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The data article reports data of the proteins expressed in female
Anopheles stephensi salivary glands. Proteomic data were acquired
using high-resolution mass spectrometers - Orbitrap-Velos and
Orbitrap-Elite. Samples derived from adult female A. stephensi sali-
vary glands led to the identification of 4390 proteins. Mass spec-
trometry data were analyzed on Proteome Discoverer (Version 2.1)
platform with Sequest and Mascot search engines. The identified
proteins were analyzed for their Gene Ontology annotation, inter-
action network and their possible roles in vector-parasite interac-
tion. The data provided here are related to our published article
“Integrating transcriptomics and proteomics data for accurate
assembly and annotation of genomes” (Prasad et al., 2017) [1].
& 2018 The Authors. Published by Elsevier Inc. This is an open access
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ubject area
 Biology

ore specific subject area
 Vector biology

ype of data
 Excel files, figures

ow data were acquired
 LTQ-Orbitrap Velos ETD mass spectrometer (Thermo Scientific, Bre-

men, Germany)

Proteome Discoverer 2.1 and MASCOT search engine (Matrix Science,
London, UK; version 2.2)

Protein database Anopheles stephensi Liston (Indian strain) (www.
VectorBase.org, release February 25, 2014)
ata format
 Analyzed

xperimental factors
 Salivary glands were dissected from sugar fed mosquitoes and pro-

teins extracted.

xperimental features
 Proteome profiling of Anopheles stephensi salivary glands

ata source location
 Goa and Bangalore, India

ata accessibility
 Raw mass spectrometric data are available from a web application

(ProteomeXchange) Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner
repository with the dataset identifier PXD001128.
Analyzed data are provided along with this article as excel sheets.
Value of the data

� The data provide details on proteins expressed in the salivary glands of adult female Anopheles
stephensi mosquitoes.

� The data provide an insight into the physiological processes and pathways associated in the sali-
vary glands of A. stephensi.

� The data provide a platform to comprehend the possible vector-pathogen interactions occurring in
the female A. stephensi salivary glands that may be associated with transmission of Plasmodium.
1. Data

To identify the proteins expressed inside the female Anopheles stephensi mosquito salivary glands,
we carried out proteomic profiling of salivary glands dissected from sugar fed female A. stephensi
(Liston strain) mosquitoes using high-resolution mass spectrometers (Fig. 1). Proteins extracted from
samples were fractionated at protein level using SDS-PAGE and peptide level using basic reverse
phase liquid chromatograhy (bRPLC). Fractions were then analyzed on a high-resolution mass spec-
trometry which resulted in the acquisition of 399,827 tandem mass spectra. These spectra were then
searched against a protein database of A. stephensi leading to the identification of 275,522 peptide-
spectrum matches (PSMs) corresponding to 38,026 unique peptides belonging to 4390 proteins. The
complete list of identified proteins is provided in Supplementary Table S1.
2. Experimental design, materials and methods

2.1. Maintenance of mosquito colony

A. stephensi mosquitoes were maintained in the insectary at National Institute of Malaria Research,
Field Station Goa as continuous cyclic colony at 27 7 2 °C, 75% relative humidity and cycle of 12 h in

http://proteomecentral.proteomexchange.org
PXD001128


Fig. 1. The experimental procedure carried out for the proteomic analysis of mosquito salivary glands in this study. A) Mosquito
culture conditions; B) Experiment and analysis workflow.
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light and 12 h in darkness. The adult female mosquitoes were fed on 10% glucose solution. Salivary
glands were dissected in 0.65% normal saline under dissecting microscope and stored at �80 °C until
further use.

2.2. Protein extraction

Homogenization of the dissected salivary glands was carried out using a probe sonicator in 200 ml
of 1% SDS. The lysate was centrifuged at 14,000 rpm for 10min at 4 °C and supernatant was collected.
Protein quantification was carried out according to modified Lowry's method (Bio-Rad DC Protein
assay) and normalized on 10% SDS-PAGE.

2.3. Fractionation

Proteins extracted from salivary glands were fractionated at both protein- and peptide-level as
discussed previously [1–4]. Fractionation at the protein-level was carried out with 300 mg of protein
on 10% SDS_PAGE and 24 bands excised after Coomassie blue staining. Excised bands were reduced
and alkylated with dithiothreitol (DTT) and iodoacetamide (IAA), respectively. Trypsin digestion was
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carried out overnight at 37 °C using sequencing grade trypsin (Promega). Digested peptides were
extracted and stored at �20 °C.

Peptide-level fractionation was carried out with 500 mg of protein, which was reduced and alky-
lated prior to trypsin digestion at 37 °C for 16 h. Prior to bRPLC fractionation, digested peptides were
cleaned using Sepak C18 column and lyophilized. The lyophilized peptides were reconstituted in
bRPLC solvent A (10mM triethyl ammonium bicarbonate (TEABC) in water at, pH �9.5), loaded on
XBridge C18, 5 mm 250 � 4.6mm column (Waters, Milford, MA) connected to Agilent 1100 series HPLC
system. The digested peptides were resolved using a gradient of 5% to 100% solvent B (10mM TEABC
in Acetonitrile, pH 9.5) in 70min. Peptides were collected in a 96 well plate and then concatenated
into 26 fractions. Fractions were dried and reconstituted in 0.1% formic acid prior to mass spectro-
metric analysis.

2.4. Mass spectrometry analysis

The fractions were reconstituted in 0.1% formic-acid prior to mass spectrometry analysis. Fractions
were analyzed on LTQ-Orbitrap Velos and LTQ-Orbitrap-Elite mass spectrometers (Thermo Scientific,
Bremen, Germany) interfaced with Easy-nLCII (Thermo Scienific, Bremen, Germany). Peptides were
initially enriched on a reversed phase liquid chromatography (RPLC) pre-column (2 cm, 5 μ–100Ǻ),
followed by separation on an analytical column (11 cm, 3μ–100Ǻ) packed in-house with magic
AQ C18 material (Michrom Bioresources, Inc, Auburn, CA). The solvent system used included 0.1%
aqueous formic acid as solvent A and 95% acetonitrile,0.1% formic acid as solvent B. The peptides were
loaded on to the trap column using solvent A, followed by resolution on the analytical column using a
gradient of 10–35% solvent B for 75min at a constant flow rate of 0.25 μL/min. The spray voltage and
heated capillary temperature were set to 2.0 kV and 220 °C. Acquisition of data in mass spectrometer
was carried out in a data dependent manner with a full scan in the range of m/z 350–2000.
MS and MS/MS were acquired and measured using Orbitrap mass analyzer. Full MS scans were
measured at a resolution 30,000 at m/z 400 and fifteen most intense precursors were selected for
MS/MS fragmentation. Fragmentation of peptides were carried out using higher-energy collisional
dissociation (HCD) method and detection range set at a mass resolution of 15,000 at m/z 400. The
automatic gain control (AGC) for full FTMS was set to 1 million ions and for FT MS/MS was set to
0.1 million ions with maximum accumulation time of 100ms and 200ms.

2.5. Functional categorization and prediction of interaction map

Categorization of the identified proteins was performed by fetching information provided in the
Panther database [5] and Cytoscape [6]. Both Panther database and Cluego [7] plugin in Cytoscape has
identifiers only for Anopheles gambiae, we therefore, fetched the A. gambiae orthologs for the iden-
tified A. stephensi proteins using Biomart tool (version 0.7) [8] provided through VectorBase [9]
(Supplementary Table S2). These A. gambiae identifiers were then used to fetch the Gene Ontology
information. Cluepedia [10] plugin in Cytoscape was used to for the generation of the association map
between genes and their biological processes.

Protein–protein interaction map of the identified proteins was generated using STRING (Search
Tool for the Retrieval Interacting Genes/Proteins) online tool (version 10.5).plugin (version 1.1.0) [11].

2.6. Data analysis

The mass spectrometry derived data were searched against a database of 11,789 A. stephensi
proteins obtained from VectorBase. The database search workflow consisted of SEQUEST and MASCOT
search engines incorporated in the Proteome Discoverer suite, version 2.1 (Thermo Fischer Scientific,
Bremen, Germany). Trypsin was used as the enzyme with a single missed cleavage allowed and a
minimum peptide length of 6 amino acids. Modifications on peptides were set to static for carba-
midomethylation of cysteine and variable for oxidation of methionine. Results were generated using a
1% false discovery rate (FDR) at the peptide level.



Fig. 2. Gene ontology annotation for Proteins identified from A. stephensi salivary glands for A) biological processes;
B) molecular functions; C) sub-cellular localization. Gene ontology terms with significant p-value were considered. Blue line
represent GO term p-value and red line represents group p-value.
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Fig. 3. Predicted protein–protein interaction map and associated biological processes and pathways of proteins identified in
the A. stephensi salivary glands whose A. gambiae orthologs were found to have vital role in vector–pathogen interactions.

Fig. 4. Predicted protein–protein interaction map of proteins identified in salivary glands and having a potential role in
immunity (predicted by mapping to ImmunoDB database).
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The proteins identified were analyzed for their role in biological processes, molecular functions and
their location in cellular components. Majority of the identified proteins belonged to the protein class of
nucleic acid binding proteins (17.4%), hydrolases (17.1%), transferases (9.3%) and oxidoreductases (8.5%).
Functional annotations categorized the identified proteins to be associated with biological processes
such as cellular processes (32.4%), metabolism (29.2%), and localization (10%). The major processes and
functions of the identified salivary glands proteins have been illustrated in (Fig. 2) and a detailed Gene
Ontology categorization of the identified proteins are provided in Supplementary Table S3.

Certain genes in mosquitoes have been studied for their associated role as agonist or antagonist in
vector-parasite interactions through gene knockdown experiments [12]. We observed 31 of such



Fig. 5. Predicted protein–protein interaction map of proteins identified in the A. stephensi salivary glands. The interaction map
was generated using STRING online tool with high confidence parameters.

G. Dey et al. / Data in Brief 21 (2018) 2554–25612560
proteins to be expressed in the A. stephensi salivary glands. Among these, 30 proteins were also
identified in midgut, fatbody, ovary and brain [1,13–15]. We observed the expression of ASTEI03572
gene to be enriched only in the A. stephensi salivary glands. The A. gambiae ortholog (AGAP000151) for
ASTEI03572 has been observed to show increased expression in response to blood-feeding and
Plasmodium infection. The list of proteins identified in salivary glands that mapped to the list of
proteins with experimentally proven roles in parasite development inside the mosquito is provided in
Supplementary Tables S4 and S5 (Fig. 3). Development and transmission of the Plasmodium parasite is
regulated by the immunological processes occurring inside the mosquito. Immunodb database pro-
vides information on immune-related gene families. Eighty-one proteins identified in salivary glands
were found to have probable role in the generation of mosquito related immune responses. The list of
proteins mapping to Immunodb along with their associated biological processes are provided in
Supplementary Tables S6 and S7 (Fig. 4). To elucidate the interaction potential of the identified
proteins in the salivary glands, we selected 1,006 proteins with a minimum of 10 PSMs and at least 10
unique peptides for a higher confident data. A predicted interaction map for the selected proteins was
generated using Online STRING tool (Fig. 5, Supplementary Table S8).
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