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The electron density and the electrostatic potential are funda-

mentally related to the molecular hamiltonian, and hence are

the ultimate source of all properties in the ground- and excited-

states. The advantages of using molecular descriptors derived

from these fundamental scalar fields, both accessible from

theory and from experiment, in the formulation of quantitative

structure-to-activity and structure-to-property relationships, col-

lectively abbreviated as QSAR, are discussed. A few such descrip-

tors encode for a wide variety of properties including, for

example, electronic transition energies, pKa’s, rates of ester

hydrolysis, NMR chemical shifts, DNA dimers binding energies, p-

stacking energies, toxicological indices, cytotoxicities, hepatotox-

icities, carcinogenicities, partial molar volumes, partition coeffi-

cients (log P), hydrogen bond donor capacities, enzyme–

substrate complementarities, bioisosterism, and regularities in

the genetic code. Electronic fingerprinting from the topological

analysis of the electron density is shown to be comparable and

possibly superior to Hammett constants and can be used in

conjunction with traditional bulk and liposolubility descriptors to

accurately predict biological activities. A new class of descriptors

obtained from the quantum theory of atoms in molecules’

(QTAIM) localization and delocalization indices and bond proper-

ties, cast in matrix format, is shown to quantify transferability

and molecular similarity meaningfully. Properties such as

“interacting quantum atoms (IQA)” energies which are expressi-

ble into an interaction matrix of two body terms (and diagonal

one body “self” terms, as IQA energies) can be used in the same

manner. The proposed QSAR-type studies based on similarity

distances derived from such matrix representatives of molecular

structure necessitate extensive investigation before their utility is

unequivocally established. VC 2014 The Author and the Journal of

Computational Chemistry Published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23608

Introduction

Quantitative structure-to-activity (or -property) relationships

(QSAR/QSPR) relate a set of molecular descriptors to biological,

pharmacological, or physicochemical properties.[1–15] For sim-

plicity, we will ignore the nuance between property and activity

and use QSAR to designate both QSAR and QSPR in this article

as the principles in modeling either are essentially the same.

QSAR correlations are constructed to predict the activities of

compounds (physicochemical, spectroscopic, biological, pharma-

cological, and so forth) from other more readily measurable

experimental properties or from calculated properties regardless

of the presence of a clear predictor–predicted causal link.

Not infrequently, QSAR models, despite of being predictive

(and hence useful), provide little or no clue as to why they

work. We can cite, for example, the chemical graph theoretical

(connectivity) indices,[6] which useful as they may be, cannot

be generally expected to provide, as such, much insight on

the mode of action of a drug.

Alternatively, QSAR modeling based on descriptors[16]

obtained directly from the electron density, electron (de)locali-

zation, or the molecular electrostatic potential (MESP), through

the application of a topological analysis[17–19] can reach

beyond the primarily utilitarian approach.[15] Descriptors

derived from the electron density[16] (Fig. 1) have been used

by various research groups in the construction of physically

insightful QSAR models.[15] The present review samples the rel-

evant literature and expands the use of such descriptors in

QSAR, especially those obtained from Bader’s quantum theory

of atoms in molecules (QTAIM),[17–19] in the construction of

predictive and physically insightful QSAR models. The terminol-

ogy of QTAIM will be used without definition since it is

reviewed elsewhere.[17–24]
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Electron density-derived descriptors have clear physical

meanings that can be often related to the predicted property.

In addition, these descriptors are often accessible from both

experiment (X-ray diffraction)[19,25–29] and theoretical calcula-

tions except for properties that require the full density matrix

obtainable only from quantum mechanical calculations.

The analysis of the electron density can be a rich source of

raw atomic and bonding descriptors that can be processed

through empirical models to predict (and possibly explain) physi-

cochemical and biological properties of molecules.[15] The use of

QTAIM descriptors in QSAR may possibly increase drastically in

the near future due to the fast and ever-growing availability of

computational resources and efficient computer programs.

A particular advantage of QTAIM analysis of the electron

density is that it provides a complete set of consistent proper-

ties (not only atomic charges) within one coherent and quan-

tum mechanically sound theory.[17] Further, QTAIM atomic and

bond properties are well-known for their insensitivity to the

underlying levels of ab initio electronic structure calculations,

an assertion especially true when differences rather than abso-

lute values are considered.[30–32] This is contrasted with, say,

Hirshfeld or Mulliken atomic charges, which are arbitrarily

defined and basis set unstable.

Quantitative Structure–Activity Relationships
(QSAR)

QSAR modeling[1–15] aims at the construction of empirical for-

mulae capable of predicting the biological activity of an

untested molecule given a set of its structural and electronic

properties, often on the basis of some sort of multivariate

regression.[8] This approach is widespread in the field of drug

discovery and is especially useful when the mechanism of

action of the drug is not known. The field is so vast that there

are journals with names such as SAR QSAR Environ. Res. or Mol.

Inform. (formerly Quant. Struct.-Act. Relat. and later QSAR Comb.

Sci.) and even a UK-based society (The QSAR Society).

The properties used in the construction of a QSAR model

can include experimentally determined quantities, results of

(quantum chemical) calculations, simple counts of atoms or

bond types, and connectivity information regardless of the

presence of an obvious causal link between them and the

modeled activity. The basic assumption is expressed as

biological activity � log
1

C

� �
5 f x1; x2; :::; xnð Þ

5constant 1
Xn

i51

Xm

j51

aijx
j
i ;

(1)

in which C is the concentration of the compound necessary to

reach a biological endpoint such as LD50 (lethal dose 50%),

IC50 (inhibitory concentration 50%), or ED50 (effective dose

50%), xi is the ith predictor (from a set of n) raised to the jth

power, and aij are the weighing coefficient obtained from the

statistical fitting. The last equality of Eq. (1) gives the explicit

form of the oft assumed function relating the predictors to

the predicted response. The predictors can be experimental or

calculated properties whether structural, physicochemical, or

quantum chemical or any combinations of all the above. It is

recommended that the number of compounds used to build

the statistical model be at least 5n, and the rule of thumb is

that the greater the ratio of the number of compounds to the

number of parameters, the better the model.[10]

It is impossible to review the immense QSAR literature but we

cite a few examples here to illustrate the principally utilitarian use

of QSAR in drug discovery. The HOMO–LUMO gap and the local

density of electronic states, for example, have been used by Ven-

drame and coworkers[33] to construct a QSAR model capable of

predicting the biological activity of steroids with 100% success

rate. These workers also constructed a related QSAR model to iden-

tify the carcinogenic activity of a given polycyclic aromatic hydro-

carbon, a model that exhibited an accuracy of over 80%.[33] In

another study, it was found that the quantum mechanically calcu-

lated electron affinities of 270 nitroaromatic compounds provide a

statistically significant basis for the discrimination between those

that are mutagenic (Ames test positive) and those that are not

(Ames test negative).[34] Hatch et al.[35] developed QSAR models for

80 amines with mutagenic activities spanning 10 orders of magni-

tude based on the total energy of the conjugated p-electrons and

on the energy of the LUMO.

Clearly, there is no shortage of examples of QSAR models in

the literature. A final example to help bringing the point to

the fore is that of a strongly predictive (and hence useful)

model in which the connections between the predictors and

the response are not obvious. In this example, the effective-

ness of a series of ketones with aromatic substituents against

Candida albicans, measured by the negative logarithm of the

minimum inhibitory concentration (pMIC), was found to be

robustly predicted by the following model:[36]

pMIC 5 17:4735 1 0:3393 ½Lx�21:7829 ½IP�
20:0708 ½MR�10:8918 ½B4 ðAÞ�;

(2)

where the predictors include molecular length [Lx], ionization

potential [IP], molar refractivity [MR], and the Verloop B4 steric

parameter [B4 (A)] of the substituent in the aromatic ring A.

The connection between these quantities and the MIC of the

compound is not evident, but this does not reduce the impor-

tance of the QSAR model in the design of more potent

inhibitors.

Figure 1. Examples of properties that can be used as molecular descriptors

derived from the electron density. (Reproduced with permission from Ref.

16 VC 2012 American Chemical Society). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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From the above few examples, one can say that the predic-

tors in QSAR modeling can be selected to maximize the corre-

lation with the response before other considerations such as

causal link or mechanism of action. Such descriptor(s) selection

can be automated by modern statistical methods imple-

mented in numerous software packages but this black-box

approach can lead to problems such as chance correlations[37]

and even the inconsistency of the sign of the correlation coef-

ficient when only part of the original dataset is analyzed.[38] It

has been argued recently that the use of electron density–

based molecular descriptors can eliminate a source of uncer-

tainty in QSAR modeling since they are well-defined, physically

meaningful, and fundamentally related to activity, which would

constitute one way to remedy for the aforementioned possible

limitations of traditional QSAR.[15]

The Electron Density q(r) and QSAR Modeling

The electron density q(r) at a point r is the probability density

of finding an electron of either spin in a volume element

ds 5 dx dy dz at r weighted by the total number of electrons

(N). The electron density can be calculated from the many-

electron wavefunction W:

qðrÞ5N

ð
ds0W�ðx1; x2; . . . ; xNÞWðx1; x2; . . . ; xNÞ; (3)

where xi is the set of spatial and spin coordinate of the elec-

tron i, and
Ð

ds0 is short for integration over the spatial coordi-

nates of all electrons except one and summation over both

spins.

The total electric charge density qtotal(r) is the sum of the

negative electronic charge density and the positive nuclear

charge density (discrete distribution of point nuclear charges),

which in atomic units (a.u.) (e 5 1) is given by:

qtotal ðrÞ52qðrÞ1ZadðRa2rÞ; (4)

where Za and Ra are the charge and position of nucleus a, and

d(Ra 2 r) is a Dirac delta function.

Hohenberg and Kohn (HK)[39] proved the existence of a bijec-

tive mapping between the electron density q(r) of a many-

electron nondegenerate ground state (in the absence of exter-

nal magnetic fields), and the external potential v[q(r)], that is,

the nuclear potential augmented by scalar potentials external

to the system of electrons. In other words, the electron density

is bijectively mapped into the nuclear charges (the atomic

numbers in a.u., Za) and positions [d(Ra 2 r)], which, together,

generate to the external potential. This last assertion is a con-

sequence of Kato’s cusp condition, which states that at the

position of an atomic nucleus the derivative of the spherically

averaged density (�q) with respect to the distance from that

nucleus (d�q=dra) equals 22Za�qðRaÞ.[40] Further, the electron

density also determines the total number of electrons in the

system N via its integral over all space (Fig. 2). This mapping

implies the interdeterminancy of the two terms of the R.H.S. of

Eq. (4), and thus the electron density analyzed in this work,

contains the same information as the total charge density.

As specifying v[q(r)] and N[q(r)] completely defines the Ham-

iltonian (Fig. 2), the ground-state wavefunction W[q(r)] and all

derived ground-state properties {O} including the total energy

are uniquely specified as well, thus we may write:

qðrÞ !
v½qðrÞ�

N½qðrÞ�

( )
! Ĥ½qðrÞ� ! W½qðrÞ� ! O½qðrÞ�: (5)

The electron density is thus the scalar field par excellence

for the construction of meaningful QSAR correlations since by

necessity all molecular properties are uniquely mapped to it

whether the exact functional relationships is known or not.

Riess and M€unch (RM) demonstrated that the first HK theo-

rem, expressed in the relation (5), applies not only to the total

system but also that it applies to any finite bounded subsys-

tem of any size and shape.[41] That is to say, an arbitrarily small

open subsystem within a molecule enclosed by sharp but oth-

erwise arbitrary boundaries can be mapped uniquely to all

ground-state properties of the full system, including the total

full electron density,[41] which can be written symbolically as:

qðrÞx !
v½qðrÞ�

N½qðrÞ�

( )
! Ĥ½qðrÞ� ! W½qðrÞ� ! O½qðrÞ�;

$ $

qðrÞ

(6)

where x is any open system with sharp boundaries delimiting

it, in three-dimensional (3-D) space, from the rest of the total

many-electron system.

Bader and Becker[42] applied this extension of the HK theo-

rem to atoms in molecules (AIMs) bounded by surfaces of

zero-flux in the gradient vector field associated with the elec-

tron density (when x 5 X). Mezey[43] illustrates the use of RM’s

extension of the HK theorem in conjunction with Carb�o’s simi-

larity index in what he terms the “holographic electron density

theorem”. Mapping (6) constitutes fundamental grounds for

Figure 2. The ground-state electron density, q(r), determines the Born–

Oppenheimer (BO) Hamiltonian uniquely. The full BO Hamiltonian includes,

in addition to the electronic Hamiltonian displayed in the figure, the nuclear–

nuclear repulsion term which is fixed from points (i) and (ii). [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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basing the empirical modeling of properties in QSAR-type

studies on electron density-derived properties. This is particu-

larly true when x itself is well-defined from quantum mechan-

ics, that is, when x 5 X.[17]

Bader and Zou[44] emphasized that Dirac’s definition of a

quantum mechanical “observable”[45] applies to q(r) as it fulfils

the following conditions:

1. q(r) is a real dynamical variable, which is the expectation

value of a linear Hermitian operator q̂ðrÞ, and

2. The eigenstates of q̂ðrÞ form a complete set of coordi-

nate states jri.

Dirac comments further that “[i]n practice it may be very

awkward, or perhaps even beyond the ingenuity of the experi-

menter, to devise an apparatus which could measure some

particular observable, but the theory always allows one to

imagine that the measurement can be made.”[45] While not

every “observable” in the quantum mechanical sense is

observable in practice, the electron density is. Thus, the elec-

tron density is not only the source of all ground-state proper-

ties but also it is a quantum mechanical observable, which is

readily accessible from both theory and experiment (primarily

from X-ray scattering experiments),[19,25–29] Figure 3. These

qualities of the density when considered together with rela-

tion (6) lead one to conclude that atomic properties such as

atomic charges themselves are quantum mechanical observ-

ables accessible experimentally and, contrary to the widely

held view, are unique.[44,46]

The Electron Density and Molecular Similarity

A minimum degree of similarity is often required to exist

between the molecules used in the construction of a QSAR

model, say a common molecular skeleton with different sub-

stituents such as the series of substituted benzoic acids.[47]

Researchers have used a diversity of molecular features in

quantifying similarity, some base similarity on a comparison of

amino acid sequences,[48–50] others on the degree of mis-

matching of 2-D chemical graphs,[51] and others on 3-D molec-

ular superpositions.[52] By relations (5) and (6), a similarity of

q(r) necessarily leads to the similarity of all other ground-state

properties, and hence the most fundamental molecular com-

parisons are those effected at the electron density level. This

realization is credited to Carb�o-Dorca and coworkers[9,53–55]

who used the electron density and its associated MESP[56–68]

to quantify molecular similarity. Carb�o’s (dimensionless) similar-

ity index can be written in its general form as[9,53]

CMi Mj
ðÔ; HÞ5

max
H

Ð Ð
qMi
ðriÞÔðri; rjÞqMj

ðrj; HÞdridrjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ Ð
qMi
ðriÞÔðri; rjÞqMi

ðrjÞdridrj

Ð Ð
qMj
ðrjÞÔðri; rjÞqMj

ðrjÞdridrj

q ;

(7)

where qMi
and qMj

are the electron densities of ith and jth mole-

cules, H is an alignment parameter, and Ôðri; rjÞ is an operator

that defines the similarity index. If Ôðri; rjÞ5dðri2rjÞ, a Dirac

delta function, and assuming maximal alignment the index is[9]

CMi Mj
5

Ð
qMi

qMj
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

q2
Mi

dr
Ð

q2
Mj

dr
q : (8)

and when Ôðri; rjÞ5jri2rjj21, the Coulomb operator, CMi Mj
is a

Coulomb similarity index.

The denominator in Eqs. (7) or (8) causes CMi Mj
to become

unity when a molecule is compared with itself (i 5 j). Thus

Carb�o indexes range from a maximum of unity (identity) and

approach but never reach zero, since there will always be

some overlap of electron density no matter how dissimilar two

molecules are (i.e., 0 < CMi Mj
<1; i 6¼ j).

Cioslowski and Nanayakkara (CN)[69] extend the applicability

of a Carb�o-type indexes to pairs of AIMs as defined by QTAIM.

In this approach, the comparison is between a pair of AIMs

(AIMs A and B) rather than between pairs of molecules (mole-

cules Mi and Mj). This is achieved by taking into account only

the intersection of the spaces occupied by the two atoms

delimited from the rest of their respective molecules by zero-

flux surfaces. When the atom is not bound and extends to

infinity, then a cutoff of 0.001 a.u. is taken as its outer isosur-

face. The atomic similarity index is defined as[69]

SAðMiÞBðMjÞ5

Ð
XAðMiÞBðMjÞ

qMi
dr

Ð
XAðMiÞ

qMi
dr

2
664

3
7753

Ð
XBðMjÞAðMiÞ

qMj
dr

Ð
XBðMjÞ

qMj
dr

2
664

3
775; (9)

where

XAðMiÞBðMjÞ5XBðMjÞAðMiÞ � XAðMiÞ\XBðMjÞ; (10)

and where the intersection of the two basins is calculated

after superposing the nuclei of the two atoms and maximizing

the index through a rotation that maximizes their overlap. If

one compares two atoms in the same molecule, then i 5 j in

Figure 3. The electron density as theoretically accessible and experimen-

tally measurable Dirac observable. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

FEATURE ARTICLE WWW.C-CHEM.ORG

1168 Journal of Computational Chemistry 2014, 35, 1165–1198 WWW.CHEMISTRYVIEWS.COM

http://wileyonlinelibrary.com


Eqs. (9) and (10). CN provide several examples showing that

their atomic similarity index yields results that conform with

chemical observation, intuition, and expectation.[69]

Despite of their ground-breaking nature, Carb�o’s indexes can

be impractical because (i) they necessitate molecular align-

ment, that is, maximizing CMi Mj
through an exhaustive search

of the superposition space[9,70,71] and (ii) can be dominated by

nuclear maxima, which overshadows the subtle differences in

the valence shells that govern chemistry. A solution to these

problems has been proposed by Popelier in what he terms

the quantum topological molecular similarity (QTMS) approach,

briefly reviewed below.

The Electron Density, Transferability, and
Additivity

The contributions of a given atom (or of a group of atoms) to a set

of molecular properties can often be predicted from its corre-

sponding contributions to the molecular properties of a chemically

different molecule. When such a prediction is possible with chemi-

cal accuracy the atom (or group) is said to be transferable. Transfer-

ability, when coupled with additivity, leads to additivity schemes

such as those developed by Benson and coworkers.[72–74]

Bader and coworkers[17,24,75–82] stress that the QTAIM defini-

tion of AIMs maximizes their transferability. QTAIM partitions

space exhaustively at the zero-flux surfaces[83–85] without any

gaps unaccounted for into “nonoverlapping, bounded, space-

filling open quantum systems”,[82] and hence AIMs defined in

this manner also exhibit additivity since

hÔi5
X
X

ð
X

N

ð
1

2
½W�ÔW1ðÔWÞ�W�ds0

� �
dr

0
@

1
A

5
X
X

ð
X

qOdr

0
@

1
A5

X
X

D
ÔðXÞ

E
;

(11)

where the left hand side (L.H.S.) is the usual molecular expecta-

tion value of a linear Hermitian operator Ô, while the three

equivalent expressions on the R.H.S. yield the molecular value

as a sum of atomic averages obtained from the integral of a real

space dressed density qO(r) over the volume of each atom X.

The transferability and additivity of atomic properties has

been used in the theoretical reconstruction of large molecules

from fragments synthesized in molds. The goal of this type of

reconstruction is to bypass or reduce the nonlinear scaling bot-

tleneck as a function of the size of ab initio calculations. Exam-

ples of such reconstruction includes the theoretical synthesis of

polypeptides from amino acid residues extracted from molds

and melded together,[75,77–79] and the theoretical[86] and experi-

mental[87] reconstruction of complicated alkaloids such as the

opioids from their constituent molecular building blocks. Exper-

imentally, the advantage of this approach is to circumvent the

problem of obtaining electron densities of molecules that are

difficult to crystallize from the crystallographic electron den-

sities of more readily crystallizable smaller molecules. The trans-

ferability of larger molecular fragments saturated with

hydrogen atoms termed “kernels” has been extensively tested

by Huang, Massa, and Karle and has been used to predict total

energies, interactions energies, and binding energies of gigantic

molecules with chemical accuracy at a fraction of the computa-

tional cost of direct calculations, the reconstruction method

being termed the “kernel energy method.”[88–95] The transferabil-

ity of the electron density obtained from theory and experiment

has allowed several groups to build libraries of transferable X-ray

crystallographic multipolar parameters that are used to assist in

the refinement and in the modeling of the electron density of

large biological macromolecules.[87,96–109]

It is an observational fact that properties of AIMs are often

transferable within chemical precision, that is, to within �1

kcal mol21, which is practically tantamount to perfect transfer-

ability. Such high transferability (and additivity) has been

reported for QTAIM atomic energies[17,110] and for atomic

response properties such as polarizabilities[111] and magnetic

susceptibilities[112]—all closely paralleling experiment.

But why and how does transferability work? Actually there

are two types of transferability: Direct transferability, which is

the almost constancy of the atomic properties of a given atom

or group from one molecule to another, and compensatory

transferability, where the change in one atom or group cancels

the opposite change of similar magnitude in its neighboring

atom(s) or group(s).[76,113]

To understand Benson’s additivity schemes, one must take

both types of transferability into account.[113] We quote an

example given by Cort�es-Guzm�an and Bader:[113]

The energy of CH2XCH3 is the mean of the energies of

CH2XCH2X and CH3CH3 to within �0.5 kcal mol21 (1

kcal 5 4.184 kJ), experimental[74] or theoretical,[77] for

X 5 OH, Cl and I. Theoretical results for X 5 F give the energy

of CH3 in fluoroethane as being 15.5 kcal mol21 more stable,

that is, more negative, than in ethane while the energy of

CH2F is found to increase by 15.6 kcal mol21 relative to its

value in CH2FCH2F, the energy changes being accompanied

by a transfer of 0.061 e from CH3 to CH2F. The same principle

applies to systems with delocalized electrons, the energy of

pyridine, experimental or theoretical, equaling the mean of

the energies of pyrazine and benzene to within 0.1 kcal

mol21 using the measured heats of formation.[74]

Bader and Cort�es-Guzm�an close their paper by noting the

similarity of the net result of compensatory transferability and

Le Châtelier principle:[113]

There appears to be a Le Châtelier principle at work—

one that states that two open systems brought into con-

tact respond in such a way as to minimize the overall

changes in form and energy, resulting in many cases in a

conservation of energy.

Taking advantage of the transferability of QTAIM atoms, Brene-

man invented the “transferable atom equivalent” (TAE)[114–117]

method, which is designed to reconstruct accurate approxima-

tions to ab initio electron densities at a tiny fraction of the
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computational effort. A TAE is a mononuclear atomic electron

density region delimited by zero-flux surfaces extracted from a

mold molecule and stored in an electronic database which incor-

porates a large number of element combinations, atom-types,

and electronic environments. The electron density reconstruction

is achieved with the RECON program by recalling the desired TAE

from the database, and after the necessary rotation and transla-

tion, each newly added fragment is melded to the growing

reconstructed molecule to maximize the matching of its zero-flux

surface with that of the growing molecule. The automatic meld-

ing of zero-flux surfaces is affected by allowing the quantum

stress tensor to exert pressure on the two surfaces until the con-

dition of pressure equalization is satisfied, a point at which the

two nearly matching surfaces become melded into one gapless

approximate interatomic zero-flux surface. This melding proce-

dure necessitates some adjustments to bond lengths.

In addition to the TAE themselves, the database also stores

derivatives of their properties with respect to radial variations

of the zero-flux surface. These derivatives are used to correct

atomic properties for their variations accompanying the

change in the interatomic surface resulting from the melding.

Molecular properties/descriptors such as total energy, total vol-

ume, surface area of a given isodensity envelope, electrostatic

potential, dipole moment, Fukui function, and bare nuclear

potential are then calculated by combining the properties of

the composing TAEs.[114–117]

Several robust predictive QSAR models have been built from

TAE. Examples include a model capable of the accurate predic-

tion of the acute toxicity of 375 organic molecules to fish in

which 300 molecules were used as a training set to construct

the model while 75 molecules were left as the test set for

which a “leave one out” cross-validated r2, usually given the

symbol q2, of 0.81 was obtained.[117] The speed with which ab

initio quality results can be obtained using the TAE approach

is relevant to high speed screening of large molecular sets

ubiquitous in the in silico phase of drug design.

Categories of QTAIM Descriptors

QTAIM defines a number of atomic and bonding properties

simultaneously from the topological and the topographical

analysis of the electron density that extract atomically-resolved

and bond-resolved levels of description of a molecule from its

many-electron wavefunction. We can classify these QTAIM

properties broadly as follows:

i. Bond properties. These can be grouped into: (a) local

properties evaluated at the bond critical point (BCP)

such as the electron density (qBCP) or the energy den-

sities (e.g., GBCP, VBCP, and HBCP); (b) properties integrated

along the bond path such as the bond path length; and

(c) properties integrated over the interatomic zero-flux

surface such as the integrated electron density.[17]

ii. Atomic properties [Prop. (X)]. These are properties

integrated over the 3-D atomic basin bounded by the

union of zero-flux interatomic surfaces and, when

extending to infinity, a chosen outer isodensity enve-

lope, normally taken as the 0.001 a.u. envelope. The gen-

eral form of this integration is given in Eq. (11), which

necessarily leads to additivity of atomic properties.

Examples include the atomic energy [E(X)], the electro-

static charge q(X) (electrostatic monopole) and higher

multipoles such as the dipole moment [l(X)].[17]

iii. Interatomic properties [Prop. (X,X0)]. These are gener-

ally integrated properties that depend on pairs of

atomic basins. Examples include the delocalization index

(DI) d(X,X0)[118] and the interaction energy components

of the interacting quantum atoms (IQA).[119–121] One can

also calculate interatomic properties that do not involve

any integration involving two basins such as interatomic

distances, interatomic Coulomb repulsion energies tak-

ing only atomic monopoles, or nuclear–nuclear repulsion

energies. Interatomic properties can be organized in

matrix format that can be used in QSAR (See the section

entitled “Localization/Delocalization Matrices (LDM),

Delocalization Matrices (DM), and Density-Weighted Con-

nectivity Matrices (DWCM) in QSAR” below).

iv. MESP (and field) [V(r), E(r)]. These fields are deter-

mined entirely by the charge density distribution[56–68]

and represent an additional source of descriptors that

are directly related to reactivity that can be used in

QSAR (See the section entitled “Molecular Electrostatic

Potential (MESP) and Field (MESF)” below). While these

are not QTAIM-derived properties, the MESP has been

shown to be accurately reproduced from truncated mul-

tipolar expansion representations of the atomic densities

within molecules using the QTAIM multipoles.[122]

Numerical evidence has shown, thus, that the relation

between QTAIM atomic electrostatic properties and the

MESP is a bijective mapping, not only in principle but

also in computational practice as well.

Many of these QTAIM properties have been used in QSAR stud-

ies and drug design, but one can probably say safely that this is a

field in its infancy despite of the enormous literature that has

already accumulated. The purpose of the remainder of this article

is not an exhaustive review of this extensive literature, an over-

whelming task for the present author, but rather to emphasize (i)

the breadth, depth, and potential practical utility of such an

endeavor, with a necessarily biased sampling of the literature and

(ii) to show that QTAIM is not exclusive of other approaches, as we

read sometimes in the literature, in fact—to the contrary—it gains

and complements (and is complemented by) other approaches.

QTAIM Bond Properties in QSAR

The predictive power of BCP properties-based descriptors is

illustrated with the QTMS approach of Popelier and

coworkers,[123–144] and the work of Buttingsrud et al.[145–147]

Quantum topological molecular similarity (QTMS)

Substituent effects can be gauged by Hammett substituent

constants,[1,5,47,148] that is, the change in the pKa of benzoic
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acid on substitution in the aromatic ring by the substituent S

(Scheme 1):

r5log
KS

KH
5pKa;H 2pKa;S : (12)

Popelier developed a method termed “quantum topological

molecular similarity” (QTMS) that has been tested extensively

for its capability of reproducing the trends predicted from

Hammett constants accurately.[123] The QTMS descriptors have

been shown to convey essentially the same information con-

tained in the Hammett substituent constants and may consti-

tute an alternative in QSAR modeling since it is generally

easier to compute QTMS descriptors than it is to determine

the experimental values of new nontabulated Hammett con-

stants.[124–126,129,131,140,142]

In the QTMS approach, q(r) is sampled at the BCPs, a sampling

that entails several advantages such as the speed of the calcula-

tion and the emphasis on the chemically relevant bonding

regions with only an indirect perturbing influence of the chemi-

cally irrelevant nuclear regions. Further, QTMS bypasses the

molecular alignment problem, a considerable time-saver com-

pared to methods requiring maximization with respect to the

parameter H in Eq. (7). We note in passing that unlike Eq. (7),

however, QTMS cannot distinguish between enantiomers, which

does not constitute a limitation as long as the collected experi-

mental data include those obtained using the correct enantiom-

er(s). Recapping, the QTMS method has a number of advantages

with respect to its applicability in QSAR-type drug design: (i) It is

entirely based on the topology of the electron density in the

chemically relevant bonding region and not dominated by

nuclear maxima and (ii) its is considerably fast given that it does

not require molecular prealignment and/or space integration as

the electron density is only sampled at a set of point (the BCPs)

rather than being considered in its entirety.

The QTMS method starts with the construction of a multidi-

mensional mathematical space using bond properties deter-

mined at the BCPs. Each bond property is represented by a

Cartesian axis after converting each to a dimensionless relative

scale to avoid dimensional nonhomogeneity. The dimension-

less Euclidian distance between two molecules in this mathe-

matical space is then a measure of their dissimilarity, the

larger the distance the less similar they are.

Examples of bond descriptors include, but are not limited to,

the electron density at the BCP (qBCP), the Laplacian of qBCP

(!2qBCP), the bond ellipticity (e), the three principal curvatures

of the electron density evaluated at the BCP (k1, k2, and k3), the

kinetic energy density at the BCP (KBCP), the total energy density

at the BCP (HBCP), and the equilibrium bond length (Re).

If we suppose the BCP space is constructed from qBCP, !
2qBCP,

and e, then the distance between molecules A and B is:

dðA; BÞ5X
i2A

X
i2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qA

BCP 2qB
BCP

� �2
1 r2qA

BCP 2r2qB
BCP

� �2
1 eA2eBð Þ2

h i
i

r
;

(13)

where the sum runs over the i common bonds between

the two molecules A and B, and where standardised BCP

properties are used, which means that property x is replaced

by {[x – mean(x)]/standard deviation of x}, to avoid dimen-

sional inhomogeneity. In this way, the smaller d(A,B) the more

similar are A and B with a lower bound of d 5 0 when A and

B are one and the same molecule.

By construction, QTMS is an electronic structure fingerprint-

ing tool, but it is devoid of a built-in capability to represent

molecular size or hydrophobicity (as recognized by Popelier on

a number of occasions). This is so since the sampling is of

intensive properties (densities) rather than extensive properties

(integrated densities). This feature can actually be a strength

of QTMS rather than a limitation, because whenever QTMS

alone (i.e., without the inclusion of extraneous steric or log P

information) is capable of yielding a strongly predictive QSAR

model, then this implies that the properties being modeled

are determined primarily by electronic structure rather than by

steric bulk, molecular size, or solvent partitioning tendencies.

Conversely, failure of QTMS alone to predict activity is a diag-

nostic that steric bulk and/or hydrophobicity are important in

determining activity. In the latter cases, QTMS can be used in

conjunction with traditional steric bulk and/or hydrophobicity

measures to yield powerful predictive combined models.

The exclusive sensitivity of QTMS to electronic structure par-

allels that of the Hammett r constants. Both Hammett con-

stants and QTMS must be supplemented with steric bulk and/

or hydrophobicity descriptors when these are important in

QSAR models. This parallelism between QTMS and Hammett

constants lends merit to Popelier’s proposal of the eventual

replacement of the latter by the former given the relative ease

with which QTMS descriptors may be obtained.[130,132]

A remarkable feature of QTMS is its apparent inherent capa-

bility to pinpoint the “active center” automatically. By this, we

mean that the experimental Hammett constants (r)-sequence

relative to p-aminobenzoic acid (Table 1) is reproduced if the

BCPs of the “active center,” and only the active center

(here the bonds in the carboxylic group: O(A)H, C(@)O, and

C(—)OH), are included in the distance calculation. The inclu-

sion of any additional bond(s) destroys the agreement with

the experimental sequence, and the more “irrelevant” bonds

are incorporated in the Euclidian space the more the disagree-

ment with experiment[123] (Table 1, especially the last column).

As a corollary and by construction, the Euclidian QTMS molec-

ular comparison space need not include (and probably is

better not to include) all the common bonds of a series of

Scheme 1.
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molecules. In other words, one can include in the QTMS dis-

tance calculation only those bonds existing in a common

“subgraph” that maximizes the predictability of the model.

That is to say, given a well-characterized active center in oth-

erwise unrelated molecules (i.e., molecules differing in their

molecular skeletons), the relative activity can be predicted

from the distances computed from the properties of the

bonds in this active center alone. Figure 4a supports this

hypothesis as can be seen from the plot of pKa values pre-

dicted on the basis of the Euclidian distance including only

the bonds of the carboxylic groups of 40 unrelated organic

acids[129] after a selection of the strongest predictors (from

the set of BCP properties) on the basis of a partial least

square (PLS) regression procedure. A less stringent test is pre-

sented in the plots of Figures 4b and 4c that demonstrate

the ability of QTMS to predict the pKa’s of related molecules

with accuracy: Substituted anilines in 4b and substituted phe-

nols in 4c. The possibility of chance correlations has been

eliminated in this study through the “leave one out” cross

validation[129] leading to final statistics that are of higher

quality than those obtained from traditional descriptors such

as Hammett constants.[129]

The versatility of QTMS has been demonstrated by its ability

to predict a wide range of physicochemical and pharmacologi-

cal properties. A few highlights from this work are given next

for the sake of illustration.

Examples of predictive QSAR using QTMS only (without

incorporating steric or log P information into the model)

include the prediction of the proton affinities and the pKa’s of

125 pyridine derivatives,[140] the relative bond dissociation

enthalpies of phenolic antioxidants,[131] and the interaction

energies of substituted cytosine–guanine (CG) Watson–Crick

(WC) base pairs.[149] The predicted properties in this selection

of examples are all primarily dependent on electronic (and

much less on steric or solvent partitioning) properties. The lat-

ter study will now be briefly discussed.

Xue and Popelier (XP)[149] calculated the effect of 37 sub-

stituents at position 8 of guanine on the binding energy of

the CG WC base pair. The position of the substituent R,

attached to C8 of guanine, is indicated in the following struc-

ture with the most “predictive bonds” (see below) enclosed in

boxes (Scheme 2):

The binding energies of the unsubstituted and substituted

dimers were all calculated at the B3LYP=6-3111G(2d,p) level of

density functional theory (DFT) with the inclusion of counter-

poise basis set superposition error corrections.[150,151] If DE rep-

resents the interaction energy of the unsubstituted GC base

pair and DES that of a guanine(C8)-substituted GC pair, then

DDE � DES 2 DE represents the change in DE on substitution.

Defined in this manner, a positive value of DDE implies a sub-

stitution that destabilizes the base pair and a negative value is

a substitution that favors the hydrogen bonding of the WC

pair. XP then compare a multiple linear regression model with

a model constructed solely using Hammett rm constants. The

QSAR models these authors report are:

DDEðkJ mol21Þ51:95ð60:32Þ212:70ð61:00Þrm;

½r250:82; RMSD 51:25; n537�
(14)

where RMSD is root mean square deviation, using traditional

Hammett constants, and:

DDEðkJ mol21Þ52126:2813865:81GNAH2705:74eC@O ;

½Training set : r250:96; RMSD 50:58; n528�

½Test set : r250:99; RMSD 50:24; n59�

(15)

using the QTAIM properties,[17] where e (�k1/k2 2 1) is the

bond ellipticity and G the gradient kinetic energy density

(G51=2N
Ð
ðrW� � rWÞds0) evaluated at the BCP, and where

Table 1. Hammett r-constants ranking of seven p-substituted benzoic acids relative to p-amino benzoic acid as the number of BCP defining the Euclidian

distance Eq. (13) increases, and the number of ordering disagreement with the experimental sequence.[a]

Experimental sequence

NH2 OCH3 CH3 H F Cl CN NO2 # of disagreements/8QTMS sequences No. of BCPs

OH 1 NH2 OCH3 CH3 H F Cl CN NO2 0

CAO 1 NH2 OCH3 CH3 H F Cl CN NO2 0

COOH 3 NH2 OCH3 CH3 H F Cl CN NO2 0

CACOOH 4 NH2 OCH3 F CH3 Cl H CN NO2 4

C6 6 NH2 CN CH3 OCH3 H Cl NO2 F 5

C6H4 10 NH2 CH3 OCH3 CN H Cl NO2 F 6

C6ACOOH 10 NH2 OCH3 CH3 Cl CN H NO2 F 5

C6H4ACOOH 14 NH2 OCH3 CH3 Cl H CN NO2 F 5

SAC6H4ACOOH[b] 15 NH2 CN H OCH3 CH3 NO2 F Cl 7

[a] Adapted from Ref. 123 with permission VC 1999 American Chemical Society. [b] S denotes a substituent attached to the ring.

Scheme 2.
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the bonds are those enclosed in boxes in the chemical struc-

ture above.

As can be seen from the regression quality indicator lines

below Eq. (15), the molecular set has been divided into to sub-

sets: A training set used to construct the model and a set

external to the training set to test the performance of the con-

structed model outside of its bounds (this is necessary to

ensure the predictivity of the QSAR model rather than just its

ability to model the given data accurately). Clearly, the QSAR

model based on QTAIM descriptors is characterized by signifi-

cantly superior statistical quality indicators that the corre-

sponding traditional Hammett constants-based model. This

example, while not strictly QTMS since Eq. (13) has not been

used, is nevertheless closely associated to QTMS since the

descriptors used in Eq. (15) are typically incorporated into

QTMS models. These results add weight to the proposal that

QTMS can be an inexpensive alternative to the Hammett

constants-based QSAR approach.

The utility of QTMS has been extended beyond the predic-

tion of static molecular properties. For example, this approach

has been shown capable of reproducing the rate constants (k)

of a model reaction, namely, the hydrolysis of esters:[127]

RCð@OÞOR01OH2 ! RCð@OÞO21R0OH :

The alkaline hydrolysis rate constant at 25�C of 40 different

esters (16 ethyl-containing and 24 other esters) were calcu-

lated from a QTMS QSAR model and compared with experi-

mental values. The QSAR model yielded r2 5 0.930 and

q2 5 0.863. Further, an examination of the “variable importance

in the projection (VIP)” obtained from the PLS regression has

(correctly) identified the bonds in molecular fragment enclosed

in square brackets, R[(C@O)O]R0, as the most important in

determining activity,[127] that is, essentially automatically locat-

ing the active center.

It is customary to regard the accurate prediction of pKa’s as

one of the initial validation steps of a new drug design

approach. QTMS has moved beyond that stage and has been

applied to the direct prediction of biological properties. For

example, QTMS[152] has been shown to have comparable predic-

tivity as the more traditional comparative molecular field analy-

sis (CoMFA)[153] modeling of the toxicological indices of a series

of health-hazardous lipid-soluble environmental pollutants (poly-

halogenated dibenzo-p-dioxins).[154] A regression of r2 5 0.91

and q2 5 0.86 was obtained in a QTMS modeling of the cell-

growth inhibitory activities of 15 substituted (E)21-phenylbut-1-

ene-3-ones.[155] The method has also delivered the automatic

identification of the region in these congeners responsible for

their biological activity, namely, the site of the Michael addi-

tion.[155] A study of the cytotoxicity of o-alkyl substituted 4-X-

phenol (X being the substituent)[133] has shown that this biolog-

ical activity is accurately predicted by QTMS alone (without the

inclusion of any steric information), which indicates that cyto-

toxicity is primarily governed electronically, a result that does

not support a previous proposal by the Hansch group that the

latter is more important in determining activity.[156] The reverse

situation is encountered in a study of the hepatotoxicity of a

series of phenols, which demonstrates that, in this case, QTMS

must be combined with external hydrophobicity descriptors

such as log P, (see the section entitled “Partitioning Between

Immiscible Liquids and log P” below) for a successful model-

ing,[134] liposolubility being a known key factor in determining

Figure 4. (a) Correlation of observed and predicted pKa’s of a set of 40 gen-

erally unrelated small organic carboxylic acids. (b) Correlation of observed

and predicted pKa’s of 36 substituted anilines. (c) Correlation of observed

and predicted pKa’s of 19 substituted phenols. (Reproduced with permis-

sion from Ref. 129 VC 2004 American Chemical Society).
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the hepatoxicity of phenols. More recently and similarly, it has

been shown that QSAR models for the toxicity of aldehydes,

another class of environmental pollutants, to a model organism

(Tetrahymena pyriformis) can be constructed from a proper mix of

QTMS descriptors and log Ko/w
[141] [defined in Eq. (42) and dis-

cussed in the section entitled “Partitioning Between Immiscible

Liquids and log P”]. An earlier study has also shown that log Ko/w

and ELUMO are essential extraneous ingredients in the QTMS mod-

eling of the toxicity of nitroaromatics, another class of pollutants,

to Saccharomyces cerevisae.[136]

Bond properties as predictors of spectroscopic transitions

and NMR proton chemical shifts

The calculation of UV excitation spectra accurately remains a

challenge for computational quantum chemistry to this day

and usually necessitate an expensive high level of explicit

treatment of electron correlation. The fast empirical modeling

of such key analytical characteristics of molecules is, thus, of

particular significance from the practical point of view.

The first HK theorem[39] [relation (5)] has been proven for

nondegenerate ground states, as discussed above in the sec-

tion entitled “The Electron Density q(r) and QSAR Modeling”.

The mapping expressed in expression (5) shows, however, that

the ground-state density, q(r), does specify completely the

Hamiltonian operator Ĥ½qðrÞ� (Fig. 2). By specifying Ĥ and

through the time-independent many-particle Schr€odinger

equation, the ground-state density q(r) in principle also deter-

mines the excited states and their properties. In other words,

the energies of the excited states are also functionals of the

ground-state density, even though they are not functionals of the

corresponding excited state densities since there exists different

external potentials that can yield the same excited state den-

sity (i.e., there is no HK theorem for excited states).[157]

It is not entirely surprising, thus, to realize that (approxima-

tions to) the ground-state density and ground-state geometry,

both of which are mapped to the ground-state external poten-

tial, contain information about excited states. In this section, we

show that the ground-state bond properties do indeed

encode information that can be used in the QSAR modeling of

UV excitation energies.

About seven years ago, Buttingsrud, Alsberg, and Åstrand (BAA)

have been able to accurately predict kmax and the corresponding

excitation energies (DEhm) of 191 substituted azobenzene dyes

from two sets of ground-state QSAR models: The first is based on

optimized ground-state bond lengths, and the second on QTAIM

BCP descriptors of the ground state.[146] The molecular set studied

has the following general structure (Scheme 3):

where some of the R’s may belong to condensed cyclic

systems.

Several PLS models based only on optimized ground-state

bond lengths (including different subsets of bonds in the mol-

ecules) have been tested in modeling the excitation proper-

ties. Even the simplest model, the one that includes only the

N@N bond length, yields already an elevated r2 of 0.90 (kmax)

and a corresponding r2 5 0.86 (DEhm); indicating that this bond

appears essential in describing the excitation[146] and hence

represents the chromophore.

The cross validated statistics of the one-bond length model

are q2 5 0.89 for the training set and q2(test) 5 0.91 for the

test set with a root mean square error of cross validation

(RMSECV) of 11.2 nm, and a root mean square error of predic-

tion (RMSEP) of 12.6 nm. The equivalent one-bond (N@N)

QTAIM bond property model (based on two descriptors:

!2qBCP and e) yields q2 5 0.91 for the training set and

q2(test) 5 0.92 for the test set with a RMSECV of 9.9 nm and a

RMSEP of 12.3 nm.

The best QSAR of all in both sets of models are those that

includes all bonds, in which case the statistics are (bond

length model/QTAIM model): q2 5 0.94/0.97, q2(test) 5 0.96/

0.98, RMSECV 5 8.0/5.4 nm, and RMSEP 5 7.6/5.4 nm. The

above observations are consistent with the trends obtained

from an inspection of Table 2 of Ref. 146 that (i) generally,

QTAIM modeling yields more robust statistics than the model-

ing based on bond lengths only, and that (ii) there is an

improvement, albeit modest, from the simplest QTAIM model

(based only on the N@N bond) to the most complex based on

all bonds, a small gain at the cost of a significant increase in

the complexity of the model by the empirical fine-tuning of

the perturbation of the chromophore by its surroundings

beyond the perturbation captured in the mere change in the

N@N bond length and properties.

In another study, BAA use QTAIM bond properties to predict

170 distinct NMR proton isotropic shieldings in 60 substituted

benzenes obtained from the direct electronic structure calcula-

tion. The 60 molecules were grouped into four separate

groups, with some overlap (some molecules are members of

more than one group), according to the nature of the substitu-

ents: group I, II, III, and IV, which include 12, 11, 38, and 28

compounds, respectively.[145] The purpose of the study is not

to calculate the NMR shifts themselves since these are calcu-

lated directly (and more accurately) by the authors, but rather

to use these data as a test-case example of a local property to

be predicted by QTAIM bond properties.

Models of increasing complexity ranging from the simplest

model, which includes the QTAIM bond properties of only the

bond shared by the proton of interest (model a) to the most

complex model that includes the properties of all bonds

(model e) are tested for their predictivity. The models are fur-

ther classified in three categories: Those based on bond

lengths only (models B); those based on three “standard”

QTAIM bond properties, namely, qBCP, !
2qBCP, and e, (model S);

and finally those that include more QTAIM bond properties, a

group of models termed “extended” (model E). An examina-

tion of Table 4 of Ref. 145 reveals a general and significantScheme 3.
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improvement in the S models over the B models, but only a

marginal improvement over the S models on passing to the E

models. This observation is consistent across the table, hence

we quote here only the extreme values for the simplest model

a (one-bond only) and the most complex model e (all bonds)

applied to group I of 12 molecules exhibiting 20 distinct pro-

ton shieldings in the order B/S/E: model Ia: q2 5 0.6/0.98/0.98,

RMSECV 5 0.12/0.027/0.025 ppm, and model Ie: q2 5 0.995/

0.997/0.996, RMSECV 5 0.014/0.011/0.012 ppm.[145]

In some cases, the simplest model a fails completely to cap-

ture the proton shielding (group II of chlorobenzenes). The

modeling in this case fails presumably due to the size and rel-

atively large electron population of chlorine (compared to fluo-

rine, for example) and which may cause “through space”

shielding that invalidates the BCP modeling. Again, as in

QTMS, bond properties can be used in electronic fingerprint-

ing but fail to capture size effects. Even in these failed cases,

the accuracy of the modeling is quickly recovered in models

of the complexity c (seven bonds) and beyond for this group

of molecules. For a comparison (B/S/E): model IIa: q2 5 0.1/

0.5/0.0, RMSECV 5 0.11/0.11/0.08 ppm, and model IIe:

q2 5 0.97/0.96/0.96, RMSECV 5 0.019/0.022/0.020 ppm.[145]

QTAIM Atomic Properties in QSAR

These properties are more expensive to obtain than bond

properties since their calculation involves 3-D numerical inte-

grations over atomic basins [Eq. (11)]. However, exploitation of

transferability and additivity and the use of precalculated data-

base libraries of transferable atomic and fragment properties

can virtually eliminate computational time once these libraries

have been constructed, as in Breneman’s TAE approach out-

lined above in the section entitled “The Electron Density, Trans-

ferability, and Additivity”.

Atomic energy and charge of the acidic hydrogen as

predictors of pKa

Adam demonstrated that the pKa of a weak acid is inversely

proportional to the QTAIM energy of the dissociating (acidic)

hydrogen in the parent undissociated acid molecule at a given

set of thermodynamic conditions.[158] The milestones of his

demonstration are summarized here.

The pKa of an organic acid is related to the Gibbs energy of

the acid dissociation reaction (HA 1 H 2O�H3O11 A2) and

is expressed:

pKa � 2ln Ka5
DG0

2:303 RT
: (16)

Re-expressing DG0 in terms of the molar dissociation energy

(U0) and the standard molar partition functions [q0; not to be

confused with atomic charge, which is given the symbol q(X)],

we get:

pKa5
U0

A-2U0
HA

2:303 RT
2log

q0
A-

q0
HA

� �
1C0; (17)

where

C0 �
U0

H3O1 2U0
H2O

2:303 RT
2log

q0
H3O1

q0
H2O

 !
; (18)

and where

q0
A2 � q0

HA ! log
q0

A-

q0
HA

� �
� 0: (19)

The last term in Eq. (17), defined in Eq. (18), depends on the

characteristics of H2O and H3O1 and the temperature and, hence,

is independent of the nature of the acid. The assumption implicit

in Eq. (19) is expected to be more valid the larger the acid mole-

cule.[158] Substituting approximation (19) into Eq. (17):

pKa5
U0

A-2U0
HA

2:303 RT
1C0: (20)

The molecular dissociation energy is given by:

U05E1EZPE 2
Xn

i51

Ei; (21)

where E is the bottom-of-the-well energy of dissociation, EZPE

the zero-point vibrational energy, Ei is the electronic energy of

the separated ith ground-state atom. The numerator of the

first term of the R.H.S. of Eq. (20) can then be re-expressed as:

U0
A2 2U0

HA 5EA2 2EHA 1EH1EZPE
A2 2EZPE

HA ; (22)

in which EA2 and EHA are the vibrationless total energies of

the anion and the undissociated acid, respectively. The differ-

ence EZPE
A2 2EZPE

HA is expected to be small and approximately

constant for a homologous series, and EH is the energy of free

ground-state hydrogen atoms, which is another constant, lead-

ing to a re-expression of Eq. (20) as:

pKa5
EA2 2EHA

2:303 RT
1C: (23)

where C is a new constant.

Assuming that the atomic energy of the dissociating hydro-

gen atom can be approximated as the difference between the

total energies of the anion and the neutral undissociated acid,

especially for a larger acid molecule:[158]

EA2 2EHA � 2EðHÞ; (24)

then,

pKa5
2EðHÞ

2:303 RT
1C: (25)

It is important to realize that this result is independent of

the particular model chemistry, which also may or may not
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incorporate solvation effects. The model embodied in Eq. (25)

is validated by an excellent agreement with experiment. For

instance, the following equation is the result of a statistical fit-

ting of the pKa’s of 53 unrelated organic acids to Eq. (25):[158]

pKaðexptl :Þ52150:48620:17253EðHÞðkJ mol 21Þ; (26)

which yields an r2 of 0.991.

The correlation of the experimental and calculated pKa val-

ues and the correlation of pKa’s with the QTAIM atomic ener-

gies of the acidic hydrogen are displayed in Figure 5. The

statistical correlation indicators reported by Adam[158] based

on Eqs. (25) and (26) for different sets of molecules are col-

lected in Table 2.

Adam uses DFT [PW91/6-3111G(d,p)] model chemistry from

which he obtains the atomic energies of the acidic hydro-

gen,[158] raising the questions of (i) the physical meaning of

QTAIM atomic energies obtained from DFT calculations and (ii)

the effect of using a different level of theory with the possible

result of obtaining significantly different atomic energies. The

first question is addressed in detail in the Appendix of Ref. 159.

As for the second question, QTAIM atomic energies that are

numerically obtained by the same integration procedure but

from different underlying electronic structure theories (such as

Hartree–Fock, M�ller–Plesset perturbation theory, or DFT) are

very strongly correlated statistically (r2 typically 5 0.99) and

hence, from the point of view of statistical modeling, atomic

energies contain essentially the same information no matter

what underlying computational level of theory has been used

and despite of their possibly significantly differing magni-

tudes.[32] References 30 and 31 contain additional discussions

of the effects of underlying electronic structure calculation lev-

els of theory on QTAIM-derived properties.

Simultaneous to the appearance of Adam’s paper, Hollings-

worth, Seybold, and Hadad (HSH)[160] report QSAR models to

predict the pKa values of a series of substituted benzoic acids

from models based on the atomic charges of the carboxylic

group and of the acidic hydrogen, using several different defi-

nitions of atomic charges including that of QTAIM. Various

data from the HSH paper are assembled in Table 3, which lists

the pKa’s against the Hammet constants [defined in Eq. (12)],

and the total QTAIM charges of the acidic hydrogens, q(H),

and of the carboxylic acid group, q(COOH). As can be seen

from the table, Hammett constants are the better predictors in

this case (r2 5 1.000), which is expected since they are con-

structed to deliver pKa’s of substituted benzoic acids, but the

QTAIM charges of the acidic hydrogens are also excellent pre-

dictors of the respective acidities (r2 5 0.913):[160]

Figure 5. Experimental pKa (abscissa) versus the values calculated from Eq.

(26) (left ordinate, square data points) and the QTAIM energy of the acidic

hydrogen atom in the undissociated acid (right ordinate, circular data

points), along with the corresponding least squares lines. (Plots drawn

from the data listed in Table 13 of Ref. 158). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Table 3. Correlation of experimental pKa values with the Hammett substit-

uent constants r, the charges of the acidic hydrogen q(H), and the total

charges on the carboxylic group of monosubstituted benzoic acids.[a]

Substituent pKa r q(H) q(COOH)

H(benzoic acid) 4.19 0.00 0.5803 20.1518

m-Bromo 3.81 0.39 0.5840 20.1189

m-Chloro 3.83 0.37 0.5838 20.1233

m-Cyano 3.60 0.56 0.5865 20.1090

m-Fluoro 3.87 0.34 0.5830 20.1279

m-Hydroxy 4.08 0.12 0.5806 20.1439

m-Methoxy 4.09 0.12 0.5798 20.1501

m-Methyl 4.27 20.07 0.5796 20.1571

m-Nitro 3.49 0.71 0.5868 20.1008

p-Bromo 3.97 0.23 0.5843 20.1316

p-Chloro 3.98 0.23 0.5826 20.1388

p-Cyano 3.55 0.66 0.5859 20.1216

p-Fluoro 4.14 0.06 0.5818 20.1422

p-Hydroxy 4.57[b] 20.37 0.5790 20.1642

p-Methoxy 4.47[b] 20.27 0.5783 20.1628

p-Methyl 4.37 20.17 0.5792 20.1501

p-Nitro 3.43 0.78 0.5864 20.1220

r2[c] 0.9985 0.9134 0.8698

[a] Data were collected from Ref. 160. [b] The values entered for pKa of

these two acids in Table 1 of Ref. 160 are incorrect and were corrected

in the present table. [c] The correlation coefficients are those of the

respective single variable regression equations to reproduce the experi-

mental pKa values obtained from Ref. 160.

Table 2. Adam’s statistics[158] obtained using Eq. (26) to calculate the pKa’s of different families of organic compounds.

Compound families n[a] r2 Average deviation

Maximum

absolute deviation

Aliphatic carboxylic acids 19 0.98 0.10 0.34

Substituted phenols 20 0.92 0.21 0.60

Substituted anilinium ions 12 0.96 0.14 0.27

3,4-Substituted pyridinium ions 11 0.97 0.33 0.68

Hydrated aliphatic acids, substituted benzoic acids, and substituted phenols 53 0.99 0.22 0.62

[a] n is the number of compounds in the series and r is Pearson’s regression coefficient.
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pKaðexptl :Þ569:5ð65:2Þ2112:5ð68:9Þ3qðHÞða:u:Þ; (27)

which is in line with the simple intuition that an acid with a

more electropositive acidic hydrogen (greater positive charge,

q(H)> 0) is more acidic and, thus, has a lower pKa value, as

reflected in the negative coefficient of the second term.

There is a striking consistency and similarity in the form of

Eqs. (27) and (26), which deserves a comment. Atomic energies

are always negative (E(X)< 0, always), and they usually

become more negative with an increase in the electron popu-

lation [N(X) 5 ZX 2 q(X)] of a given atom. This is especially

true for electropositive hydrogen atoms where the intra-

atomic electron–electron repulsion is nonexistent. It is, thus,

reasonable that the intercept in Eq. (26) is also negative lead-

ing to a lower pKa for an acid with more electropositive acidic

hydrogen since it has a higher (less negative) energy, just as

HSH result, Eq. (27), suggests.

QTAIM descriptors of bulk and charge-separation for the

prediction of partial molar volumes (PMV)

The partial molar volume (PMV, or V0) is the rate of change of

the volume of a solution with respect to the number of moles n

of solute, extrapolated to infinite dilution. This quantity has the

units (L3 mol21) and for a two-component system is defined:

Vo5
@V

@nsolute

� �
T ;P;nsolvent

; (28)

where V is the volume of the solution at a given temperature

(T), pressure (P), and number (n) of moles of solvent. Equiva-

lently, V0 is the first derivative of the chemical potential of the

solute with respect to the pressure.[161] Experimentally, the

“apparent” PMV (V0
app ) is measured, which only equals V0 at infi-

nite dilution (to eliminate solute–solute association) since[162]

V05V0
app 1m

@V0
app

@m
; (29)

where the concentration of the solute is expressed in molality

(m), and thus, the second term of Eq. (29) vanishes only at infi-

nite dilution (when m 5 0). All reported experimental PMVs are

to be understood, thus, as extrapolated values at infinite

dilution.

PMVs are additive and can be estimated from group additiv-

ity schemes,[162–164] paralleling the behavior of QTAIM atomic

properties expressed in Eq. (11). Further, the observed V0 can

be considered as the resultant of two principal opposing con-

tributions: A positive intrinsic steric bulk contribution due to

the physical space occupied by each solute molecule, which

displaces the surrounding solvent molecules (V0
intr:), and a gen-

erally negative electrostriction contribution (V0
electr:) due to the

shrinking of the solvent shells surrounding the solute when

both the solute and the solvent are polar (V0
electr: can at times

be positive if the solvent–solvent attraction is stronger than

the solute–solvent attraction). Ignoring other contributions

such as the temperature-dependent solute molecular vibration

contribution (positive), we can write[163]

V0 � V0
intr:1V0

electr:; (30)

which can be expressed in terms of QTAIM atomic contribu-

tions (after substituting the symbol for approximate equality

by that of equality for simplicity):

V05
X
X

V0
intr:ðXÞ1

X
X

V0
electr:ðXÞ5

X
X

V0
intr:ðXÞ1V0

electr:ðXÞ
	 


5
X

X

V0ðXÞ;

(31)

leading to the definition of an atomic contribution to the PMV as

V0ðXÞ5V0
intr:ðXÞ1V0

electr:ðXÞ; (32)

where the atomic intrinsic volume is identified with the QTAIM

atomic volume up to the q5 0.001 a.u. isodensity envelope,

namely, the van der Waals volume VðvdW ÞX � V0
intr:ðXÞ, lead-

ing to the equivalent definition for a group (or a molecule) R:

V0
intr:5

X
X

V0
intr:ðXÞ � VðvdW ÞR5

X
X

VðvdW ÞX; (33)

where the sum runs over all the atoms in R.

The atomic electrostriction contribution in water is equated

in this modeling to the magnitude of the atomic charge since

a charge of either sign will pull water molecules toward the

solute (with reversed orientation), ignoring the solvent–solute-

and electric charge sign-dependent difference in the magni-

tude of electrostriction. The justification of this assumption is

empirical, that is, the ability of the resultant model(s) to fit

experimental data with accuracy. For a molecule or a group of

several atoms R, we identify the charge separation index

(CSI),[165] namely the sum of the magnitudes of the atomic

charges, as its electrostriction term:

V0
electr:5

X
X

V0
electr:ðXÞ � CSI �

X
X

jqðXÞj; (34)

where multiplication of the CSI by a constant of unit magni-

tude and of dimensions [volume/charge] is implied.

Figure 6 displays the atomic charges on the side chains of a

nonpolar amino acid (alanine) and a polar amino amino acid

(serine) of roughly similar molecular size. The total charge on

the two side chains (R) is 10.08 indicating very little charge

transfer to the ACaHa(NH2)COOH group. The CSI clearly distin-

guishes the polar and nonpolar side chain being 0.58 and 2.70

a.u., respectively.

One can construct a QSAR model on the basis of the two

contributions described above to model the experimental

PMVs of the hydrogen-capped genetically encoded amino

acids side chains[162] leading to[80]

V
0

AA ðcm3 mol21Þ537:26910:0983VðvdW ÞRða:u:Þ

20:8893CSIRða:u:Þ;

½r250:978; RMSD 50:823; n520�

(35)

where the subscript AA refers to an entire amino acid and R

refers to its side chain.

FEATURE ARTICLEWWW.C-CHEM.ORG

Journal of Computational Chemistry 2014, 35, 1165–1198 1177

http://onlinelibrary.wiley.com/


The agreement between the experimental and calculated

values according to this equation can be gleaned from the

upper section of Table 4 and upper plot of Figure 7. The

agreement between the calculated and experimental values is

remarkable especially that only two parameters were used in

the fitting of 20 PMVs (with a ratio of data points to parame-

ters 5 10:1). This agreement between the QSAR model and

experiment extends to the PMVs of the chemical groups com-

posing the amino acids:[80]

V0
Gðcm3 mol21Þ520:92510:1273VðvdW ÞGða:u:Þ22:4563CSIGða:u:Þ;

½r250:983; RMSD 50:314; n58�
(36)

where V0
G is the empirical additive group contributions to the

PMV,[162] and the subscript G is a short for “group.” The bot-

tom part of Table 4 and bottom plot in Figure 7 illustrate the

agreement between the empirical and calculated PMV of the

groups composing the naturally occurring amino acids accord-

ing to model (36).

The coefficients of the last two terms of the R.H.S.’ of Eqs.

(35) and (36) exhibit the expected signs: Positive for the intrin-

sic volume terms and negative for the electrostriction terms.

There is, however, a subtle but important difference between

these two equations: The former has a significant intercept

while the latter has practically none. The intercept of about

37.3 cm3 mol21 in Eq. (35) represents the (predicted) PMV of

the ACaHaðNH 1
3 ÞCOO 2 group which is common to all amino

acids and which has not been directly modeled in this work.

The (experimental) contribution of that group to the PMV can

Table 4. Experimental and calculated PMVs (V0) of the free amino acids

in water (25�C) and some of the groups composing them and the terms

used in the modeling.[a]

V0 (Exptl.) V0 (Calc) V(vdW) CSI

Amino acid

gly 43.3 41.9 47.25 0.009

ala 60.5 57.8 212.22 0.221

ser 60.6 62.0 277.93 2.707

cys 73.4 76.3 406.30 0.741

asp(2) 73.8 79.0 473.10 5.083

thr 76.9 77.3 435.30 2.805

asn 78.0 80.5 493.10 5.487

pro 82.8 81.4 461.70 1.070

glu(2) 85.9 93.6 625.23 5.350

val 90.8 87.3 519.70 0.737

gln 93.9 95.2 644.87 5.665

his 98.8 96.2 666.83 6.982

met 105.4 106.9 715.79 0.275

ile 105.8 101.9 670.83 1.010

leu 107.8 102.2 674.48 1.019

lys(1) 108.5 107.8 760.30 4.175

phe 121.5 122.5 879.93 0.698

tyr 123.6 127.3 947.65 2.826

arg(1) 127.3 119.1 926.27 9.679

trp 143.9 146.3 1146.63 3.238

Group

ANHA 11.6 10.7 126.83 1.826

AC@O 13.1 12.7 167.78 3.119

ANH2 15.4 16.4 175.63 2.013

ACH2A 15.9 17.4 150.49 0.309

ACOOH 25.8 25.5 306.26 5.077

ACH3 26.5 25.5 213.79 0.277

ACH2OH 28.2 27.7 277.93 2.707

ACONH2 28.8 29.6 344.49 5.363

[a] Experimental values taken from Ref. 162. V0 values are in cm3 mol21,

van der Waals volume and CSI are in a.u. The calculated V0 are obtained

from Eqs. (35) and (36).

Figure 7. Experimental versus calculated PMVs (a) of the natural amino acids

and (b) of functional groups composing them. (Redrawn after Ref. 80).

Figure 6. The CSI of the side chain of a nonpolar (alanine) and a polar (ser-

ine) amino acid. The numerical labels are the QTAIM atomic charges on the

side chain atoms in a.u. The two side chains are electrically neutral with

sums of the atomic charges below 0.1 a.u. each. CSI defined in Eq. (34) is

capable of distinguishing the nonpolar and polar amino acid side chains.

The common group ACaHa(NH2)COOH is ignored since it is the same in all

amino acids. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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be estimated using the additivity property of PMVs and the

experimental values listed in Table 4:

V0½CaHaðNH1
3 ÞCOO2� � V0½H3CACaHaðNH1

3 ÞCOO2�2V0½ACH3�

5 60:5226:5534:0 cm3 mol21

(37)

The experimentally estimated value of 34.0 cm3 mol21 is grat-

ifyingly close to the intercept of Eq. (35). Further, the estimated

PMV of the zwitter-ionic ACaHaðNH 1
3 ÞCOO2 group, 37.3 cm3

mol21, is significantly smaller than that of a hypothetical non-

zwitter ionic ACaHaðNH2ÞCOOH group estimated to be 52.7

cm3 mol21 using Eq. (36) and the group values listed in Table 4,

and this is also expected due to electrostriction shrinkage

accompanying the charge-separated zwitter-ionic form.

Another important class of biomolecules are the five nucleic

acid bases: Adenine (A), guanine (G), cytosine (C), thymine (T),

and uracil (U). Lee and Chalikian[166] determined accurately the

PMVs of the five corresponding nucleosides as well as those of

free A, C, T, and U bases at 18 and 55�C (the PMV of the free

G base was not determined due to experimental impedi-

ments). In the following model, it is shown that the QSAR

modeling using again an intrinsic volume term and an electro-

striction term is sufficiently sensitive to capture not only the

PMVs but also their small changes as a function of a tempera-

ture change of 37�.

The contribution of the sugar moiety to the PMV of the

nucleosides can be evaluated using the additivity and transfer-

ability of groups contributions by assuming:[167]

V0
sugar � V0

nucleoside 2V0
base : (38)

The entries in Table 5 demonstrate the simultaneous con-

stancy (transferability) and additivity of the contribution of the

sugar moiety to the PMV (80.4 6 1.0 cm3 mol21), Eq. (38), a value

unaffected by the temperature change from 18 to 55�C within

the combined experimental and statistical precision. The empiri-

cal PMV of guanine that has not been directly measured can be

estimated from the difference between the PMV of guanosine

minus the constant contribution of the sugar moiety, that is[167]

V0
guanine � V0

guanosine 2V0
sugar 5V0

guanosine 280:461:0 cm 3mol 21:

(39)

With a complete data set of PMV of all five nucleic acid

bases, we can now proceed as before and model their PMV

with an intrinsic and an electrostriction term to obtain[167]

V0
188C

50:09513VðvdW Þ21:25303CSI;

½r250:9798; RMSD 50:5507; n55�
(40)

and

V0
558C

50:10053VðvdW Þ21:30933CSI:

½r250:9666; RMSD 50:7664; n55�
(41)

The excellent agreement of the modeling at both tempera-

tures can be seen from the listings in Table 5 and the plots of

Figure 8. The increase in the average molecular kinetic energy

and population shifts to higher vibrational levels increase the

effective molecular volume at the higher temperature, which

is reflected in the larger effective PMV at 55�C, an effect well-

reproduced by the fitting.

Partitioning between immiscible liquids and log P

A solute in excess at equilibrium with two immiscible liquid

phases sharing an interface will result in saturated solutions

containing different concentrations of the solute in each of

the two phases. In the absence of an excess of solute, the sol-

ute will be partitioned between the two phases in the same

ratio if the activity coefficient remains approximately con-

stant.[168] The ratio of the solute concentrations in two touch-

ing phases in equilibrium, C1 and C2, respectively, namely the

equilibrium constant K is also known as the distribution ratio,

the distribution coefficient, or more commonly as the partition

coefficient (Po/w or simply P). Often the two solvents include

an organic hydrophobic/oily phase (often octanol) and an

aqueous phase. Thus, the partition coefficient, defined as

K5Ko=w 5
Co

Cw
5

conc: in organic phase

conc: in aqueous phase
� Po=w ; (42)

measures the tendency of a compound to be preferentially

distributed in the organic or in the aqueous phase. The con-

centrations (often molarities) rather than activities are used in

the definition of P since at equilibrium the activities of the sol-

ute in both the organic and the aqueous phase are equal and

in this case K would always be unity, which is not useful.

Due to the form of thermodynamic equations, it is more

common to use log P in QSAR modeling rather than P itself.

Table 5. Experimental and calculated PMVs of nucleic acid bases, experi-

mental PMVs of nucleosides, and estimates of the contribution of the

ribose sugar to the PMV of the nucleosides.

Molecule

V0 (18�C)

(Exptl)

V0 (18�C)

(Calc)

V0 (55�C)

(Exptl)

V0 (55�C)

(Calc)

Experimental[a]

Free bases

Uracil 70.2 6 0.4 69.1 74.6 6 0.5 74.7

Cytosine 72.4 6 0.4 74.0 75.8 6 0.5 79.1

Thymine 86.3 6 0.4 86.0 91.6 6 0.5 90.3

Adenine 88.0 6 0.4 87.5 93.5 6 0.5 92.2

Guanine[b] 91.6 6 1.0[b] 91.8 97.5 6 1.2[b] 96.6

Nucleosides

Uridine 150.7 6 0.6 154.8 6 0.7

Cytidine 152.2 6 0.6 156.4 6 0.7

Thymidine 166.4 6 0.6 170.4 6 0.7

Adenosine 169.2 6 0.6 175.3 6 0.7

Guanosine 172.0 6 0.6 177.8 6 0.7

Differences[c]

Sugar (U) 80.5 6 1.0 80.2 6 1.0

Sugar (C) 79.8 6 1.0 80.6 6 1.0

Sugar (T) 80.1 6 1.0 78.8 6 1.0

Sugar (A) 81.2 6 1.0 81.8 6 1.0

Sugar(average) 80.4 6 1.0 80.4 6 1.0

[a] Experimental data, except for guanine, are obtained from Ref. 166.

[b] Calculated from Eq. (39). [c] Calculated from Eq. (38).
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The value of log P is smaller than zero when the concentration

of the solute is higher in the aqueous phase, that is, in the

case of hydrophilic solutes, and conversely it is positive for

hydrophobic solutes.

The partition coefficient plays a central role in pharma-

ceutical sciences and technology as it governs the absorp-

tion, distribution, and binding of drugs and determines a

diversity of phenomena from the activity of narcotic drugs

to the efficiency of solvent extraction of a compound from

its solution in another solvent.[168] For these reasons, exten-

sive compilations of log P obtained from experimental mea-

surement and/or estimated from group contributions have

long been available.[2] The importance of log P has been

underscored, more recently, in the Lipinski’s rule of five

obeyed by the majority of orally active drugs. The rule

states that orally active drugs must satisfy at least three of

the following criteria:[169]

	 A molecular mass less than 500 D.

	 No more than five hydrogen bond donor groups.

	 No more than 10 hydrogen bond acceptor groups.

	 An octanol–water partition coefficient of less than 5

(log P< 5).

Drugs that significantly violate these rules, except com-

pounds that are substrates for biological transporters, are

poorly absorbed and have to be administered by other routes,

for example by injection.[169] (The rule acquired its name appa-

rently because all the numbers that appear in it are multiples

of five).

Partitioning between two phases across an interface such as

a biomembrane is common in the living system. For example,

the serum of blood in contact with the neuronal membranes

constitute the blood–brain-barrier that must be crossed by

any drug intended to act inside the brain tissue. Another

example is the necessary ability of a molecule to cross the

mucosa of the small intestine before reaching the systemic

circulation. This passage through the intestinal mucosa is

frequently accomplished by passive diffusion through

partitioning of the drug between the aqueous phase in the

lumen of the intestine, the oily phase of the mucosa, and

finally again an aqueous phase on the other side of the

mucosa, that is, the blood serum.

Soluble serum proteins are often exploited as drug reser-

voirs for the slow and steady release of sparingly soluble

drugs, the steady plasma concentration being maintained due

to the partitioning with the protein reservoir. The equilibrium

constant of binding of a molecules to a protein, K, can be pre-

dicted accurately from P by the equation:[2]

log K5k2log P1k4; (43)

where k2 and k4 are dimensionless fitting parameters, which

have the values 0.751 6 0.007 and 2.301 6 0.15, respectively,

when the protein is bovine serum albumin (n 5 42 com-

pounds, the standard error 5 0.159 log K units, and an

r2 5 0.960).[11]

A pharmacological endpoint is often expressed at the L.H.S.

of equations similar in form to Eq. (43) [Eq. (1)] with a R.H.S.

consisting of f(P). The linearity of Eq. (43) is deceptive since it

is merely an approximation to a linear tail of a more general

parabolic functional relationship between log (1/C) and log P

when the range of values is enlarged. The more general rela-

tion has the form:[1–3,5]

log
1

C
52k1 log Pð Þ21k2log P1k3r1k4; (44)

where k1 and k3 are fitting parameters, r is the Hammett sub-

stituent constant defined in Eq. (12), and where the second

and fourth terms are the R.H.S. of Eq. (43). The third term, k3r,

is of importance only for molecules that possess a common

skeleton with different substituents but looses its relevance

when the molecular set used to construct the QSAR model do

not share a common skeleton, in which case the equation sim-

plifies to[5]

Figure 8. Observed versus calculated aqueous PMVs at infinite dilution of

the five nucleic acid bases adenine (A), guanine (G), cytosine (C), thymine

(T) and uracil (U) at 18�C and 55�C. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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log
1

C
52k1 log Pð Þ21k2log P1k4: (45)

The parabolic dependence of log (1/C) on log P in Eq. (45)

expresses the requirement that a molecule must possess an

optimal log P, referred to as log P0,[170] for maximal pharmaco-

logical activity—higher or lower log P results in a reduction in

activity. The optimal log P ensures that the solubility in the

oily phase is just enough to cross biological membrane bar-

riers but not elevated enough to hinder the eventual release

of the drug from the membrane to be redistributed on the

other (aqueous) side where the site of action is located. Con-

sistent with these remarks is the observation that a log P0 �
2.3 seems to be a universal requirement for a molecule to be

a general anesthetic,[170] which is the value obtained from the

fitting of the activities of ethers for which k1 5 0.22, k2 5 1.04,

and k4 5 2.16.[170]

The partition coefficient [Eq. (42)] may be expressed as a

ratio of the equilibrium mole fractions (rather than molarities)

in which case it is labeled with a prime (P0). The reason for this

modified definition is the appearance of P0 in the thermody-

namic expression of the standard free energy of transfer of a

solute from solvent 1 to solvent 2:[2]

DG0
1!25RT ln P’; (46)

which embodies the experimental procedure of measuring the

Gibbs energy of transfer from one solute to the other from

partitioning experiments.

Conceptually, the most drastic partitioning between two

phases is the partitioning of a solute between its gas-phase

and its aqueous solution phase. The Gibbs energy of transfer

from the gas-phase to the aqueous medium measures the

affinity of a given solute to water, a property crucial in deter-

mining proteins folding in water.[171] The molar free energy of

transfer from the gas phase to the aqueous phase, termed the

molar free energy of hydration or “hydration potential”

(DGhydr.), has been accurately determined by Wolfenden

et al.[172] at 25�C after correction to pH 7 for each of the

hydrogen-capped amino acid side chains ((R); since the amino

acids themselves have very small vapor pressures due to their

zwitter-ionization in water). These hydration potentials are

accurately modeled using a single fitting parameter that meas-

ures the hydrophilicity/hydrophobicity, namely, the CSI[80]

[defined in Eq. (34)]:

DGhydr:51:72722:1703CSIR:

½r250:923; RMSD 50:381; n519�
(47)

The experimental and calculated DGhydr. are listed along

with CSIR in Table 6, which is sorted in order of decreasing CSI

(hydrophilicity). The correlation of the experimental and calcu-

lated values obtained from Eq. (47) is displayed in the top of

Figure 9.

It has long been recognized that the second position of the

triplet genetic codon of an amino acid is the most important

in determining the physical properties of that amino acid.[173]

By sorting the amino acids on the basis of the hydration

potentials of the side chains, Wolfenden et al.[172] noted that

in the mRNA genetic code, hydrophilic amino acids have a

purine base in the second position (A or G) while hydrophobic

Table 6. Amino acid (AA) side chain (R) QTAIM descriptors (CSI and van der Waals’ volume) against the second letter of the mRNA codons and its chemi-

cal class, and experimental and calculated standard Gibbs energies of transfer of the hydrogen capped side chains to water from the gas-phase, from

cyclohexane, and from octane.[a]

AA

Descriptors

Modeled properties

mRNA 2nd letter Base[b]

DG0
gas!w DG0

cyc!w DG0
oct!w

CSIR V(vdW)R exptl. calc. exptl. calc. exptl. calc.

arg1 9.679 926.27 G I 219.92 219.28 214.92 212.65 21.32 20.58

his1 6.982 666.83 A I 210.27 213.42 24.66 29.13 0.95 20.42

gln 5.665 644.87 A I 29.38 210.57 25.54 26.70 20.07 20.06

asn 5.487 493.10 A I 29.68 210.18 26.64 27.39 20.01 20.42

glu– 5.350 625.23 A I 210.20 29.88 26.81 26.22 20.79 20.01

asp– 5.083 473.10 A I 210.95 29.30 28.72 26.73 20.34

lys1 4.175 760.30 A I 29.52 27.33 25.55 22.99 0.08 0.73

trp 3.238 1146.63 G I 25.88 25.30 2.33 1.50 2.51 2.08

tyr 2.826 947.65 A I 26.11 24.41 20.14 0.95 1.63 1.67

thr 2.805 435.30 C II 24.88 24.36 22.57 22.52 0.27 0.29

ser 2.707 277.93 G/C I/II[c] 25.06 24.15 23.40 23.41 0.04 20.11

pro 1.070 461.70 C II 20.59 1.06 0.91

leu 1.019 674.48 U II 2.28 20.48 4.92 2.62 1.76 1.51

ile 1.010 670.83 U II 2.15 20.46 4.92 2.61 2.04 1.50

cys 0.741 406.30 G I 21.24 0.12 1.28 1.33 0.87

val 0.737 519.70 U II 1.99 0.13 4.04 2.11 1.18 1.18

phe 0.698 879.93 U II 20.76 0.21 2.98 4.66 2.09 2.17

met 0.275 715.79 U II 21.48 1.13 2.35 4.36 1.32 1.86

ala 0.221 212.22 C II 1.94 1.25 1.81 1.02 0.52 0.51

gly 0.009 47.25 G I 2.39 1.71 0.94 0.31 0.00 0.13

[a] CSI and van der Waals volumes are in a.u. and all energies are in kcal/mol. Experimental values were determined by Wolfenden et al.[172] [b] Chemi-

cal nature of the base: I 5 purine, II 5 pyrimidine. [c] Serine is the only amino acid with a degenerate middle letter of the triplet code.
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amino acids tend to have a pyrimidine base (U or C) in the

second position. Since the hydrophilicity/hydrophobicity of the

amino acid side chains is highly correlated to the CSI, one can

glean from Table 6, a correspondingly strong correlation

between the chemical nature of the middle letter of the triplet

genetic codon and the CSI of the side chain of the encoded

amino acid. All amino acid side chains with 9.68>CSIR
 2.83

a.u., the hydrophilic amino acids according to CSI, possess a

purine base in the second position without exceptions. Con-

versely, most hydrophobic amino acids with CSIR� 2.81 a.u.

possess a pyrimidine base in the second position, with a few

exceptions: (i) Serine, which is the only amino acid with a

degenerate middle letter in its codons (middle letter can be

either “G” or “C”), (ii) glycine, which is an exceptional amino

acids in that it does not have a side chain and is the only

amino acid with an achiral a-carbon, and (iii) cysteine, which is

the only amino acid that dimerizes through its side chain to

form SAS bridges of cystine. To the author’s knowledge, this is

probably the most direct link between the genetic code and

the electron density.

The experimental Gibbs energies of transfer of the 20

hydrogen-capped amino acid side chains from cyclohexane

(cyc) and from octanol (oct) to water (w) were reported by

Radzicka and Wolfenden.[174] These experimental DG0
1!2 can

be modeled with an electrostriction term [CSIR, Eq.(34)] and an

intrinsic volume term [V(vdW)R, Eq.(33)]:[15,80,167]

DG0
cyc!w52 1:963CSIR 10:00685VðvdWÞR;

½r250:881; RMSD 50:415; n519�
(48)

and

DG0
oct!w520:321 CSIR10:00272 VðvdWÞR;

½r250:758; RMSD 50:125; n517�
(49)

where energies are in kcal mol21, and CSI values and volumes

are in a.u. Table 6 provides a listing of the experimental and

calculated values corresponding to Eqs. (48) and (49) along

with a listing of the amino acid descriptors CSIR and V(vdW)R

used in the modeling, while Figure 9 (middle, and bottom) dis-

plays the agreement between calculated and experimental val-

ues graphically. A number of other remarkable models were

reported where CSIR and V(vdW)R could be used in the accu-

rate prediction of the change in the stability of proteins on

mutation, that is, the change in Gibbs energy upon denatura-

tion of the mutant compared to this change for the wild

type.[80,167]

The versatility of the CSI index to model widely differing

properties is quite notable. Recently, S�anchez-Floresy et al.[175]

report accurate modeling of excitation energies in simple mol-

ecules using this single descriptor. For example, these workers

show that the excitation energies for the low-lying singlet and

triplet p!p* states of CO can be closely fitted to the following

linear regression equation:[175]

DE52 4:542 1 5:639 CSI ½r250:988�; (50)

while transition energies between low-lying singlet and triplet

p!p* states of benzene can be fitted to:

DE52:730 1 7:115 CSI ½r250:975�; (51)

again using the ground-state CSI, which reinforces the argu-

ments presented above in the opening of the section entitled

“Bond Properties as Predictors of Spectroscopic Transitions and

NMR Proton Chemical Shifts”.

A general conclusion that can be drawn is that the QTAIM

ground-state CSI is capable of capturing a good deal of impor-

tant molecular physics, in the QSAR sense, and is an important

and valuable descriptor worthy of note and further

exploration.

p-Stacking of antineoplastic agents (CasiopenasVR ) and

charge transfer from flanking DNA base pairs

CasiopeinasVR are a promising class of antineoplastic cytotoxic

agents of uncertain mechanism of action.[176] These complexes

Figure 9. Experimental and calculated Gibbs energies of transfer of the

hydrogen-capped amino acid side chains to water from gas-phase (top),

cyclohexane (middle), octanol (bottom), in kcal mol21.
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are denoted [Cu(NAN)(NAO)]NO3 and [Cu(NAN)(OAO)]NO3

where NAN symbolizes a substituted bipyridine or phenan-

throline aromatic ring system, NAO an a-aminoacidate or pep-

tide, and OAO acetylacetonate or salicylaldehyde. These

compounds consist of tertradentate complexes of Cu21 where

the metal is chelated to a substituted bipyridine or phenan-

throline ring from one side (top moiety in the structure below)

and to an a-aminoacidate, a peptide, an acetylacetonate, or a

salicylaldehyde moiety from the other side (bottom moiety).

The general structure of these molecules can be represented

by Scheme 4,

where the light gray part is variable, existing in the phenan-

throline congeners but nonexisting in the bipyridine conge-

ners, and where R1 and R2 are parts of a closed ring system

where the two atoms bonded to the central Cu21 may be

both oxygen atoms or one can be an oxygen and the other a

nitrogen.

Galindo-Murillo et al.[177] have recently suggested that

these complexes can intercalate between DNA base pairs

through their aromatic moiety and that the p-stacking inter-

action is driven by an electron depletion of the planar ligand

(the substituted bipyridine or phenanthroline ring) due to

the transfer of charge to the metal center which, in turn,

drives charge transfer from the flanking DNA bases to the

intercalating ligand. Using the integrated QTAIM charges

summed over entire molecular fragments, these workers

found a simple but strong statistical correlation between the

complex stabilization energy of the adenine–CasiopeinasVR

complex and the net electron population transferred from

adenine to the aromatic ligand:[177]

DEðkcal mol21Þ5234:5422254:833DN;

½r250:926; n521�
(52)

which lends numerical support to the charge-transfer assisted

p-stacking hypothesis advanced by these workers and, simul-

taneously, enhance the plausibility of their proposed mecha-

nism of action initiated by stacking intercalation of

CasiopeinasVR between DNA base pairs. What is desirable for a

future study is, perhaps, to correlate energies of stacking

interaction with a direct measure of biological antineoplastic

activity.

Before leaving this section, we note that there exists a num-

ber of similar empirical correlations of p-stacking interactions

modeled with QTAIM (bond) properties, we cite as examples

those of Zhikol et al.,[178] Platts and co-workers,[179] and Par-

thasarathi and Subramanian.[180]

Localization/Delocalization Matrices (LDM),
Delocalization Matrices (DM), and Density-
Weighted Connectivity Matrices (DWCM) in
QSAR

Definition of LDM (f), DM, and DWCM

Among the properties that can be associated with a bounded

region of space is the number of electrons localized within

that region. When this region is an atom in a molecule defined

by QTAIM, X, the average number of electrons localized

within this atom, that is, not shared with any other atom in

the molecule, is termed the “localization index” (LI, for short)

and is given the symbol K(X). Since not all electrons are

localized, in general K(X)�N(X), the equality is approached

at the closed-shell limit as in ionic bonding and is exact

only for infinitely separated isolated atoms or ions.

For an illustration, in the case of the ionic molecule Li10.935

F20.935 molecule (the superscripts are the atomic

charges): [K(F) 5 9.845]< [N(F) 5 9.935] with a difference of

N(F) 2 K(F) 5 0.090. In contrast, for the covalent F2, the cor-

responding values are: [K(F) 5 8.549]< [N(F) 5 9.000] with a

significantly larger difference of N(F) 2 K(F) 5 0.451. (QCISD/

6–31111G(3df,2pd) level of theory).

The difference between N(X) and K(X) accounts for the

number of electrons belonging to X but shared with other

atoms in the molecules. In the case of Li10.935F20.935, 0.090 e–

are contributed by F and an equal number is shared from the

Li with a total of 0.180 e– shared between the two basins

[denoted by d(Li,F) and which is termed the “delocalization

index” (DI), in QTAIM parlance]. In this manner, all electrons in

the LiF molecule are accounted for: [K(Li) 5 1.975] 1 [K(F) 5

9.845] 1 [d(Li,F) 5 0.180] 5 12.000 e–.

Thus, QTAIM defines a DI that counts the number of elec-

trons shared between any two atomic basins in a molecule

and which is generally denoted by d(X1,X2). The formal defini-

tion and methods of calculation of the LI and DI are discussed

elsewhere.[118,181–187]

Two important points must be emphasized before moving

to examples of applications. The first is that, as mentioned

above, LI and DI account for the whereabouts of all elec-

trons in a molecule composed of n atoms [Xi, i 5 1,2,.n],

their general relation to an atomic electron population

being:

NðXiÞ5KðXiÞ1
1

2

Xn

j 6¼i

dðXi;XjÞ: (53)

Given expression (53), the total molecular electron

population can be expressed as the sum of two

subpopulations:

Scheme 4.
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N5
Xn

i51

NðXiÞ5
Xn

i51

KðXiÞ1
1

2

Xn

i51

Xn

j 6¼i

dðXi;XjÞ5Nloc 1Ndeloc ;

(54)

where

Nloc �
Xn

i51

KðXiÞ; (55)

and

Ndeloc �
1

2

Xn

i51

Xn

j 6¼i

dðXi;XjÞ: (56)

The second point, which directly follows from Eq. (53), is

that the DI measures the number of electrons (and not the num-

ber of pairs of electrons), an erroroneous characterization that

has propagated in many publications (including some by the

present author). A source of the confusion may be that when

two atoms Xi and Xj are bonded the number of electrons

shared between them, d(Xi,Xj), is numerically close to the

number of shared pairs in the Lewis bonded structure and

hence can be misconstrued as a bond order. One can assert,

though, that d is generally proportional to the classical bond

order when two atoms share a bond path. A simple example

helps settle this confusion. For the H2 molecule, d(H,H0) � 1.0

and K(H) 5 K(H0) � 0.5, which means that Nloc 5 2 3 0.5, leav-

ing only 1 e to be delocalized (shared).

It is also worth reminding the reader that d(Xi,Xj) is not

only defined between bonded atoms but also between any

two atoms in a molecule, no matter how distant and regard-

less of the presence or absence of a bond path linkng their

nuclei. Obviously the DI cannot be related to any bond order

if the atoms do not share a bond path, that is, when they are

not bonded in the first place.

Ferro-Costas, Vila, and Mosquera (F-CVM)[188] have recently

demonstrated that the anomeric effect in halogen-substituted

methanols cannot be explained by hyperconjugation argu-

ments based on the behavior of atomic populations and the

QTAIM localization/delocalization indices. These authors have

presented lower-triangular matrix-like tabulations of the deloc-

alization indices and have used differences between these

matrices in their argumentation.[188]

Given that the d indices were found to be excellent predic-

tors of experimental quantities such as NMR JJ coupling con-

stants between protons[185] and fluorine atoms,[187] it is

tempting to construct matrices similar to those of F-CVM and

use them as tools in QSAR-type studies. Initial explorations of

these ideas are presented here for the first time, meanwhile

more extensive studies in this direction are being undertook

in the author’s laboratory.

Disregarding the nature of the matrix elements, the form of

the matrices used by (F-CVM)[188] is identical to the oft-used

graph-theoretical connectivity (adjacency) matrices. Connectiv-

ity matrices have been brought from the field of graph theory,

a branch of pure mathematics, to mathematical chemistry by

scientists such as Balaban, Gutman, Hosoya, Nicolić, Randić, Tri-

najstić, and several others.[6,7,51,189–193] In a typical graph-

theoretic connectivity matrix, one places 1 or 0 depending on

whether two atoms are bonded or not in the hydrogen-

suppressed graph. Atom-connectivity matrices have been pro-

posed that do not suppress the hydrogen atoms and that

include as off-diagonal entries properties that depend on

atomic pairs such as interatomic distances, vibrational force

constants, or the bond dissociation energies while atomic sym-

bols are introduced along the diagonal elements.[51]

A natural extension of the graph-theoretical approach is to

merge it with the topological analysis of the electron density.

The idea does not appear to be new, already in 1981 Dmitriev,

in a 155 page book on chemical graph theory, devotes pp. 110–

115 to a section on Bader’s “Topology of Molecular Charge Dis-

tributions,” but makes no connections between it and the main

theme of the book.[193] In 1994, Balasubramanian has suggested

the “[i]ntegration of graph theory and quantum chemistry”[194]

in a paper that concludes with a review of the basic concepts of

the topological analysis of the electron density according to the

theory now known as QTAIM. In his paper, Balasubramanian has

emphasized (i) the remarkable correspondence between the

graph-theoretical graph of a molecule and the set of bond

paths constituting its QTAIM molecular graph[17] and (ii) the role

of the Laplacian of the electron density, !2q(r), in determining

the sites of nucleophilic and electrophilic attack in a molecule.

The present author is unaware of other proposals to merge or

integrate QTAIM and the graph-theoretical approach and

presents below some thoughts on how this might possibly be

achieved in the future.

Balasubramanian’s integration is intuitively implemented

through the construction and the use of “electron density

weighted adjacency matrices (EDWAM)” (quoting the words

and the idea of Massa (L. Massa, Personal communication,

2014)). An EDWAM places the value of the electron density at

the BCP, qBCP, as the off-diagonal matrix element whenever a

bond path exists between two atoms instead of the “1” of the

graph-theoretic connectivity matrices. There is no hydrogen

suppression in the proposed EDWAM. Figure 10 displays a

EDWAM for chloroacetic acid. The respective research groups of

Massa and of the present author are jointly exploring the use of

EDWAMs in QSAR-type studies at the time of writing.

We now introduce a new matrix representation of molecules

that encapsulates one- and two-electron information simulta-

neously and which will be referred to as “localization–delocali-

zation matrix (LDM).” An early version of the LDM was

introduced in 2001 in the documentation manual of the pro-

gram AIMDELOC[195] and bears some similarity to the matrices

used here and those used recently by F-CVM.[188]

The diagonal elements of LDMs proposed here are the

atomic localization indices K(X), as originally proposed in

2001,[195] but the off-diagonal elements are the delocalization

indices divided by 2, that is, d(Xi,Xj)/2, a feature distinguishing

the LDMs in this work from the 2001 proposal and from that

of F-CVM. Further, we preserve all the elements of these sym-

metric matrices (not just the lower or upper triangular part).

Thus, we define the LDM that we denote by f as
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P
row

f �

KðX1Þ dðX1;X2Þ=2 � � � dðX1;XnÞ=2

dðX2;X1Þ=2 KðX2Þ � � � dðX2;XnÞ=2

� � . .
.

�

dðXn;X1Þ=2 dðXn;X2Þ=2 � � � KðXnÞ

2
66666664

3
77777775

n3n

¼ NðX1Þ

¼ NðX2Þ

�

¼ NðXnÞ

9>>>>>>=
>>>>>>;
Xn

i51

NðXiÞ ¼ N:

P
column

¼ NðX1Þ ¼ NðX2Þ ¼ NðXnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Xn

i¼1

NðXiÞ ¼ N

trðfÞ ¼ Nloc

(57)

In this manner, and according to Eq. (53), the sum of any

row or column of f equals to the given atomic electron popu-

lation N(X), while the sum of the column sums or row sums

yields the total number of electrons in the molecule [Eq. (54)].

Further, the trace of f is the total number of localized elec-

trons (Nloc) in the molecule [Eq. (55)], and the number of delo-

calized electrons is, then, given by difference:

Ndeloc 5N2trðfÞ5N2Nloc : (58)

As known, d(Xi,Xj) decays exponentially with internuclear separa-

tion,[196] which implies that the f matrix, by including all the delocal-

ization indices in a molecule, does implicitly contain interatomic

distance matrix information. The f matrix is, thus, rich in coded

information about not only the electron density distribution but

also about the pair density and even contains some geometric dis-

tance information. For these reasons, this matrix can be expected to

constitute the raw material for a new class of QSAR correlations.

All matrix representations of molecules have common and

well-known drawbacks, which we briefly discuss below with

the particular reference to LDMs.

Problem 1: Nonuniqueness due to ambiguity of atom labelling

(i.e., a family of matrices related by permutations all code for

the same structure). The matrices are not unique since they

are labelling-dependent and an interchange of a pair of atomic

labels will result in the permutation of a pair of rows and the

simultaneous permutation of a pair of columns. There are n!

ways to label n atoms and correspondingly, there are as many

different matrices describing the same system. This problem

has prompted the graph theoretic community to search for

“matrix invariants,” that is, properties associated with these mat-

rices that are labelling-independent. Common invariants include

the characteristic polynomial and its roots (the eigenvalues), the

trace of the matrix, the determinant of the matrix and so forth.

The labelling problem is of course independent of the nature of

the matrix elements and hence is also relevant to the LDMs pro-

posed here. We will hence follow the lead of the chemical

graph-theoretic community and extract invariants from the

LDMs at the cost of complicating the physical interpretation of

the final (invariant) descriptors, which are, nevertheless, derived

from well-characterized measures of electron localization and

delocalization compactly collected in the LDMs. Since an LDM is

by construction real and symmetric, then it is diagonalizable to

a similar matrix D (the “diagonalized localization–delocalization

matrix,” or DLDM) through a similarity transformation:

P21fP5D: (59)

The matrix D is indispensible when the atomic numbering

scheme cannot be made consistent across a molecular series

Figure 10. Molecular graph of chloroacetic acid showing the bond paths each labeled with the electron density at the BCP (the small sphere) in a.u. and the corre-

sponding electron density weighted connectivity matrix (EDWCM). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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that lacks, for example, a common skeleton. In these instances,

the original f matrices of different molecules cannot be com-

pared directly. At times, however, the f matrices themselves

can be compared directly when a consistent labelling scheme

can be imposed on all molecules (e.g., molecules with the

same skeleton as in the example of substituted acetic acids dis-

cussed in the section entitled “The LDM f and the pKa of Halo-

genated Acetic Acids” below). Matrices comparison can be

accomplished, for example, by calculating the distance between

them (e.g., the Frobenius distance, see below).

Problem 2: Unequal matrix dimensions for differently sized mole-

cules. Unless the number of atoms in the compared molecules

is the same, the matrix dimensions of f will differ from one mol-

ecule to another rendering the direct comparison such as calcu-

lating the Frobenius distance impossible. A solution to this

problem has been proposed by White and Wilson[197] (WW) in

the context of image statistical pattern recognition where differ-

ent sized (sub)graphs are treated on equal footing. The

approach of WW consists in determining first the matrix repre-

sentative of the largest graph (n3n) and enlarge all other

smaller matrices to n3n by filling all new empty matrix elements

with zeros after placing the smaller matrix in the upper left

block of the enlarged matrix, that is, “padding” all matrices other

than the largest with zeros to the same common n3n size.[197]

The WW approach is applicable to LDMs since a zero diagonal

element means that there are zero electrons localized within a

given atomic basin while the zeros in the other (off-diagonal)

matrix elements of the row and column that correspond to that

atom imply that there are zero electrons shared between that

basin and all other atoms in the molecule. This is what computa-

tional chemists refer to as a “ghost atom”. Thus, if one wishes to

compare the first four saturated aliphatic hydrocarbons, the

matrix size will be that of butane (14314), and the LDMs of

methane, ethane, and propane will be enlarged to that size by

“zeros padding”. At the DFT-B3LYP/6–311G(d,p) level of theory,

and given the atomic numbering schemes in the Supporting

Information, to two decimal places, an LDM of butane is:

fbutane 5

3:87 0:50 0:49 0:47 0:47 0:02 0:02 0:02 0:01 0:00 0:00 0:02 0:02 0:02

0:50 3:95 0:02 0:02 0:02 0:01 0:00 0:00 0:00 0:00 0:00 0:48 0:48 0:48

0:49 0:02 3:87 0:02 0:02 0:50 0:47 0:47 0:02 0:02 0:02 0:01 0:00 0:00

0:47 0:02 0:02 0:46 0:02 0:00 0:01 0:00 0:00 0:00 0:00 0:00 0:00 0:01

0:47 0:02 0:02 0:02 0:46 0:00 0:00 0:01 0:00 0:00 0:00 0:00 0:01 0:00

0:02 0:01 0:50 0:00 0:00 3:95 0:02 0:02 0:48 0:48 0:48 0:00 0:00 0:00

0:02 0:00 0:47 0:01 0:00 0:02 0:46 0:02 0:00 0:01 0:00 0:00 0:00 0:00

0:02 0:00 0:47 0:00 0:01 0:02 0:02 0:46 0:00 0:00 0:01 0:00 0:00 0:00

0:01 0:00 0:02 0:00 0:00 0:48 0:00 0:00 0:45 0:02 0:02 0:00 0:00 0:00

0:00 0:00 0:02 0:00 0:00 0:48 0:01 0:00 0:02 0:46 0:02 0:00 0:00 0:00

0:00 0:00 0:02 0:00 0:00 0:48 0:00 0:01 0:02 0:02 0:46 0:00 0:00 0:00

0:02 0:48 0:01 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:45 0:02 0:02

0:02 0:48 0:00 0:00 0:01 0:00 0:00 0:00 0:00 0:00 0:00 0:02 0:46 0:02

0:02 0:48 0:00 0:01 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:02 0:02 0:46

2
6666666666666666666666666666664

3
7777777777777777777777777777775

; (60)

while a corresponding (ghost atom-padded) LDM of ethane is:

fethane 5

3:94 0:48 0:51 0:48 0:48 0:02 0:02 0:02 0 0 0 0 0 0

0:48 0:46 0:02 0:02 0:02 0:01 0:00 0:00 0 0 0 0 0 0

0:51 0:02 3:94 0:02 0:02 0:48 0:48 0:48 0 0 0 0 0 0

0:48 0:02 0:02 0:46 0:02 0:00 0:01 0:00 0 0 0 0 0 0

0:48 0:02 0:02 0:02 0:46 0:00 0:00 0:01 0 0 0 0 0 0

0:02 0:01 0:48 0:00 0:00 0:46 0:02 0:02 0 0 0 0 0 0

0:02 0:00 0:48 0:01 0:00 0:02 0:46 0:02 0 0 0 0 0 0

0:02 0:00 0:48 0:00 0:01 0:02 0:02 0:46 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
6666666666666666666666666666664

3
7777777777777777777777777777775

: (61)

FEATURE ARTICLE WWW.C-CHEM.ORG

1186 Journal of Computational Chemistry 2014, 35, 1165–1198 WWW.CHEMISTRYVIEWS.COM



Problem 3: The mapping of the set of molecular graphs to the

set of adjacency matrix representative can be surjective not

injective (nonbijective), i.e., one and the same matrix invariant

can code for more than one distinct graph. This problem is

illustrated by the example recognized by �Zivković (Quoted

through Ref. 192 due to unavailability of the original reference:

T. �Zivković, Report on Summer School, Repino, Leningrad, 1973)

and whereby two chemically distinct molecules (Scheme 5)

coded by their respective adjacency matrices yield one and the

same characteristic polynomial (x10 – 10x8 1 33x6 – 44x4 1 24x2

– 4). Naturally, this problem will never occur when the mole-

cules are coded by their respective LDMs or electron density-

weighted adjacency matrices with matrix elements that are

very different than simple ones and zeros.

Problem 4: Inability to distinguish optical isomers (enantiomeric

ambiguity). While the off-diagonal entries in LDMs are geo-

metric distance-sensitive, since the DIs decay with distance,

there are no matrix representatives that can capture the rela-

tive arrangement of groups in space that determines hand-

ness. As mentioned previously in relation to QTMS, this is not

a limitation as long as the experimental biological/pharmaco-

logical responses are induced using the correct optical iso-

mer(s). For modeling of physicochemical properties, this issue

is seldom relevant except in cases such as chiral chromatogra-

phy where again the appropriate optical isomers must be

used to generate the experimental data.

Problem 5: Conformational flexibility. The presence of multi-

ple thermally accessible minima on conformational potential

energy surfaces complicates any method that aims at extract-

ing meaningful descriptors except when the descriptors are

insensitive to the interatomic distance matrix (such as graph-

theoretical indices). In principle, some form of conformational

averaging has to be performed to mimic Nature, but in prac-

tice this may prove difficult especially when hundreds of mole-

cules are under consideration. This problem is not specific to

LDMs and will not be addressed here. We now explore exam-

ples illustrating the possible uses of f in QSAR.

The LDM f and transferability in aliphatic alkanes (methane,

ethane, propane, and butane)

The LDM matrices for the first four members of the aliphatic

alkanes homologous series have been obtained at the B3LYP/

6-311G** (the complete set of the f matrices and their eigen-

values are available in the Supporting Information). We note in

passing that while the meaning of the LI and DI is strictly

defined within Hartree–Fock theory, the indices obtained from

DFT calculations are often used as they yield numerical values

of LIs and DIs that are close to the Hartree–Fock values.

First, we investigate one way by which the similarity or dis-

similarity of these four molecules can be quantified using their

DLDM representations. It is possible to define a “distance”

between two matrices (of the same dimensions), even though

such a definition is not unique. The definition used in this

work is the Frobenius distance, that is, the “Frobenius norm”

of the difference matrix:

dðA;BÞ � jjA2Bjj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i;j

jaij2bijj2
s

: (62)

There are n(n 2 1)/2 different distances d(A,B) between n

molecules that may be arranged into a lower or upper triangu-

lar intermolecular distance matrix. The Frobenius distance

matrix between the DLDMs (D) representing the first four

members of the saturated alkane series is given in Table 7.

An examination of Table 7 reveals that the “contribution of a

methylene group” to the distance of one member compared to

the next in the homologous series follows expectations in the

sense that the first addition of a CH2 to CH4 to obtain C2H6

results in a somewhat anomalous change compared to the sub-

sequent additions of CH2 to the growing alkane chain, and

where this change appears to quickly reach a constant value (as

emphasized by Bader in relation, for example, to the contribu-

tion of a methylene group to the heats of formation of aliphatic

alkanes).[17] Thus, to two decimals, d(CH4,C2H6) 5 3.29,

d(C2H6,C3H8) 5 3.04, and d(C3H8,C4H10) 5 2.92, fast converging

to an apparent asymptotic value around 3.

Since this is a relatively uncharted territory, it may be of

interest to explore the geometry of this 14-D comparison

space. One criterion worthy of consideration is the satisfaction

of the triangle inequality as emphasized by Muskulus.[198] The

inequality applied to intermolecular metrics of three molecules

A, B, and C is:

dðA; BÞ � dðA;CÞ1dðC; BÞ: (63)

A violation of this inequality indicates that the geometric

representation is inadequate as a proximity measure of the

studied objects[198] and hence would invalidate the use of

d(X,Y) as a similarity or dissimilarity criterion of molecules X

and Y. Figure 11 displays the triangular distance and angular

relationships between the three possible triads of molecules in

this group of four aliphatic alkanes. The figure demonstrates

that the inequality is clearly satisfied given the intermolecular

distance matrix in Table 7. Further, the angular relationships

Table 7. Frobenius distance matrix between the diagonalized LDMs

(DLDMs) of the four first members of the aliphatic alkane series (DFT-

B3LYP/6-311G(d,p) level of theory).

Methane Ethane Propane

Ethane 3.2941 0

Propane 4.8450 3.0398 0

Butane 6.0535 4.5281 2.9155

Scheme 5.
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displayed in the figure exhibit a curious regularity: The angles

of the triangles formed by three consecutive members of the

homologous series are almost identical (compare the first and

third triangles). The almost constancy of the obtuse angle

�99�–100� in all triangles cannot escape notice either. The sig-

nificance of these observations is not evident to the author at

the time of writing.

Another LDM invariant, other than the DLDM representation

discussed above, is the trace tr(f) 5 Nloc, Eq. (58). Since in most

molecules, the majority of electrons are localized within their

respective atomic basins, for a given homologous series Nloc is

roughly proportional to the total number of electrons N and is

thus an extensive variable that grows with size. In other words,

tr(f) can be expected to capture molecular properties that

depend on steric bulk and/or lipid solubility. Figure 12 displays

the correlation of tr(f) of the first four aliphatic hydrocarbons

with a typical size-extensive property, the calculated total energy

E, yielding a correlation with an r2 5 1.000 (top), and with a lipid

solubility, measured by log P, with an r2 5 0.994 (bottom). These

preliminary results call for further investigation with many more

data points to provide definitive conclusions though.

The LDM f and the pKa of halogenated acetic acids

The LDMs of a set of six homohalogenated acetic acid

(CH2FCOOH, CHF2COOH, CF3COOH, CH2ClCOOH, CHCl2COOH,

and CCl3COOH) are compared with that of the parent unsubsti-

tuted compound, acetic acid. (LDM f matrices, their eigenvalues,

and the atomic numbering scheme for all members of this

molecular set are available in the Supporting Information). In this

example, a consistent atomic numbering scheme can be

adopted for all seven molecules, all of which have a common

skeleton and the same number of atoms, obviating the need to

diagonalize their LDMs or pad any matrices with ghost atoms,

thus here the distances are calculated directly between the

LDMs.

The Frobenius intermolecular distance matrix is given in

Table 8. In this table, the first column, for example, lists the

distance between every substituted acid from the parent

unsubstituted acetic acid. A plot of these distances against the

corresponding experimental pKa’s is displayed in Figure 13. The

figure shows that the experimental pKa’s of all congeners sub-

stituted with one and the same halogen (either F or Cl) are

almost perfectly linearly correlated with the Frobenius distan-

ces of their respective LDMs from that of unsubstituted acetic

acid (r2 5 0.98 for both regression lines). The slopes of the two

lines are different, however, which signals that the pKa is not

captured in its entirety by the LDM intermolecular Frobenius

distance matrix.

The LDM is generally “biased” somewhat by its diagonal ele-

ments K(Xi), which typically have larger magnitudes than the

off-diagonal 1=2d(Xi,Xj). In a homologous series, both Nloc [Eq.

(55)] and Ndeloc [Eq. (56)] increase roughly in proportion to the

total number of electrons N [Eq. (54)]. The situation is different

for a series of congeners molecules RAX differing only in the

identity of a substituent, say with X 5 F, Cl, Br, or I. In this case,

the traces of the LDMs will be significantly different since these

substituents will contribute a large fraction of their atomic num-

bers of electrons to the count yet the delocalization indices in

Figure 12. (Top) The correlation between the total molecular energy in a.u.

and the trace of the LDMs of the four first members of the aliphatic alkane

series. (Bottom) the correlation between experimental log P and the trace

(experimental values taken from Ref. 199).

Table 8. Frobenius distance matrix between the LDMs of the substituted

acetic acid series (DFT-B3LYP/6-311G(d,p) level of theory).

CHiX3-iA CH3A CH2FA CHF2A CF3A CH2ClA CHCl2A

CH2FA 4.52 0

CHF2A 7.78 4.76 0

CF3A 11.16 7.89 5.05 0

CH2ClA 9.29 7.47 8.67 10.65 0

CHCl2A 14.05 11.91 10.47 11.40 9.17 0

CCl3A 19.56 15.83 14.03 12.72 13.87 9.17

Figure 11. Triangle inequalities of the first four members of the aliphatic

alkanes showing the Frobenius distance relations between their diagonal-

ized LDMs.
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these congeners will, at most, be slightly perturbed by the sub-

stitution. For these four congeners RAX, then, the diagonal ele-

ments are the sole carrier of size-extensive information in their

respective LDMs. For a property primarily driven by electronic

structure, such LDMs, biased by steric bulk, may not work just as

we have seen in the case of QTMS (see the section entitled

“Quantum Topological Molecular Similarity (QTMS)” above). The

inability to fit the two sets of congeners of substituted acetic

acids (Xn 5 F, Cl) on one line using the distances between their

LDMs proves the point (Fig. 13).

We thus, define a size-independent electronic fingerprinting

matrix representation of a molecule as the diagonal-

suppressed-LDM or simply the “delocalization matrix” (DM) in

which all diagonal elements are suppressed to zeros (no

explicit localization information). The similarity can then be

measured as the Frobenius distance between DMs when the

modeled properties are primarily governed by electronic struc-

ture and not by steric bulk.

The experimental pKa’s are plotted in Figure 14 against the

distances between the DMs of the substituted and unsubsti-

tuted acetic acids, denoted as ddeloc(AA,SAA), and are listed in

Table 9. This size-independent electronic fingerprinting dis-

tance correlates much better with the experimental pKa’s than

the size dependent LDMs-based distances bringing both sets

of congeners (Xn 5 F, Cl) together on a single exponential

regression line (r2 5 0.979). A similar conclusion is reached

within the QTMS framework that models pKa’s accurately on its

own without injecting extraneous size-dependent information

in the model, since pKa is inherently governed by electronics

rather than by steric bulk. It may be concluded that the full

LDMs appear to capture properties that depend simultaneously

on the electronic structure and size (steric bulk) while the DMs

are better tuned to capture the properties primarily dependent

on electronic structure.

We return to Table 8 for some final observations. The distan-

ces between CHiF3–iACOOH and CHi21F2–iACOOH (i 5 3, 2, 1),

that is, two homologous members differing by one fluorine

atom, are 4.52, 4.76, and 5.05 for i 5 3, 2, and 1, respectively. A

fluorine atom’s contribution to the distance is between � 4.5

and 5.1 and it changes by roughly a constant amount of �0.25

with i. The corresponding distances between CHiCl3–iACOOH

and CHi21Cl2–iACOOH in the case of chlorine substitutions are

9.29, 9.17, and 9.17, exhibiting an almost constant contribution

to the distance for every addition of a chorine atom. The table

exhibits other regularities that we skip for brevity.

Molecular Electrostatic Potential (MESP) and
Field (MESF)

Bonaccorsi, Scrocco, and Tomasi[56] suggested in 1970 the use

of the MESP (V(r)) to locate the molecular regions most prone

electrophilic attack in a series of six small three-membered

heterocyclic rings and cyclopropane. In this article, the authors

calculate, plot, and analyze the topography of the MESP, for

the first time, to extract more information from the calculated

Figure 14. Correlations between the experimental pKa values of fluorine- and

chlorine-substituted acetic acids (F-SAA, Cl-SAA) against the Frobenius dis-

tance of their localization-suppressed-LDMs (DMs) from that of unsubstituted

acetic acid (AA). The data can be closely fit to an exponential model pKa(SAA)

� 20.588 1 5.415 3 exp[–5.066 3 ddeloc(AA,SAA)] (r2 5 0.979, n 5 7).

Table 9. Frobenius distances between the diagonal-suppressed LDMs

(DMs) of substituted acetic acids from the unsubstituted parent com-

pound sorted in order of decreasing pKa (DFT-B3LYP/6-311G(d,p) level of

theory).

CHiX3-iA pKa
[a] ddeloc(CH3A, CHiX3-iA)

CH3A 4.756 0.0000

CH2ClA 2.87 0.1000

CH2FA 2.59 0.1122

CHCl2A 1.35 0.1814

CHF2A 1.33 0.2229

CCl3A 0.66 0.2404

CF3A 0.52 0.3470

[a] Experimental values obtained from Ref. 200.

Figure 13. Correlations between the experimental pKa values of fluorine- and

chlorine-substituted acetic acids (F-SAA, Cl-SAA) against the Frobenius dis-

tance of their LDMs from that of unsubstituted acetic acid (AA). The two lin-

ear correlation can be fitted to pKa(F-SAA) 5 4.5511 20.3840 d(AA,F-SAA)

(r2 5 0.9793, STD 5 0.3256, n 5 4); and pKa (Cl-SAA) 5 4.73954 20.2173

d(AA,Cl-SAA) (r2 5 0.9834, STD 5 0.2872, n 5 4). [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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wavefunctions than merely atomic charges. The use of the

MESP in determining the low energy (preferred) relative orien-

tations of reactants, of guests with respect to their hosts, and

of substrates or inhibitors with respect to their active sites has

expanded into a wide area of computational and theoretical

chemistry.[57,58,60,62,63,201] MESP can also be calculated directly

from X-ray crystallographic scattering data.[25–27,61,67] It is

impossible to review this field of research here, instead, a few

examples are selected for illustration as they relate to QSAR.

The total charge density expressed in Eq. (4), that is, the dis-

crete charge distribution of the nuclei in addition to the con-

tinuous diffuse electron density, give rise to an electrostatic

potential surrounding the molecule. In principle, the MESP can

be calculated from[56]

VðrÞ5
XM

a51
Ra 6¼r

Za

jRa2rj2
ð

qðr’Þ
jr’2rjdr’; (64)

in a.u., where Za is the charge of ath nucleus located at Ra,

and where the ath term in the first sum must be eliminated

when Ra 5 r (to evaluate the MESP at the position of the ath

nucleus). The dimensions of V are [energy] 3 [charge21],

but often the displays of the MESP feature contour lines

that are labeled in units of energy where the multiplication

by a test unit charge (unity in a.u.) is implied if not stated

explicitly.

The first HK theorem tells us that q(r) fixes the external

potential, that is, the positions and charges of the nuclei, that

is, the first term in the R.H.S. of Eq. (64). Then q(r), which

appears as the integrand of the second term, fixes the R.H.S.

of Eq. (64) completely and hence there exists a bijective map-

ping between q(r) and V(r).

Before discussing a few applications, we emphasize that V(r)

has the same fundamental status as a basic descriptor of the

ground state as q(r). In 1962, Wilson has shown that the

energy of a molecule can be expressed as a functional of q(r)

and its change in response to a scaling of the nuclear charges

by a continuous parameter k.[202] Starting from this result,

Politzer and Parr demonstrated that the total energy of a mol-

ecule E can be expressed as a sum of M terms of the

form[203,204]

E5
XM

a51

1

2
ZaV0

a 2

ðZa

0

Z 0a
@Vo

a

@Z 0a

� �
2Vo

a

� 
N

dZ 0a

� �
; (65)

where V0
a is the MESP at the position of the ath nucleus. The

result in Eq. (65) is exact and demonstrates the fundamental

role of V(r) even if it is not implementable in practice without

approximations.

While the electrostatic potential of an isolated atom is

always positive everywhere in space,[205] clearly in the case of

molecules, according to Eq. (64), the MESP at r can have either

sign that diagnose regions that are primarily dominated by

the bare nuclear potential, that is, the first term on the R.H.S.

of Eq. (64), or dominated by the electron density (the second

term). While it is quite possible and common for neutral mole-

cules to exhibit local minima (other than at the nuclear posi-

tions), it is impossible for any neutral molecule in the ground

or excited states to exhibit true local maxima in the MESP, as

demonstrated by Pathak and Gadre[206] on the basis of classi-

cal electrostatic arguments (only saddle points and directional

maxima are allowed).

Minima in the MESP (Vmin) pinpoint the sites favoring elec-

trophilic attacks, while the magnitudes of corresponding Vmin’s

in related molecules often correlate with reactivity toward

electrophiles. The converse correlation with reactivity toward

nucleophiles is nonexistent due to the absence of local max-

ima in the MESP.

In 1982, Weiner, Langridge, Blaney, Schaefer, and Kollman

(WLBSK) proposed to color-code molecular 3-D surfaces with

the values of the MESP as a function of position on these

surfaces.[207] In this manner, the structural 3-D information

conveyed by the surface of the molecule is augmented with

electrostatic information provided by the color coding of the

MESP on that surface, creating a “four-information-dimensional

image,” to quote Kahn, Pau, and Hehre (KPH).[208]

In the original proposal by WLBSK, the molecular surface

was taken as the Connolly surface[207] (the solvent exclusion

cavity in the bulk solvent). Nowadays, molecular isoelectron

density envelopes are often selected for the color coding by

the values of the MESP, as first suggested by KPH.[208] While

true 3-D maxima in the MESP are not possible, 2-D local max-

ima on a given molecular surface, such as an isodensity isosur-

face, are possible.

Politzer has pioneered the application of MESP to solve

chemical, environmental, and drug design problems. It is fit-

ting then to briefly discuss one of his classical early works that

provide a fast and accurate screening of the carcinogenic

potential of epoxides.[201,209] Table 10 lists a series of epoxides

sorted in decreasing magnitude of the Vmin near the oxygen

atom. The table suggests a threshold of around 230 kcal

mol21 above which a compound is highly suspected of carci-

nogenic activity. This hypothesis has been confirmed by fur-

ther extensive studies by Politzer and Murray[201] of over 60

epoxides, several of them calculated on the request of the US

Environmental Protection Agency. The first step in DNA damage

by epoxides is believed to involve protonation of the oxygen

atom, which in turn promotes ring opening, which is consist-

ent with Politzer’s finding that highly negative Vmin near the

oxygen atom promotes carcinogenic activity.

The second more recent example relates the highest posi-

tive MESP on the solvent-accessible surface (SAS) to the

hydrogen-bonding-donor ability of the molecule.[210] First, the

experimental quantification of molecular hydrogen-donor (or

acceptor) ability deserves a brief introduction.

Abraham et al.[211] express what they terms “solute property

(SP)” as a sum of four variables gauged against saturated alka-

nes for which all properties are taken as zero. The four terms

are: (1) E: The excess molar refraction (in units of cm3 mol21/

100), which models the excess dispersion interaction capability

over saturated alkanes that p- and n-electrons impart; (2) S:

solute polarity/polarizability, a term that captures the strength

of solute–solvent interaction; (3) A: solute overall (sum) of
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H-bond acidity, the term subject of the modeling in the

reviewed example below; (4) B: solute overall H-bond basicity;

and (5) VM: the McGowan characteristic molar volume (in units

of cm3 mol21/100), which is a fragment contribution approxi-

mate molecular volume—not to be confused with the symbol

for MESP. The SP is then taken as the dependent variable of a

multivariate regression model of the form:[211]

SP 5c1eE1sS1aA1bB1vVM; (66)

where the small letters characterize the solvent effect on the sol-

ute and the capital letters the effect of the solute on the solvent.

As a concrete example, consider the regression equation:[211]

log Po=w 50:08810:562E21:054S20:032A23:460B13:814V;

½r250:995; STD 50:116; F523161:6; n5613�
(67)

where STD is standard deviation, obtained for the logarithm of

the octanol–water partition coefficient using a set of 613 com-

pounds. In this set, a � 0 implies that octanol has the same

basic hydrogen bonding power as water (essentially an oxygen

atom acting as a hydrogen acceptor). In the meantime, water

is far more acidic (better proton donor) than octanol, which is

reflected in a significantly negative b.

Ghafourian and Dearden[210] model the experimentally

determined A values for a set of 63 solute molecules using the

MESP’s most positive value on the SAS, V1. Intuitively, the

hydrogen atoms with the higher magnitude of V1 can be

expected to be more acidic. These authors present 17 statisti-

cal models constructed from a variety of combinations of Gas-

teiger charges, V1, and ELUMO (and molecular sets that include

or exclude two outliers) to predict the Abraham hydrogen

bonding donor A parameter. The best two models including

the two outliers are[210]

A520:49010:03383V1;

½r250:735; STD 50:127; F5166; n562�
(68)

and

A520:30110:02903V120:05043ELUMO ;

½r250:819; STD 50:106; F5133; n562�
(69)

which are both slightly improved to r2 of 0.783 and 0.858,

respectively, on exclusion of outliers (n 5 57 in both latter cases).

The performance of Eq. (69) in predicting experimental values is

displayed graphically in Figure 15, which is excellent in the light

of the smallness of the parameters-to-data ratio of only 1:31.

The next example considers experimentally determined

MESP maps. Today, advances in crystallography and the avail-

ability of multipolar refinement parameters databases[87,96–109]

are such that atomic resolution protein structures are within

Figure 15. Correlations between the experimentally determined Abraham

acidic overall hydrogen bonding capacity A and those estimated from the

regression model of Eq. (69). (Reproduced from Ref. 210 with permission VC

2004 Elsevier Masson SAS).

Table 10. Minimum MESP near the oxygen atom of some epoxides

sorted in order of decreasing magnitudes (calculated at the HF/STO-5G

level of theory).[a]

Molecule Vmin(kcal mol21) Carcinogenic activity

253.4 Active

251.3 Active

247.7 Active

243.1 Active

238.1 Active

223.1 Inactive

217.1 Inactive

29.2 Inactive

[a] After Ref. 201.
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reach, which enables a better grasp of the electrostatic com-

plementarity between guests and their protein hosts and the

role played by the coenzymes in fine-tuning the active site

electrostatics.[106,212–214] High resolution X-ray structures of

enzymes complexed with their substrates, inhibitors, and/or

coenzymes (which could be cosubstrates such as nicotinamide

adenine dinucleotide phosphate cation (NADP1)) have been

used to generate accurate maps of the MESP in the active site.

These maps are particularly revealing if they are generated for

the active site with and without its host(s).

The group in Nancy (Lecomte, Gillot, Jelsh, and co-workers)

and the group in Strasbourg (Podjarny et al.) report experi-

mental and calculated MESP maps of the inactive form (apoen-

zyme) of human aldol reductase (hALR2) (E); the active

holoenzyme (apoenzyme complexed with its cosubstrate

NADP1) but without the substrate or inhibitors (EC); an inhibi-

tor of aldol reductase (IDD594) alone (I); and the enzyme–

cosubstrate–inhibitor (ECI) complex. All four MESPs are calcu-

lated from the experimental structure of the ECI complex by

selective removal of the unwanted molecules.[106,212–214] The

study provides a striking visualization of the electrostatic lock-

and-key complementarity of the MESP of the inhibitor and

that of the active site. The cosubstrate is shown to accentuate

the inhibitor–enzyme complementarity (Fig. 16).[106,212–214]

Another application of the MESP in drug-design relates to

bioisosterism. Bioisosteres are pharmacologically interchange-

able groups used to optimize the pharmacodynamics and the

pharmacokinetics [absorption, distribution, metabolism, excre-

tion, and toxicity (ADMET)] of a drug.[215,216] The bioisosterism

of chemically unrelated pairs such as ethanoic (acetic) acid

anion (EA) and 5-methyltertrazole (5MT) is puzzling.[217,218] The

puzzle is resolved by examining the geometric disposition of

the Vmin surrounding the two bioisosteres, a disposition that is

not much altered by changing the capping groups.[219] The

MESP exhibits four local minima around each bioisostere in a

quasi-identical geometric and superimposable planar arrange-

ment as can be seen from the distance matrices between the

centroids of these minimas (Fig. 17). This similarity of the 3-D

topography of the MESP is what the receptor site would “see,”

and presumably has complementary electrophilic groups prop-

erly oriented in space (Fig. 17).[219]

It is noted in passing that the average group electron den-

sities of these two chemically (very) different bioisosteres, EA

and 5MT, is almost identical. Table 11 lists the atomic popula-

tions, volumes, and average electron densities defined as the

electron population divided by the volume. The table lists the

respective atomic, group, and molecular values of both iso-

steres. It is remarkable that the average density of the ACOO–

group is 0.0659 a.u. and that of the ACN4
– group is 0.0660,

differing by only 0.0001 a.u. (�0.15%) despite of being com-

posed of different number and types of atoms and bonds,

while the methyl groups in the two molecules have respective

densities of 0.0386 a.u. (EA) and 0.0395 a.u. (5MT), that is, dif-

fering by an order of magnitude more that the bioisosteric

groups in absolute terms and by �2.3% in relative terms.

Finally, it is sometime suggested to use the electric field E(r)

as opposed to V(r), since the former provides a more direct

display of the direction of approach of an infinitesimal positive

charge to the undisturbed molecular charge distribution. From

elementary electrostatics:

EðrÞ52rVðrÞ: (70)

The representation of E instead of V is more convenient in

cases when, for example, we are interested in the relative

orientations of motion-restricted host molecules in the elec-

tric field generated by the restricting guest. A display of

experimentally determined electric field lines in the active

site of fatty acid binding protein, without its host (oleic

acid), (B. Guillot, A. Podjarny, Private communication 2013), is

provided in Figure 18. The field lines appear as bundles

emanating from electropositive atoms and end at electro-

negative atom sinks. The apparent crossing of field lines in

this image is due to the projection of 3-D curved field lines

Figure 16. (a–d) MESP in the plane perpendicular to the inhibitor carboxy-

late group. (a) The active site in the apoenzyme (E) from DFT calculations

at the experimental geometry of the complex. (b) The inhibitor alone (I)

from DFT calculations at the experimental geometry. (c) The holoenzyme

(apoenzyme 1 coenzyme NADP1, or EC) from DFT calculations at the

experimental geometry. (d) The experimental MESP map corresponding to

the calculated one in (c) obtained using a multipolar parameters database.

(e) MESP of the holoenzyme computed with transferred multipolar parame-

ters in the active site in the plane of the nicotinamide ring of the cofactor

NADP1. (f ) The MESP in the same region and in the same orientation as in

(e) but after removing the contribution of the cofactor NADP1. Contour

levels are 60.05 e/Å. Solid lines for positive contours; dashed ones for neg-

ative; and dotted line for zero level. (a–d Reproduced from Ref. 106 with

permission VC 2003 National Academy of Science of the USA, and e–f from

Ref. 214 with permission VC 2004 Wiley Periodicals).
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on the plane of the figure (field lines, of course, never cross).

The intensity of the electric field in this enzyme active site is

reflected in the density of the field lines and averages to a

magnitude of the order of 109 V m21 near the centroid of

the cavity (B. Guillot, A. Podjarny, Private communication

2013). These electric field strengths, typically encountered in

enzyme active sites, can alter the rates of chemical reactions

significantly and can have detectable IR vibrational Stark

shifts.[220–232]

Through the use of calibration curves, vibrational Stark shifts

exhibited by small host molecules or chromophoric groups in

molecules trapped into enzyme active sites can be used to

probe the strengths and directions of the local electric fields.

Such studies have been carried out for a number of host–pro-

tein systems: CO bound to the Fe of the porphyrin of myoglo-

bin,[225] and CBN (nitrile)-containing substrates complexed at

the human aldose reductase enzyme (hALR2) active site[226,227]

are two notable examples. The changes in the local fields

Figure 17. The two bioisosteres ethanoic acid anion and 5-methyltertrazole anion and a model of the region of a receptor complementary to the ACOO2

and ACN4
2 regions. The figure displays the isopotential surfaces of the MESP as transparent envelopes. Pink transparent envelopes are those for MESP> 0

and violet transparent envelopes indicate MESP< 0. The displayed isosurfaces 60.250 au for CH3ACOO2 and 60.275 au for CH3ACN4
2. The bottom part

of the figure is the distance matrix (in Å) relating the four minima in the MESP of each bioisostere.

Table 11. Atomic, group, and molecular electron populations, volumes, and average electron densities and the numbering schemes of the anionic bioi-

sosteres EA (acetic acid) and 5-mehyltetrazole.[a,b]

Ehanoic acid anion (EA)

5-Mehyltetrazole anion (5MT)

Atom (X) N(X) Vol(X) hqi Atom (X) N(X) Vol(X) hqi

C1 6.0102 73.06 0.0823 C1 5.9629 70.79 0.0842

H2 1.0397 54.30 0.0192 H2 1.0174 52.54 0.0194

H3 1.0392 54.67 0.0190 H3 1.0255 53.18 0.0193

H4 1.0397 54.81 0.0190 H4 1.0114 52.01 0.0195P
ACH 3

9.1288 236.83 0.0386
P

ACH 3
9.0171 228.52 0.0395

N5 7.7152 124.55 0.0619

N6 7.2050 113.09 0.0637

C5 4.3728 38.76 0.1128 N7 7.7174 124.85 0.0618

O6 9.2513 153.98 0.0601 N9 7.2067 113.18 0.0637

O7 9.2466 154.10 0.0600 C8 5.1390 54.71 0.0939P
bioisostere 22.8707 346.84 0.0659

P
bioisostere 34.9832 530.38 0.0660P

molecule 31.9995 583.67 0.0548
P

molecule 44.0003 758.90 0.0580

[a] Rows list the properties of individual atoms except the row “
P

ACH 3
” which lists the properties of the capping methyl group, the row “

P
bioisostere ”

which lists the properties of the entire bioisosteric groups, and the row “
P

molecule ” which lists the molecular properties. [b] Data taken from Ref. 219.
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accompanying point mutations in the active site have been

monitored through the observation of the corresponding

vibrational Stark shifts of the nitrile group IR fingerprint by

Boxer et al.[226,227] (See also Refs. 228–231).

Conclusions

This review focuses on the intersection of two areas of

research: One is QSAR-type research and the other is the study

of observable molecular fields derived from either theoretical

calculations or experiment. QSAR-type studies have, in general,

a dominant utilitarian flavor in the sense that it places the

highest import on the speedy and accurate prediction of activ-

ity with perhaps a secondary focus on insight as long as the

QSAR model yields robust statistics. The purpose here is not

to criticize this type of QSAR studies since they are of vital

importance to cure disease and improve the lives of humans.

Rather, what is being argued is that by choosing descriptors

directly derived from fundamental fields such as the electron

density or the electrostatic potential, then by necessity those

fields must be the source of all predictions. It follows that den-

sity- and/or MESP-derived descriptors can yield robust QSAR

relationships in addition to insight.

A density-based descriptor as simple as the CSI has been

shown to have a particularly wide reach of applicability. This

one descriptor, which measures the local degree of charge

separation at an atomic resolution, can be used in the predic-

tive modeling of molecular properties that include PMVs, parti-

tion coefficients (log P), the change in the protein stability on

mutation, the structure of the genetic code, and excitation

energies of simple molecules. The latter prediction follows

directly from the HK theorem as discussed at the start of the

section entitled “Bond Properties as Predictors of Spectroscopic

Transitions and NMR Proton Chemical Shifts” since the ground

state electron density encodes information about excited

states as well.

We have also seen how the concept of QTAIM atomic

energy, E(X), and that of atomic electric charge, q(H), con-

verge, through QSAR modeling, to two formulas of identical

form despite of being reached via totally different

considerations:

pKaðexptl:Þ52150:48620:17253EðHÞðkJ mol 21Þ; (26)

pKaðexptl:Þ569:5ð65:2Þ2112:5ð68:9Þ3qðHÞða:u:Þ; (27)

where the first, due to Adam,[158] is derived from statistical

mechanical arguments and approximations followed by a fit-

ting to experimental pKa values, and the second is obtained

by Hollingsworth et al.[160] from a direct fitting to experiment

on grounds of chemical intuition. The connection between

these two QSAR equations can be rationalized as follows: The

more an acid is acidic the more positively charged is its acidic

(dissociating) hydrogen, and hence by Eq. (27) it has a lower

pKa. In the meantime, the more positive the hydrogen, the less

is its electron population, and the lower the electron popula-

tion the lower the stabilization due to the nuclear–electron

Coulombic attraction, and hence that leads to a higher atomic

energy (less negative), which leads to a lower pKa as well by

Eq. (26).

Popelier’s QTMS approach has been briefly reviewed in the

light of being a molecular structure fingerprinting tools, invalu-

able in QTAIM-based QSAR. We have seen how the inability of

QTMS to capture size and hydrophobicity/hydrophilicity infor-

mation can actually be a strength rather than a weakness since

it can be used as a diagnostic to indicate if a given property is

primarily driven by bulk and/or by lipid/aqueous solubility or is

primarily a reflection of electronic structure. Popelier and

coworkers have complemented QTMS models, when necessary,

with bulk and solubility descriptors extraneous to QTAIM, in

analogy with QSAR strategies based on Hammett constants. This

is an example of the complementarity and synergism between

QTAIM and other more traditional approaches in QSAR.

The QTMS approach has the flexibility of being applicable to

any desired portion of the molecular framework. One can con-

struct a QTMS QSAR using any desired isolated subgraph of

the molecule such as the subgraph representing the active

site fragment. The ability to isolate and focus on a molecular

active site is of particular value when such a site is common

to a series of molecules that otherwise differ significantly in

their molecular skeletons, and which are hence not amenable

to direct comparison.

QTMS is based on bond properties, that is, a sampling of

the electron density at the BCP. There are other approaches

that share this focus on BCP properties in the construction of

predictive tools but without constructing the BCP abstract

mathematical space followed by the use of Eq. (13). An exam-

ple is the work of BAA. These workers use BCP properties to

predict NMR and UV spectroscopic transitions,[145–147] while

others use bond properties in the empirical prediction of p-

stacking interaction energies.[178–180] Cort�es-Guzm�an and

coworkers[177] use the net group charge transfer as a predictor

of the strength of p-stacking between anticancer CasiopeinasVR

and adenine to support their hypothesis for the antineoplastic

activity of this class of drugs through DNA intercalation.

There are a number of parallels between features of QTMS

and the newly proposed LDMs and EDWAMs. First, both LDMs

Figure 18. Experimental electric field lines in the active site of oleic acid in

fatty acid binding protein. The intensity of the field in the enzyme active

site is of the order of 109 V m21. (Obtained from a private communication

and used with the permission of the copyright holders, VC 2013 B. Guillot

and A. Podjarny).
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and EDWAMs can be defined for an arbitrary molecular frag-

ment subgraph, in which case the sum of sums in Eq. (57) for

an LDM would yield the electronic population of the fragment.

Second, the LDMs have a built-in measure of molecular size

for congeners with the same number of atoms and a common

framework (see the section entitled “The LDM f and the pKa of

Halogenated Acetic Acids”), namely, the sum of the diagonal

elements tr(f). The LDMs, hence, may not be ideal to model

properties such as pKa that strongly depend on electronic

structure but only weakly on molecular size. In these cases,

the diagonal suppressed LDMs (the DMs) perform far better

being primarily an electronic fingerprinting tool, as the exam-

ple of halogenated acetic acids demonstrates.

The reasoning leading to LDMs can be extended to any

property that can be partitioned into atomic “self” and two-

atom “interaction” terms, to use the Oviedo Group’s IQA termi-

nology.[119–121] Within the IQA approach, the energy of a mole-

cule is rigorously decomposed as:

E5
Xn

i51

Eself Xið Þ1
1

2

Xn

i51

Xn

j 6¼i

EintðXi;XjÞ; (71)

which is identical in form to the R.H.S. of the second equality

of Eq. (54) and hence can be conveniently organized in a

matrix format similar to the LDM:

g �

Eself ðX1Þ Eint ðX1;X2Þ=2 � � � Eint ðX1;XnÞ=2

Eint ðX2;X1Þ=2 Eself ðX2Þ � � � Eint ðX2;XnÞ=2

� � . .
.

�

Eint ðXn;X1Þ=2 Eint ðXn;X2Þ=2 � � � Eself ðXnÞ

2
6666664

3
7777775;

(72)

where the sum of any row or column is the so-called

“additive” energy of atom Xi, Eadd(Xi), since the total molecular

energy is equal to the sum of all Eadd(Xi). The same QSAR

manipulations expressed in this article for the LDMs (f) can be

applied to g.

Closely related to the total charge density [Eq. (4)] is the

MESP V(r) and its associated electrostatic field E(r). The MESP

and field have the same experimentally-accessible and funda-

mental qualities of q itself [Eq. (65)]. Modern ultrahigh resolu-

tion X-ray crystallography is capable of delivering accurate

experimental MESPs and electric fields even within the con-

fines of an enzyme active site. Probing the electric field inside

an active site is of paramount importance in understanding

enzyme catalysis as has been emphasized in the recent litera-

ture.[220–232]

Lecomte, Guillot, Jelsh, Podjarny and coworkers[106,212–214]

(and B. Guillot, A. Podjarny, Private communication 2013) map

the electric fields in the active site of enzymes with and with-

out their hosts (whether cofactors, substrates, or inhibitors,

and combinations of those). This strategy yields key informa-

tion about the electrostatic characteristics necessary for opti-

mal inhibition which can guide drug-design by “reverse

engineering” in a striking visualization and use of Hermann

Emil Fischer’s “lock-and-key” hypothesis.
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Note added in Proof

Very recently, a paper has appeared[233] that demonstrates strong

correlations between the number of hydrogen-hydrogen close con-

tacts (hydrogen-hydrogen weak bonding interactions)[234–236] in

alkane dimers and boiling points. These weak interactions also

appear to have a secondary role in the relative stability of branched

alkanes with respect to their less branched isomers.[233] This pro-

vides another example of a direct link between an observable prop-

erty of the topology of the electron density and a measurable

physical property of the corresponding compound. A review that

examines the role of these weak interactions in the stability of mole-

cules and crystals is being coauthored by the present writer and will

be submitted to publication soon.
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