and

the point standing for 100% true positive rate and 0% false-

positive rate23.

Validation of the IRGP Signature

In GEO validation dataset, the patients were divided into the

high- and low-risk groups according to the cut-off value,

which obtained from the formula of risk model. The ROC

curve analysis was performed and the area under the curve

(AUC) was calculated. The Kaplan–Meier (K-M) survival

curve analysis was used to figure out differences of OS

between the high- and low-risk groups in both TCGA and

GEO datasets (survdiff(formula ¼ Surv(Time, Status) *

Group, data ¼ read table))24. The formula of survival curve

analysis is as follows:

St ¼ Numbers of subjects living at the start� Numbers of subjects died

Numbers of subjects living at the start

The concordance index (C-index) was calculated using

the coxph function of “survival” R package. The uni- and

multi-variate Cox regression analyses were used to validate

the risk score as an independent prognostic factor.

Immune Cell Infiltration

The CIBERSORT R package (Version 1.03) was applied to

quantify immune cell fractions including T cells, T cell fol-

licular helpers (Tfh), macrophages, and neutrophils, in the

high- and low-risk groups25. The P-value was calculated

using the deconvolution approach. P < 0.05 was considered

as a criterion. The results were shown in radar chart by R

package “fmsb.”

Results

Immune and Stromal Scores Were Associated with
LUAD Clinical Features

In TCGA-LUAD training dataset, three different kinds of

scores were calculated: immune scores (from �936.191 to

Table 1. Clinical Characteristics of the 522 LUAD Patients from
the TCGA Cohort.

CD19 Male (%) Female (%) Total (%)

Sex 242 (46.4%) 280 (53.6%) 522 (100.0%)
Age (years)a

�65 110 (21.9%) 131 (26.0%) 241 (47.9%)
>65 123 (24.5%) 139 (27.6%) 262 (52.1%)

Status
Dead 80 (15.3%) 87 (16.7%) 167 (32.0%)
Alive 162 (31.0%) 193 (37.0%) 355 (68.0%)

TNM stagea

I 163 (31.7%) 116 (22.6%) 279 (54.3%)
II 56 (10.9%) 68 (13.2%) 124 (24.1%)
III 46 (8.9%) 39 (7.6%) 85 (16.5%)
IV 12 (2.3%) 14 (2.7%) 26 (5.1%)

Ta

1 61 (11.7%) 111 (21.4%) 172 (33.1%)
2 143 (27.5%) 138 (26.6%) 281 (54.1%)
3 27 (5.2%) 20 (3.9%) 47 (9.1%)
4 10 (1.9%) 9 (1.8%) 19 (3.7%)

Na

0 150 (29.4%) 185 (36.3%) 335 (65.7%)
1 53 (10.4%) 45 (8.8%) 98 (19.2%)
2 36 (7.1%) 39 (7.6%) 75 (14.7%)
3 0 (0%) 2 (0.4%) 2 (0.4%)

Ma

0 172 (45.5%) 181 (47.9%) 353 (93.4%)
1 14 (3.7%) 11 (2.9%) 25 (6.6%)

aPartial missing of clinical characteristics.
LUAD: lung adenocarcinoma; TCGA: The Cancer Genome Atlas.
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3453.015), stromal scores (from�1783.99 to 2107.561), and

estimate scores (from �2344.43 to 4911.592). The clinical

characteristics of LUAD patients were classified (Table 1).

The tumor stages (Fig. 2A) were significantly correlated

with the immune (P ¼ 0.034) and estimate (P ¼ 0.048)

scores. The tumor sizes (Fig. 2B) were also significantly

correlated with the immune (P ¼ 0.003) and estimate (P ¼
0.028) scores. However, there were no statistically signifi-

cant differences between these scores and lymph node

metastases (Fig. 2C). The LUAD patients with distant metas-

tases (Fig. 2D) had lower stromal (P ¼ 0.007) and estimate

(P ¼ 0.016) scores.

According to the median scores, the LUAD patients were

divided into corresponding high and low score groups

(immune scoresHigh/Low, stromal scoresHigh/Low, and estimate

scoresHigh/Low). The patients in the immune scoresHigh or

estimate scoresHigh groups had longer OS than those in the

immune scoresLow or estimate scoresLow groups (Fig. 3).

These results indicated that the immune and estimate scores

were significantly associated with the OS of LUAD patients.

Screening DEGs Based on Immune/Stromal Scores

According to the threshold values (|log2 FC| � 1 and

FDR < 0.05), the DEGs were obtained from transcription

profiles of TCGA-LUAD samples using ESTIMATE algo-

rithm. The heatmap based on the immune scores exhibited

1,092 upregulated and 302 down-regulated genes (Fig. 4A).

Figure 2. The correlations between immune/stromal/estimate scores and clinical features. (A) High stages were significantly associated with
low immune (P ¼ 0.034) and estimate (P ¼ 0.048) scores. (B) Larger sizes of tumor were significantly associated with low immune (P ¼
0.003) and estimate (P ¼ 0.028) scores. (C) There was no statistically significant difference between lymph node metastases and immune/
stromal/estimate scores. (D) Distant metastasis was significantly associated with low stromal (P ¼ 0.007) and estimate (P ¼ 0.016) scores.
The P-values were calculated using Wilcox test for the comparison of two groups and Kruskal test for three groups or more.
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On the basis of the stromal scores, we identified 1,429 upre-

gulated genes and 211 down-regulated genes (Fig. 4B).

A total of 589 upregulated genes and 113 down-regulated

genes were obtained by the intersection of corresponding

groups (Fig. 4C, D). These 702 genes were defined as DEGs

for subsequent analysis. Moreover, the immune/stromal

scores of GSE68465 samples were also calculated (Supple-

mental Table 1).

Roles of DEGs During LUAD Pathogenesis

To explore the biological functions of DEGs, GO and KEGG

enrichment analyses were applied. The GO terms were con-

sisted of three parts: BPs, MFs, and CCs, and the top 10

enrichment results in each catalog were shown in Fig. 5A.

The DEGs were involved in the processes of immune

response, such as complement activation, antigen binding,

activation of cell surface receptor, and so on. The similar

results were also observed in the KEGG analysis (Fig. 5B).

The consequences of KEGG functional enrichment were

also mainly associated with immune response signal path-

ways including cytokine–cytokine receptor interaction, che-

mokine signaling pathway, and NF-kB signaling pathway.

These enrichment results confirmed reversely that ESTI-

MATE method was appropriate and accurate for DEG

screening.

A 10-IRGP Risk Model was Established to Evaluate
LUAD Prognosis

Based on the combined application of ImmPort database and

acquired DEGs dataset, we obtained 66 immune-related

DEGs, which could generate 2,145 IRGPs. After removing

IRGPs with a value of 0 (or 1) in more than 80% TCGA-

LUAD samples, 359 IRGPs were identified. Univariate Cox

regression analysis was then applied to obtain 15 prognostic-

related candidate IRGPs (P < 0.01, Supplemental Table 2).

Each gene pair was identified as an independent variable

with coefficient trajectories (Fig. 6A). To confirm the accu-

racy of this risk model, 10-fold cross-validation was per-

formed to obtain the confidence interval under each

lambda (Fig. 6B). An IRGP risk model including 10 gene

pairs was established (Table 2). Using time-dependent ROC

curve analysis in TCGA training dataset, the optimal cut-off

(value: �0.981) was applied to divide LUAD patients into

the high- and low-risk groups. AUC value of 1-year survival

rate was 0.702, and the C-index was 0.73 (Fig. 6C). The

AUC of 2- and 5- year survival rates were 0.699 and 0.690

in the TCGA training set (Supplemental Fig. 1). Our results

showed that the patients in the low-risk group had longer OS

than those in the high-risk group (P¼ 2.148�10�5, Fig. 6D).

According to the risk scores, the distribution of 10 IRGP

scores and living status of LUAD patients in the training

dataset were shown in Fig. 6E.

Assessment of the IRGP Model Accuracy

To better explore the accuracy of this IRGP signature, the

uni- and multi-variate Cox analyses were applied in TCGA

training and GEO validation datasets. Both the 10-IRGP

signature and N-stage were independent prognostic elements

(Table 3). In the validation dataset using the same risk

model, the 1-year AUC was 0.692, the optimal cut-off score

was �0.659, and a high C-index value of 0.72 could still be

achieved (Fig. 7A). The AUC of 2- and 5- year survival rates

were 0.632 and 0.620 in GSE68465 validation dataset

(Supplemental Fig. 1). The patients in GSE68465 were also

divided into the high- and low-risk groups based on the cut-

off value. The low-risk patients had longer OS than the high-

risk ones in general (Fig. 7B). According to the risk scores,

the distribution of the 10 IRGP scores and living status of

LUAD patients in the validation dataset were shown in

Figure 3. The correlations between the immune/stromal/estimate scores and OS. (A, C) The LUAD patients with high immune (P¼ 0.021)
and estimate (P ¼ 0.034) scores had better OS than those with low scores. (B) No statistically significant difference between the stromal
scores and the OS of patients (P ¼ 0.103). The P-value was calculated using the Log-rank test. LUAD: lung adenocarcinoma; OS: overall
survival.
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Fig. 7C. These results suggested that our IRGP signature was

successfully established to predict the survival of LUAD

patients.

Immune cell Infiltration in the High- and Low-Risk
Groups

Previous studies indicated that immune cell infiltration had

effects on LUAD progression, development, and prognosis.

To examine the relevance of the risk scores with immune

cell infiltration, CIBERSORT algorithm was used to com-

pare the relative abundance of immune cells in different

groups. Our results suggested that regulatory T cells (Tregs),

resting dendritic cells, plasma cells, CD4 memory resting T

cells, and Tfh were highly expressed in the low-risk group,

while M2 and M0 macrophages, activated dendritic cells,

and neutrophils were lower in the low-risk group (Fig. 8 and

Supplemental Fig. 2).

Functional Assessment of the IRGP Signature

To explore the signal pathways involved in this IRGP model,

the functional enrichment analyses were compared in both

the high- and low-risk groups using GSEA (Fig. 9 and

Figure 4. Gene expression profiles of immune/stromal score groups in the TCGA-LUAD training dataset. (A, B) Heatmaps of gene
expressions in immune/stromal scoreHigh/Low groups. |log2 FC| � 1 and FDR < 0.05 were considered as criterion. (C, D) Venn diagrams
of up- and down-regulated DEGs in immune/stromal score groups. DEG: differentially expressed gene; FC: fold change; FDR: false discovery
rate; LUAD: lung adenocarcinoma; TCGA: The Cancer Genome Atlas..
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Supplemental Fig. 3). For the high-risk group, the enriched

signal pathways were associated with DNA repair, homolo-

gous recombination, mismatch repair, and so on (Supple-

mental Table 3). These results provided additional

evidence that immunity was associated with DNA damage-

related signal pathways.

Discussion

Lung cancer draws more attention due to its substantial mor-

bidity and mortality. The noteworthy features of lung cancer

are rapid progression, high malignancy, low rates of early

diagnosis, and adverse prognosis1. LUAD is the most pre-

valent subtype of lung cancer. During past years, numerous

studies suggested that TME played important roles in tumor-

igenesis, development, and metastasis4,26,27. TME-related

biomarkers were reported to predict prognosis for patients

as novel targets for immunotherapy10,28. Several immune-

related gene-related prognostic models were reported as

well12,13. While these researches had singular focus on

TME-related or immune-related genes, the accuracy of these

predictive models remained uncertain and they were difficult

to be used in clinic.

Our study, for the first time, established a prognostic

model for LUAD patients using ESTIMATE algorithm and

Lasso-Cox analysis. Traditional IRGs were replaced by

IRGPs to establish the model in our research. In the models

established on IRGs, the significant genes were just

extracted according to their expression levels, and the het-

erogeneity of patients was ignored. Applying IRGPs to con-

struct the signature, risk scores could be calculated via

comparing the relative expression of gene pairs in the same

sample, and the scaling and normalization of data could be

avoided.

First, we obtained 702 TME-related DEGs from the

TCGA-LUAD training dataset by ESTIMATE algorithm.

Figure 5. Functional analyses of DEGs. (A) The GO analysis of DEGs in three categories (BPs, MFs, and CCs). (B) The highly enriched signal
pathways of DEGs in KEGG analysis. BPs: biological processes; CCs: cellular components; DEG: differentially expressed gene; GO: Gene
Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; MFs: molecular functions.

Table 2. The Detailed Information About the 10-IRGPs Signature.

IRG 1 Full name IRG 2 Full name Coefficient

CD19 molecule CXCL6 C-X-C motif chemokine ligand 6 �0.336255502
CD19 CD19 molecule CXCL11 C-X-C motif chemokine ligand 11 �0.121626909
CD19 CD19 molecule TNFSF8 TNF superfamily member 8 �0.122011452
CD79B CD79b molecule TLR4 Toll like receptor 4 �0.1704619
IGLV1-44 Immunoglobulin lambda variable 1-44 S100P S100 calcium binding protein P �0.398245257
CD28 CD28 molecule CD1E CD1e molecule 0.304288728
CR2 Complement C3d receptor 2 PTX3 Pentraxin 3 �0.060856539
TLR7 Toll like receptor 7 PTX3 Pentraxin 3 �0.244271763
CCL23 C-C motif chemokine ligand 23 PTX3 Pentraxin 3 �0.123564823
HLA-DQA1 Major histocompatibility complex, class II, DQ alpha 1 CXCL10 C-X-C motif chemokine ligand 10 �0.230577243

IRGP: immune-related gene pair.
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Figure 6. Construction of a 10-IRGP prognostic signature. (A) Lasso coefficient profiles of 15 IRGPs with P < 0.01. (B) Ten-fold cross-
validation result identified optimal values of the penalty parameter l. (C) Time-dependent ROC curve for IRGPs in the training set (1-year
AUC ¼ 0.702, cut-off value: �0.981). (D) The K-M curve in the training cohort (high- vs. low-risk, P ¼ 2.148�10�7). (E) The heatmap
showed the 10-IRGP scores based on the risk scores, the risk score distribution of TCGA-LUAD patients, and the survival state of patients
according to the risk scores. AUC: area under the curve; IRGP: immune-related gene pair; K-M: Kaplan–Meier; LUAD: lung adenocarcinoma;
ROC: receiver operating characteristic; TCGA: The Cancer Genome Atlas.

Table 3. Uni- and Multi-Variate Analyses of the Prognostic Factors in Both the Training and Validation Cohorts.

Variable

Single-variate factor analysis Multivariate factor analysis

HR (95% CI) P-value HR (95% CI) P-value

TCGA dataset
Risk score 3.898 (2.61–5.82) 2.929E-11 3.267 (2.138–4.991) 4.392E-08
Age 1.002 (0.984–1.021) 0.784 1.021 (1.001–1.041) 0.034
Gender 1.04 (0.728–1.485) 0.827 0.906 (0.63–1.304) 0.597
T 1.622 (1.308–2.011) 1.014E-05 1.217 (0.961–1.542) 0.102
M 1.701 (0.935–3.095) 0.081 1.326 (0.706–2.491) 0.378
N 1.795 (1.467–2.197) 1.328E-08 1.447 (1.155–1.813) 0.001

GSE68465 dataset
Risk score 1.891 (1.386–2.579) 5.666E-05 1.871 (1.361–2.572) 0.0001114
Age 1.026 (1.013–1.04) 8.123E-05 1.031 (1.017–1.045) 7.005E-06
Gender 1.426 (1.1–1.849) 0.007 1.241 (0.955–1.613) 0.105
T 1.664 (1.387–1.998) 4.466E-08 1.438 (1.193–1.734) 0.0001378
N 2.012 (1.711–2.365) 2.421E-17 2.022 (1.716–2.383) 4.04E-17

CI: confidence interval; HR: hazard ratio; TCGA: The Cancer Genome Atlas.
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The GO and KEGG analysis showed that these DEGs parti-

cipated in inflammatory response and innate/adaptive

immune response. These results accorded with previous

reports on the functions of immune and stromal cells in the

TME of LUAD patients29–31. We extracted 16 immune

genes from these DEGs to build a 10-IRGP prognostic sig-

nature via Lasso-Cox analysis. Most of these genes were

cytokines and chemokine ligands. These genes participated

in the progression of tumors and affected the prognosis of

patents by identifying and presenting antigen in immune

system. Previous studies analyzed the roles of PTX3 in can-

cer progression. It has been proved that PTX3 is produced by

lung cancer cells, which consists of higher PTX3 plasma

levels in lung cancer patients than healthy people32. Further-

more, the higher expression of PTX3, the worse progression-

free survival for lung cancer patients33. The deficiency of

PTX3 promoted cancer-associated inflammatory response

and activated complement pathways, such as upregulation

of C3 and C5a34,35. In lung cancer, CXCL6 promotes tumor

metastasis via targeting miR-515-5p36. In colorectal cancer,

the poor prognosis was attributed to CXCL10/11 secretion,

enhancing the infiltration of tumor-associated macrophages

into tissues and promoting cell invasion37,38. CXCL10 also

induces chemotaxis of CXCR3þ T lymphocytes and

CD11cþ DCs into the TME to eliminate tumor cells after

IFN-g treatment39. CCL23 promotes the migration of ovar-

ian cancer through ERK1/2 and PI3 K pathway activation40.

Moreover, CCL23 binds to CCR1 and thus exerts chemotac-

tic activities on monocytes, DCs, and resting T lympho-

cytes41. TLR4 was demonstrated to promote the

progression of tumor growth and apoptosis resistance via

secreting various factors, such as antiapoptotic protein.

However, activated TLR4 also has the antitumor effects.

Activated TLR4 suppressed tumor progression via

Figure 7. Validation of the 10-IRGP prognostic signature in the GEO validation dataset. (A) Time-dependent ROC curve for IRGPs (1-year
AUC ¼ 0.692, cut-off value: �0.659). (B) The K-M curve in the validation cohort (high- vs low-risk, P ¼ 9.191�10�5). (C) The heatmap
showed the 10-IRGP scores based on the risk scores, the risk score distribution of GSE68465 patients, and the survival state of patients
according to the risk scores. AUC: area under the curve; GEO: Gene Expression Omnibus; IRGP: immune-related gene pair; K-M: Kaplan–
Meier; ROC: receiver operating characteristic.
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increasing CD8þ T cell infiltration in osteosarcoma42 and

developed resistance to anti-epidermal growth factor receptor

(anti-EGFR) therapy in head and neck squamous cell carci-

noma43. It had been proved that tumor-derived autophago-

somes induce B cell activation and T cell immune

responses. Macrophages enhance this process through the

TLR4 and MyD88 signaling pathways44. The expression of

TLR7 had different predictive values for different cancers. Its

higher levels indicated lower OS in breast cancer and lung

cancer45, but the higher OS in melanoma46,47. Costimulation

of CD9-specific chimeric antigen receptors and CD28 was

reported to have an improved antitumor effect in adoptively

transferred T cells48. In the upper dermis of the basal cell

carcinoma lesion, the percentage of CD30 ligand (CD30 L,

TNFSF8) positive mast cells were increased significantly49,50.

Researches showed that high expression of S100P was corre-

lated with poor clinical outcomes. Moreover, S100P was spe-

cifically overexpressed in lung metastatic tissues51.

Based on this IRGP model, the patients were divided into

the high- and low-risk groups. Overall, the K-M analysis

showed that low-risk patients had longer OS than high-risk

ones. However, two patients in the high-risk group and one

patient in the low-risk group were survived after 14 years in

validation dataset. This phenomenon probably resulted from

the heterogeneity of the patients, the limited number of sam-

ples and datasets included in this study, and the different

efficiency of clinical treatments such as radio- or chemo-

therapy in patients. The details of immunotherapy were

lacked in the GSE68465 dataset, which might contribute to

the survival of these two high-risk patients. More impor-

tantly, for the majority (439/442) of patients and for less than

14 years, our model presented excellent predictive functions.

The high AUC and C-index values indicated the good per-

formance of our model.

To understand the immune mechanisms in different

groups, the immune cell infiltration analyses were explored

Figure 8. Immune cell infiltration in both the high- and low-risk groups. (A) The relative abundance of immune cells in different risk groups.
(B, C) M2 macrophage (P ¼ 0.001) and neutrophil (P ¼ 0.002) infiltrations in the low-risk group were significantly lower than those in the
high-risk groups. (D) Tfh was significantly higher in the low-risk group (P ¼ 0.03). Tfh: T cell follicular helpers.
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with CIBERSORT. We founded that M2 macrophage and

neutrophil infiltration in the low-risk group were signifi-

cantly lower than those in the high-risk group. Previous

studies proved that high levels of M2 macrophages were

associated with poor OS in diffused large B-cell lymphoma

and gastric cancer52,53. The number of neutrophils could be a

negative prognostic factor in many types of carcinoma, such

as lung and ovarian cancers54. In addition, Tfh was signifi-

cantly higher in the low-risk group. The density of Tfh cells

was positively associated with patients’ survival in color-

ectal and breast cancer55. Our research showed that Tregs

were highly expressed in the low-risk group, and they were

partially related to the clinical response for treatments in

patients. It was proved that Tregs were activated in response

to radiation damage, but there was an important homeostatic

mechanism between radiotherapeutic benefit and damage.

Because of the balance between increased Tregs and radio-

therapy effects, patients would get more benefits from radio-

therapy combined with immune modulation about Tregs56. It

also indicated better survival for patients. This was consis-

tent with better OS in the low-risk group.

Moreover, the GSEA was used to investigate signal path-

ways involved with IRGP-related immune process. In the

high-risk group, most pathways were involved in DNA

repair to ensure the genome integrality. It was worth to note

that radiotherapy, as the traditional therapy, enhanced

immune response through radio-related DNA damage. The

DNA repair capacity of damaged cells was associated with

resistance to radiation57. The poor survival in the high-risk

group might partly resulted from the strong capacity for

DNA repair.

In clinical diagnosis and treatment, as the genetic hetero-

geneity, patients showed different survival outcomes, even

though they had same clinical characteristics, pathologic

conditions, and treatments58. So, our prognosis model can

serve as an individualized, single-sample estimate for LUAD

patients’ survival. Meanwhile, the IRGP signature can be

used to predict the infiltration of immune cells in patients,

which is conducive to the prediction of patient sensitivity to

immunotherapy. Our study holds great promise for the clin-

ical application. In the same patient, we can analyze the

expression of 16 genes in the IRGP signature and calculated

the scores by particular pairwise comparison. The patients

could be divided into the high- or low- risk group according

to the risk scores and then predicted with different survival

outcomes. Meanwhile, the sensitivity to immunotherapy for

Figure 9. Functional assessment of the IRGP signature using GSEA. The results showed that the top six vital KEGG pathways in the high-risk
group. GSEA: Gene Set Enrichment Analysis; IRGP: immune-related gene pair; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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patients can be predicted according to the infiltration of

immune cells in different risk groups.

There were several limitations in our current study. First,

there were only one TCGA-LUAD training and one

GSE68465 validation datasets. Second, our study was based

on publicly accessible database using the computational

biology algorithm and these results should be further vali-

dated with more experiments in vivo and in vitro. Third, the

heterogeneity of tumors might bring unavoidable sampling

bias. In future, these bias could be reduced with the expand-

ing of datasets and increasing the sample counts.

Conclusions

An IRGP signature was established to predict LUAD prog-

nosis. Based on this model, a novel classification method for

LUAD patients was developed mainly based on the risk

score, which was an independent predictive factor. More-

over, our studies provided promising perspectives about

therapeutical targets for LUAD immunotherapy.
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