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Metabolically energetic organs, such as the brain, require a reliable source of ATP, the ma-
jority of which is provided by oxidative phosphorylation in the mitochondrial matrix. Main-
taining mitochondrial integrity is therefore of paramount importance in highly specialized
cells such as neurons. Beyond acting as cellular ‘power stations’ and initiators of apopto-
sis, neuronal mitochondria are highly mobile, transported to pre- and post-synaptic sites
for rapid, localized ATP production, serve to buffer physiological and pathological calcium
and contribute to dendritic arborization. Given such roles, it is perhaps unsurprising that
recent studies implicate AMP-activated protein kinase (AMPK), a cellular energy-sensitive
metabolic regulator, in triggering mitochondrial fission, potentially balancing mitochondrial
dynamics, biogenesis and mitophagy.

Although the brain constitutes approximately only 2% of our total body weight, it accounts for the
usage of in excess of 20% of our oxygen intake and is one of the most metabolically active tissues in our
bodies. Approximately 90% ATP production occurs through oxidative phosphorylation in mitochondria,
therefore, for tissues with a high metabolic rate such as the brain, regulating mitochondrial health is key
to sustaining cellular function [1].

Mitochondria are dynamic, double-membraned organelles that continually undergo fission, fusion and
quality control (mitophagy) [2]. Long-term failure of either fission or fusion can lead to deleterious conse-
quences and thus, a balance of these processes together with mitophagy is critical to maintaining cellular
homoeostasis. Over the last 20 years, there has been a flurry of interest in discerning the molecular mech-
anisms regulating this mitochondrial life cycle, with significant success. Inner and outer mitochondrial
membrane fusion are governed by optic atrophy (OPA)1 and mitofusin1/2 respectively whereas fission is
mediated by the cytosolic protein, dynamin-related protein (Drp)1 (Figure 1) [3]. Drp1 is recruited to the
mitochondrial outer membrane by binding to one of a number of mitochondrially located adaptors such
as mitochondrial fission factor (Mff) and mitochondrial fission protein (Fis)1, mitochondrial dynamics
proteins of 49 and 51 kDa (MiD49/51) [2,4]. Mitophagy plays a key role in the life cycle of the mitochon-
drion. Not only does it ensure that damaged mitochondria are neutralized, but physiological mitophagy
can also regulate the number of mitochondria and their turnover [5]. In response to the decorating of the
outer membrane of a depolarized mitochondrion with ubiquitin, an isolation membrane is recruited to
extend round and engulf the mitochondrion, subsequently fusing with a lysosome to acidify and recycle
the contents (Figure 1). Fission is frequently observed as a prelude to mitophagy as well as in the initi-
ation of apoptosis [6]. Fusion generates a mitochondrial reticulum, allowing mitochondrial contents to
mix, preventing the accumulation of mitochondrial DNA mutations as well as promoting enhanced ATP
synthesis through maintenance of respiratory complexes [7].

The metabolic sensor, AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase exist-
ing as a heterotrimer of catalytic (α1/α2) and regulatory subunits (β1/β2 and γ 1/γ 2/γ 3). The 12 possible
heterotrimers exhibit tissue and potentially functional specificity [8], and all can be activated by binding
of AMP/ADP to the AMPKγ subunit and phosphorylation by one of two upstream kinases, liver kinase
B (LKB)1 or calcium/calmodulin-dependent protein kinase kinase (CaMKK)β . AMPK is activated in re-
sponse to depletion of ATP or alterations in intracellular calcium concentrations, and acts to shut down
ATP-consuming, anabolic pathways and promoting ATP-generating, catabolic pathways [9].
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Figure 1. Mitochondrial dynamics

Fission, fusion and mitophagy exist in a delicate balance ensuring efficient ATP production (through fusion) and degradation of

damaged mitochondria (through fission and mitophagy). Up-regulation of biogenesis restores fissioned daughter mitochondria

to full ATP-producing efficiency; NRF1/2, nuclear respiratory factor 1/2; TFAM, mitochondrial transcription factor A. All other

abbreviations are described in the text.

As a monitor of cellular and whole body energy status [10], it is probably unsurprising that a recent elegant study in
Science from Reuben Shaw’s laboratory places AMPK at the heart of the regulation of mitochondrial dynamics. Using
CRISPR modification to delete AMPKα1 and/or AMPKα2 in vitro, they discovered that AMPK was critical to the fis-
sion response induced by mitochondrial poisons targeting the electron transport chain, such as rotenone; an absence
of AMPK complexes resulted in an absence of fission [11]. Interestingly, direct pharmacological activation of AMPK
was sufficient to promote fission, and equally effective regardless of whether AMPKα1 or AMPKα2-containing com-
plexes were expressed. Toyama et al. further identified Mff as a substrate for AMPK phosphorylation, echoing a
similar finding from the Sakamoto’s laboratory where Mff was isolated in a proteomics screen for AMPK substrates
in activated hepatocytes [12]. Mff is located on the outer mitochondrial membrane and acts to recruit Drp1, which
subsequently oligomerizes and constricts the mitochondrion, leading to fission [13]. Toyama et al. [11] showed that
AMPK-mediated phosphorylation of Mff at S155 and S172 is required for Drp1 recruitment, and in vitro studies
of primary hepatocytes and primary cortical neurons imply that this mechanism could be ubiquitous. This study,
therefore, identifies AMPK as the bridge between bioenergetic crisis and the induction of mitochondrial fission.

So is the fission-inducing action of AMPK conferring advantage or disadvantage to a neuron under siege? Reducing
its ATP-producing capability during injury by dividing up mitochondria may not, at first glance, seem like a beneficial
strategy, especially if it leads to the induction of apoptosis. However, fissioned mitochondria have a crucial role in
neurons, as discrete mitochondria are required for axonal transport via microtubules to synaptic terminals, providing
a local ATP source to fuel signal progression [14]. But as mentioned earlier, fission is also required as an initiating step
in the progression of mitophagy, in which damaged mitochondria are cleared away, preventing elevated production
of reactive oxygen species (ROS) as well as contributing to the restoration of efficient Ca2 + -buffering capacity.

Coincidently, among its large library of metabolic substrates, AMPK phosphorylates Unc-51-like kinase 1 (ULK)1,
a regulator of autophagy [15,16],which can itself regulate AMPK activity by phosphorylation [17]. Inhibiting
AMPK-mediated ULK1 phosphorylation leads to accumulation of damaged mitochondria and prevention of mi-
tophagy [15,18]. In addition, AMPK regulates peroxisome proliferator-activated receptor (PPAR)γ co-activator
(PGC)-1α, a master transcriptional activator of mitochondrial biogenesis, although whether this regulation is di-
rect (by phosphorylation) or indirect (via SIRT1 deacetylation) is currently still debated [19,20]. Taken together, it
is tempting to speculate that after metabolic insult, AMPK facilitates mitochondrial health in three distinct ways
(Figure 2). Initially, in response to perturbations of the electron transport chain and subsequent ATP depletion,
AMPK phosphorylates Mff, inducing fission. Concomitantly, activated AMPK can promote mitophagy of these small,
damaged mitochondria through ULK1 phosphorylation as well as restore the daughter mitochondrion to full ATP
production through PGC-1α-mediated mitochondrial biogenesis. The suggested benefits imply a renewal of robust
mitochondrial content within the cell, limiting damage and able to withstand cellular ATP demands. Such a mecha-
nism may be in part responsible for the role of AMPK in pre-conditioning, a paradigm in which a sub-lethal stress
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Figure 2. AMPK regulates mitochondrial health and may mediate pre-conditioning

Superimposed on this continuous mitochondrial life cycle is activated AMPK, which phosphorylates substrates at key points potentially

tailoring a robust cellular response to pathological stimulus.

is evoked prior to the onset of lethal injury (Figure 2). This sub-lethal exposure renders cells more resistant to injury
and pre-activation of AMPK has provided significant survival benefits in a wide range of ischaemic injuries [21–25].

However, while this wholesome scenario (in which AMPK promotes not only the sweeping away of ROS-producing
mitochondria but also the energy efficiency of cell) is tempting, it is worth remembering that both fission and AMPK
activation have independently been reported to mediate neurodegeneration. Fission occurs as an early event in a
number of neurodegenerative diseases including Alzheimer’s disease [26] and Huntington’s disease [27] as well as
occurring after brain trauma such as stroke or neonatal hypoxic-ischaemic injury [28,29], environments in which
AMPK is known to be activated [30–32]. Indeed, inhibitors of post-injury fission, such as mDivi-1 and p110, have
proved successful as neuroprotectants. As Drp1 interacts with a multitude of mitochondrial adaptors, further work
is clearly required to determine differential contributions of these Drp1 binding partners, e.g. Fis1 in Huntington’s
disease [33]. It is also interesting to speculate that these findings might be a matter of timing. Inducing mitophagy too
soon after injury could easily prove injurious if ATP production from damaged mitochondria (albeit limited) is more
valuable to neuronal survival than the concomitant ROS accumulation. In such circumstances, delayed induction of
mitophagy (through inhibition of fission) may well prove more and more advantageous treatment strategy. AMPK
activity is also known to be up-regulated after brain injury in which there is ATP depletion. Not surprisingly then,
the first evidence that AMPK activation may be deleterious was provided in a stroke model where it was found that
pharmacological inhibition of AMPK or ablation of AMPKα2 (but surprisingly not AMPKα1) reduced infarct size
[34,35]. Furthermore, and of specific interest here, recent studies have suggested that AMPK activation can induce
fusion [36], that AMPK acts downstream of Drp1 [37] or even that AMPK directly phosphorylates Drp1 [38], in-
hibiting its capability for scission. These contradictory observations may very well be resolved once the contribution
of the upstream kinases LKB1 and CaMKKβ , AMPK subunit specificity, physiological compared with pathologi-
cal AMPK stimuli (direct or indirect) and chronic compared with acute AMPK activation are deciphered. What is
becoming clear though is that AMPK activation and mitochondrial dynamics are delicately intertwined, and modu-
lating AMPK activity to maintain mitochondrial and, by extension, neuronal health remains an intriguing therapeutic
possibility.
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