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Recently, several study designs incorporating treatment effect assessment in
biomarker-based subpopulations have been proposed. Most statistical method-
ologies for such designs focus on the control of type I error rate and power.
In this paper, we have developed point estimators for clinical trials that use
the two-stage adaptive enrichment threshold design. The design consists of two
stages, where in stage 1, patients are recruited in the full population. Stage 1 out-
come data are then used to perform interim analysis to decide whether the trial
continues to stage 2 with the full population or a subpopulation. The subpopu-
lation is defined based on one of the candidate threshold values of a numerical
predictive biomarker. To estimate treatment effect in the selected subpopulation,
we have derived unbiased estimators, shrinkage estimators, and estimators that
estimate bias and subtract it from the naive estimate. We have recommended
one of the unbiased estimators. However, since none of the estimators domi-
nated in all simulation scenarios based on both bias and mean squared error, an
alternative strategy would be to use a hybrid estimator where the estimator used
depends on the subpopulation selected. This would require a simulation study
of plausible scenarios before the trial.
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1 INTRODUCTION

An area of recent interest in development of new therapies is stratified medicine, which involves using a biomarker to
stratify patients into subgroups to distinguish those with the best likelihood of responding to particular treatments. If a
biomarker has two levels, it is common to refer to one level as biomarker negative and the other as biomarker positive. We
consider predictive biomarkers that allow the possibility of differences in treatment effects in different subpopulations,
that is, a treatment by biomarker interaction effect.1

Advances in genetics have played a key role in stratified medicine, where biomarkers are based on genes. This has
led to targeted therapies, where investigators determine a target subset of patients (subpopulation) and develop a drug
(a targeted therapy) expected to be more efficacious than the control for these patients, and is possibly not beneficial
to others. The target subpopulation may consist of patients with a certain gene (specifically a gene containing a certain
allele) or platform of genes (specifically certain alleles corresponding to multiple genes). However, genes are not the only
characteristics that are used to define a subset of patients. Examples of other biomarkers in the cancer setting include
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the size of tumor, protein level in the blood, and graded scores. When the clinical utility of the biomarker is not very
strong or clear from previous studies, the biomarker stratified design may be used to test the effect of an experimental
treatment. In this design, a trial enrolls patients from the full population but with provision for analyses of outcomes from
the subpopulation.

One methodological challenge in stratified medicine is how to design and analyze efficient clinical trials that incorpo-
rate identification of the subpopulation that will benefit from the experimental treatment. An efficient design in late phase
clinical trials is the two-stage adaptive enrichment design.2 In stage 1, patients are recruited from the full population and
data are used to perform an interim analysis to decide whether, in stage 2, enrollment will be from the full population or
the subpopulation. The final confirmatory analysis uses data from both stages. Although the design is efficient because
stage 1 data are used for subpopulation selection and confirmatory analysis, the latter is complex because of inclusion of
subpopulation selection data.

We consider the case of a continuous (or a graded score) biomarker where the cut-off value to distinguish between
biomarker positive and negative patients is not definite from previous trials. Consequently, several candidate cut-off values
are possible, with trial data used to determine the cut-off value. Simon and Simon2 refer to such a design that includes
threshold determination as an adaptive threshold enrichment design. We give examples of clinical trials where this design
can be used in Section 2.1.

Subpopulation selection based on the treatment effect can be advantageous because using an appropriate rule, the
subgroup is selected in the case where there is apparent benefit in the subgroup and not in its complement (qualitative
interaction) such as was observed by Mok et al.3 The full population is selected if there is apparent benefit in the full
population including when the drug benefits the subgroup and its complement with different magnitudes (quantitative
interaction) such as was observed in Tran et al.4 A subpopulation selection based on a hypothesis test for interaction only
would not be able to distinguish between the two types of interactions.

Previous research that considers analysis of adaptive threshold enrichment trials focuses on control of type I error rate
and power with less emphases on point estimation.2,5 Recently, Li et al6 have derived expressions for the biases of estima-
tors that ignore the adaptation but do not propose point estimators that account for subpopulation selection. Kimani et al7

and Kunzmann et al8 have developed estimators for a setting analogous to a single fixed cut-off value. However, these
estimators do not allow for using stage 1 data to determine the cut-off value in an adaptive threshold enrichment trial.

A setting similar to an adaptive threshold enrichment design is that of treatment selection, where a control is com-
pared to multiple experimental treatments, with stage 1 data used to select the experimental treatment to test further in
stage 2.9-16 Although several point estimators for this setting exist, they cannot be applied directly in adaptive threshold
enrichment clinical trials because the correlation structure of the stage 1 sample means used for selection is different.

In this paper, we develop estimators that account for subpopulation selection following adaptive threshold enrich-
ment trials using the principles that have been used to obtain point estimators that account for treatment selection. Two
unbiased estimators build on the works by Kimani et al7 and Robertson et al.17 Two estimators build on the works by
Whitehead18 and Stallard and Todd10 and involve deriving the bias function to calculate bias and subtracting bias from
the naive estimator. The last is a shrinkage estimator and builds on the works by Hwang19 and Carreras and Brannath.14

2 DESCRIPTION OF THE SETTING AND NAIVE ESTIMATION

2.1 Motivation and notation
A condition where continuous biomarkers are tested and so the adaptive threshold design may be used is depression.
Examples of continuous predictive biomarkers in depression are protein levels in the blood and an electrophysiological
measure.20 While introducing notation, we describe features of clinical trials that are key in our methodology based on
the setting of depression.

Patients' outcomes will be assumed to be normally distributed with a known standard deviation 𝜎. In the context of
depression, Uher et al20 perform simulations to give a guidance of the treatment effect size to be sought when predictive
biomarkers are evaluated. One outcome measure they consider that is widely used in trials is the Hamilton Rating Scale
for Depression (HRSD) score and is usually assumed to be normally distributed. For a trial of a prespecified duration
of treatment, the aim may be to estimate the mean difference (experimental arm minus control arm) in HRSD scores
between two interventions at the final follow-up visit. Based on two trials,21,22 the standard deviation of HRSD scores may
be taken to be 7, that is, 𝜎 = 7.
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We will consider trials that allow stopping for futility at an interim analysis if the observed treatment difference is less
than some value b that we refer to as the futility boundary. The UK NICE guidelines recommend that an intervention for
depression should demonstrate a difference of at least 3 HRSD points20 to be considered superior to its comparator. There-
fore, at an interim analysis, the treatment may be deemed not to warrant further testing if the observed mean difference
< 2 (slightly less than the recommended value of 3), that is, b = 2.

We assume that a single continuous biomarker is used to identify the patients who benefit from a new intervention.
We assume that in regard to biomarker values, there is monotonicity in treatment effect so that a higher biomarker value
leads to a bigger treatment effect or a higher biomarker value leads to a smaller treatment effect. For ease of notation,
we use the latter to develop methodology. Note that, if a higher biomarker value leads to a bigger treatment effect, the
biomarker values can be transformed by multiplying by −1.

Using some biomarker threshold values, the full population (F) is partitioned into distinct partitions. For example, if F
is subdivided into four partitions, the candidate threshold values c1, c2, c3, and c4 are such that patients in partitions 1, 2,
3, and 4 have biomarker values less than c1, between c1 and c2, between c2 and c3, and between c3 and c4, respectively. The
true mean differences in partitions 1 to 4 are denoted by 𝛿1, 𝛿2, 𝛿3, and 𝛿4, respectively. We denote the number of partitions
by K so that, in this case, K = 4. We refer to the parts of F below threshold values c1, c2, c3, and c4 as subpopulations S1,
S2, S3, and S4. Note for K = 4, SK = S4 = F, and S1, S2, S3, and S4 consist of partition 1, partitions 1 and 2, partitions 1
to 3, and partitions 1 to 4, respectively. The true mean differences in S1, S2, S3, and S4 are denoted by 𝜃1, 𝜃2, 𝜃3, and 𝜃4,
respectively. If, as expected, a higher biomarker value leads to a smaller treatment effect, then 𝛿1 ≥ 𝛿2 ≥ 𝛿3 ≥ 𝛿4 and
𝜃1 ≥ 𝜃2 ≥ 𝜃3 ≥ 𝜃4.

We assume that the threshold values c1, … , cK are prespecified. There are different ways for the choice of the thresholds
values. For K = 4, quartiles may be used so that the prevalences for S1 to S4 are p1 = 0.25, p2 = 0.50, p3 = 0.75, and
p4 = 1, respectively. Consequently, the partitions have equal prevalence (0.25) since if we set p0 = 0, pi − pi− 1 = 0.25
(i = 1, … , 4). In some instances, the threshold values are chosen based on aspects such as biological activity so that the
prevalences for partitions are not equal. Figure 1 summarizes the partitioning of F for any K ≥ 3.

2.2 Hypothetical two-stage adaptive threshold enrichment clinical trial
Predictive assessment of continuous biomarkers can been done in single-stage clinical trials.23,24 The alternative is to use
the two-stage adaptive threshold enrichment design, which is more efficient as more resources can be focused on the
subpopulation that is most likely to benefit from the new treatment.24 The design has been used in recent trials with
time-to-event (progression-free survival) outcome data.5,25,26 As we propose in this paper, the design can be similarly used
in trials with normally distributed outcome data. We note in Section 6 that the methods developed in this paper can be
adapted for time-to-event outcome data.

We describe the form of the adaptive threshold enrichment design that we consider based on a hypothetical trial for
depression, where for example protein level is used to partition F into quartiles. In stage 1, the trial recruits n11 = 90,
n12 = 90, n13 = 90, and n1K = n14 = 90 patients in partitions 1 to 4. The number of patients in S1 to S4 are m11 = 90,
m12 = 180, m13 = 270, and m1K = n14 = 360, respectively, since m1i =

∑i
i′=1 n1i′ (i = 1, … , 4). For simplicity, we

assume that, in each partition, the 90 patients are equally split between the control and the experimental treatment. The
outcome of interest is HRSD score and is assumed to be normally distributed with 𝜎 = 7. Let 𝜏2

11 = 4𝜎2∕n11, 𝜏2
12 = 4𝜎2∕n12,

FIGURE 1 Partitioning of the full population. Partitions to the left are expected to have bigger treatment effects. The pairs in the brackets
are true mean differences and prevalences for partitions and candidate subpopulations
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𝜏2
13 = 4𝜎2∕n13, and 𝜏2

14 = 4𝜎2∕n14, the stage 1 sample mean differences in partitions 1 to 4 are X̄11 ∼ N(𝛿1, 𝜏
2
11), X̄12 ∼

N(𝛿2, 𝜏
2
12), X̄13 ∼ N(𝛿2, 𝜏

2
13), and X̄14 ∼ N(𝛿4, 𝜏

2
14), respectively. Let 𝜎2

11 = 4𝜎2∕m11, 𝜎2
12 = 4𝜎2∕m12, 𝜎2

13 = 4𝜎2∕m13,
and 𝜎2

14 = 4𝜎2∕m14, the stage 1 sample means in S1 to S4 are Ȳ11 ∼ N(𝜃1, 𝜎
2
11), Ȳ12 ∼ N(𝜃2, 𝜎

2
12), Ȳ13 ∼ N(𝜃3, 𝜎

2
13), and

Ȳ14 ∼ N(𝜃4, 𝜎
2
14), respectively. If the number of patients in a partition is not equally split between the control and the

experimental treatment, the expressions for 𝜏2
11 to 𝜏2

14 and 𝜎2
11 to 𝜎2

14 are different. Note that, in this hypothetical trial,
𝜏2

11 = · · · = 𝜏2
14 = 𝜎2

11 = 2.178, 𝜎2
12 = 1.089, 𝜎2

13 = 0.726, and 𝜎2
14 = 0.544. The random vectors X̄1 = (X̄11, X̄12, X̄13, X̄14)′ and

Ȳ1 = (Ȳ11, Ȳ12, Ȳ13, Ȳ14)′ have a linear relationship and are multivariate normal with mean vectors 𝜹 = (𝛿1, 𝛿2, 𝛿3, 𝛿4)′ and
𝜽 = (𝜃1, 𝜃2, 𝜃3, 𝜃4)′, respectively (see supplementary material). Hence, selection rules based on observed values for X̄1 can
be restated using the observed values for Ȳ1 and vice versa.

Since a higher biomarker value is expected to lead to lower treatment effect, the largest subpopulation for which the
observed stage 1 sample mean difference (in HRSD scores) is ≥ b is selected to continue to stage 2. If the observed stage 1
sample mean differences in S1, S2, S3, and S4 = F are all less than b, the trial stops for futility. Note that the selected
subpopulation is a random variable determined by observed stage 1 data. We use lower case s(s ∈ {1, … , 4}) as the index
for the “observed” selected subpopulation, with Ss(s ∈ {1, … , 4}) denoting the selected subpopulation. At the end of
stage 2, the primary objective is to obtain an estimate for 𝜃s, using an estimator that has good properties such as being
mean unbiased and having small mean squared error (MSE).

Suppose that the stage 1 observed sample mean differences in partitions 1 to 4 are x̄11 = 3, x̄12 = 2, x̄13 = 0.8, and
x̄14 = 0 so that S1 to S4 stage 1 observed sample mean differences are �̄�11 = 3, �̄�12 = 2.5, �̄�13 = 1.93, and �̄�14 = 1.45.
Subpopulation 2 would be selected, that is, Ss = S2, since it is the largest subpopulation with observed mean difference
of at least 2 points, so that 𝜃s = 𝜃2.

In stage 2, the trial recruits n21 = 120 and n22 = 120 patients in partitions 1 and 2, respectively. The number of patients
in S1 and S2 are m21 = 120 and m22 = 240, respectively, since m2i =

∑i
i′=1 n2i′ (i = 1, … , s). The sample sizes n21 and

n22 and, hence, m21 and m22, should be prespecified in advance for example by fixing the total stage 2 sample size and the
ratio of allocation to the selected partitions. Let 𝜏2

21 = 4𝜎2∕n21 and 𝜏2
22 = 4𝜎2∕n22, the stage 2 sample mean differences

in partitions 1 and 2 are X̄21 ∼ N(𝛿1, 𝜏
2
21) and X̄22 ∼ N(𝛿2, 𝜏

2
22), respectively. Let 𝜎2

21 = 4𝜎2∕m21 and 𝜎2
22 = 4𝜎2∕m22, the

stage 2 sample means in S1 and S2 are Ȳ21 ∼ N(𝜃1, 𝜎
2
21) and Ȳ22 ∼ N(𝜃2, 𝜎

2
22), respectively. For this hypothetical trial,

𝜏2
21 = 𝜏2

22 = 𝜎2
21 = 1.633 and 𝜎2

22 = 0.817. Table 1 summarizes the notation we have introduced for any K ≥ 3. When a
subscript in a notation includes two indices, the first corresponds to stage and the second to partition or subpopulation.

Suppose that, in stage 2, the observed sample mean differences in partitions 1 and 2 are x̄21 = 3.0 and x̄22 = 2.4.
Consequently, the stage 2 observed sample mean difference for S2 is �̄�22 = 2.7. The naive estimate for 𝜃2 is the two-stage
sample mean difference for S2 given by �̂�2,N = (m12�̄�12 + m22�̄�22)∕(m21 + m22) = 2.614. We describe in Section 2.4 that
the naive estimates are biased because they ignore subpopulation selection. The aim of this paper is to develop estimators
that adjust for subpopulation selection. The estimators are based on the selection rule described for the hypothetical trial,
which we state for any K ≥ 3 partitions in the next section, and are conditional on the observed ordering of stage 1 data.

2.3 Selection rule
We derive estimators that are unbiased or with small bias conditional on the following specific selection rule. Other
selection rules are considered in the discussion. Let b denote a futility boundary. The trial stops after stage 1 if �̄�1i < b

TABLE 1 Summary of notation
Stage 1 Partitions Stage 2 Partitions

Measure Subgroup 1 2 … K − 1 K 1 … s∈ {1, … ,K}
Upper threshold c1 c2 … cK− 1 cK c1 … cs

Sample size Partition n11 n12 … n1,K− 1 n1K n21 … n2S
Subpopulation m11 m12 … m1,K− 1 m1K m21 … m2s

Sample variance Partition 𝜏2
11 𝜏2

12 … 𝜏2
1,K−1 𝜏2

1K 𝜏2
21 … 𝜏2

2s
Subpopulation 𝜎2

11 𝜎2
12 … 𝜎2

1,K−1 𝜎2
1K 𝜎2

21 … 𝜎2
2s

True mean Partition 𝛿1 𝛿2 … 𝛿K− 1 𝛿K 𝛿1 … 𝛿s
Subpopulation 𝜃1 𝜃2 … 𝜃K− 1 𝜃K 𝜃1 … 𝜃s

Sample mean Partition X̄11 X̄12 … X̄1,K−1 X̄1K X̄21 … X̄2s
Subpopulation Ȳ11 Ȳ12 … Ȳ1,K−1 Ȳ1K Ȳ21 … Ȳ2s
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for all i (i = 1, … ,K). The trial continues to stage 2 with the full population (SK) if �̄�1K ≥ b and with subpopulation
Ss ∈ {1, … ,K − 1} if �̄�1s ≥ b and �̄�1i < b for all i ∈ {s + 1, … ,K}. Thus, as shown in the supplementary material,
subpopulation Ss(s ∈ {1, … ,K − 1}) is selected if b ≤ �̄�1s < u, where

u = min

{
𝑝s+1b − (𝑝s+1 − 𝑝s)x̄1,s+1

𝑝s
,
𝑝s+2b −

∑s+2
i=s+1(𝑝i − 𝑝i−1)x̄1i

𝑝s
, … ,

𝑝Kb −
∑K

i=s+1(𝑝i − 𝑝i−1)x̄1i

𝑝s

}
.

Equivalently, subpopulation Ss(s ∈ {1, … ,K − 1}) is selected if for all i′ ∈ {1, … , s}, vi′ ≤ x̄1i′ < wi′ , where vi′ =
1

𝑝i′ −𝑝i′−1

(
𝑝s · b −

∑s
i=1
i≠i′
(𝑝i − 𝑝i−1)x̄1i

)
and

wi′ = min
⎧⎪⎨⎪⎩
𝑝s+1b −

∑s+1
i=1
i≠i′

(𝑝i − 𝑝i−1)x̄1i

𝑝i′ − 𝑝i′−1
,

𝑝s+2b −
∑s+2

i=1
i≠i′

(𝑝i − 𝑝i−1)x̄1i

𝑝i′ − 𝑝i′−1
, … ,

𝑝Kb −
∑K

i=1
i≠i′
(𝑝i − 𝑝i−1)x̄1i

𝑝i′ − 𝑝i′−1

⎫⎪⎬⎪⎭ .

2.4 Naive estimation
For the selected subpopulation Ss(s ∈ {1, … ,K}), define ts = m1s∕(m1s + m2s). The naive estimator for 𝜃s that ignores
subpopulation selection is

�̂�s,N = tsȲ1s + (1 − ts)Ȳ2s. (1)

This is biased because the first term in (1) includes data used in the selection. Let 1[Ss] and Prob(Ss) denote the indicator
and probability of selecting Ss, respectively. The conditional bias is

Bias(�̂�s,N) = ts

{∑s
i=1(𝑝i − 𝑝i−1)E

[
X̄1i1[Ss]

]
𝑝s · Prob(Ss)

− 𝜃s

}
. (2)

Using the joint density for X̄1 or Ȳ1 to compute Prob(Ss) and
∑s

i=1(𝑝i − 𝑝i−1)E
[
X̄1i1[Ss]

]
is computationally time con-

suming because the limits of integration for each element in the vector depend on the values of the other elements. To
overcome this, we use Z = (Z1, … ,ZK)′, where Z1 = X̄11 and Zi′ =

∑i′
i=1(𝑝i − 𝑝i−1)X̄1i (i′ = 2, … ,K). The density for Z

and the expressions for Prob(Ss) and
∑s

i=1(𝑝i − 𝑝i−1)E
[
X̄1i1[Ss]

]
are provided in the supplementary material.

3 ESTIMATORS THAT ACCOUNT FOR SUBPOPULATION SELECTION

3.1 Unbiased estimators
3.1.1 General principles of obtaining unbiased estimators
One technique to account for subpopulation selection is Rao-Blackwellization. By the Rao-Blackwell theorem, conditional
on a sufficient and complete statistic based on stages 1 and 2 data, the expected value of a conditionally unbiased estima-
tor from the stage 2 data is the uniformly minimum variance conditional unbiased estimator (UMVCUE). We consider
two methods for obtaining unbiased estimators for 𝜃s: deriving an UMVCUE for 𝜃s directly or, because the relationship
between 𝜽 and 𝜹 is linear, deriving the UMVCUE for each 𝛿i (i = 1, … , s) and using a linear function to obtain an unbi-
ased (though not necessarily minimum variance) estimator for 𝜃s. The latter builds on the work by Kimani et al.7 The
former would involve correlated stage 1 statistics in the vector Ȳ1 and builds on the work by Robertson et al.17

3.1.2 Uniformly minimum variance unbiased estimator following the work of
Robertson et al (2016a)
The UMVCUE for 𝜃s is the expected value of Ȳ2s conditional on a sufficient and complete statistic. As before, let �̂�s,N
denote the naive estimator for 𝜃s given by expression (1) and U be as u in Section 2.3 with x̄1,s+1, … , x̄1K replaced with
X̄1,s+1, … , X̄1K . Following the work of Robertson et al,17 the UMVCUE for 𝜃s is
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�̂�s,UMV = �̂�s,N −
𝜎2

2s√
𝜎2

1s + 𝜎2
2s

𝜙 (𝑓 (b)) − 𝜙 (𝑓 (U))
Φ (𝑓 (b)) − Φ (𝑓 (U))

, (3)

where 𝑓 (b) =
√

𝜎2
1s+𝜎

2
2s

𝜎12
s

(
�̂�s,N − b

)
, 𝑓 (U) =

√
𝜎2

1s+𝜎
2
2s

𝜎12
s

(
�̂�s,N − U

)
, and 𝜙(.) and Φ(.) denote the density and distribution

functions of a standard normal, respectively.

3.1.3 Unbiased estimator following the work of Kimani et al (2015)
The UMVCUE for 𝛿i′ (i′ = 1, … , s) is the expected value of X̄2i′ conditional on a sufficient and complete statistic. Let
𝛿i′,N = (n1i′ X̄1i′ + n2i′ X̄2i′ )∕(n1i′ + n2i′ ) (i′ = 1, … , s) denote the naive estimator for 𝛿i′ . Furthermore, let Vi′ and Wi′ be as
vi′ and wi′ in Section 2.3 with x̄11, … , x̄1K replaced with X̄11, … , X̄1K . Following the work of Kimani et al,7 the UMVCUE
for 𝛿i′ (i′ = 1, … , s) is

𝛿i′,UMVCUE = 𝛿i′,N −
𝜏2

2i′√
𝜏2

1i′ + 𝜏2
2i′

𝜙 (𝑓 (Vi′ )) − 𝜙 (𝑓 (Wi′ ))
Φ (𝑓 (Vi′ )) − Φ (𝑓 (Wi′ ))

,

where 𝑓 (Vi′ ) =
√

𝜏2
1i′
+𝜏2

2i′

𝜏2
1i′

(
𝛿i′,N − Vi′

)
and 𝑓 (Wi′ ) =

√
𝜏2

1i′
+𝜏2

2i′

𝜏2
1i′

(
𝛿i′,N − Wi′

)
. Consequently, the unbiased estimator for 𝜃s is

�̂�s,U =
s∑

i=1

(𝑝i − 𝑝i−1)𝛿i,UMVCUE

𝑝s
. (4)

3.2 Bias-adjusted estimators

3.2.1 An overview of bias-adjusted estimation
Another technique to account for subpopulation selection would be to utilize the fact that we can calculate bias of the
naive estimate using expression (2). The naive estimate is then adjusted by subtracting the bias. However, expression (2)
is a function of 𝜹 (or equivalently 𝜽), the vector of the unknown treatment effects. To overcome this, we estimate bias,
and hence, bias-adjusted estimators obtained in this way are not necessarily mean unbiased.

3.2.2 Single-iteration bias-adjusted estimator
We consider two bias-adjusted estimators. For the first one, the bias is estimated based on the observed sample mean
differences 𝛿i,N =

(
n1ix̄1i + n2ix̄2i1[i≤s]

)
∕
(

n1i + n2i1[i≤s]
)

(i = 1, … ,K). Let �̂� = (𝛿1,N , … , 𝛿K,N)′ and b𝜃s (�̂�) denote the bias
estimator for 𝜃s obtained by replacing 𝜹 with �̂� in expression (2) to get an adjusted estimator for 𝜃s of

�̂�s,SI = �̂�s,MLE − b𝜃s(�̂�). (5)

We will refer to this estimator as the single-iteration bias-adjusted estimator.

3.2.3 Multiple-iteration bias-adjusted estimator
For the second bias-adjusted estimator, the bias is estimated iteratively.10,13,18 Let �̂�i (i = 1, … ,K) denote the naive esti-
mator for 𝜃i and �̂� = (�̂�1, … , �̂�K)′. The biases for the naive estimators depend on 𝜽 and we denote bias for �̂�i (i = 1, … ,K)
by bi(𝜽) and the vector (b1(𝜽), … , bK(𝜽)) by b(𝜽). The second adjusted estimator, which we refer to as multiple-iteration
bias-adjusted estimator is obtained by solving �̃� = �̂� − b(�̃�) iteratively. Using similar notation, alternatively, one could
solve �̃� = �̂� − b(�̃�) and then use the relationship between 𝜽 and 𝜹 to obtain a bias-adjusted estimate for 𝜃s. For the
simulations in Section 5, we solve �̃� = �̂� − b(�̃�) and with an accuracy of 0.001, convergence was achieved in almost
all simulated trials. Suppose that the solution is obtained at iteration r and let bi(�̃�r) denote the bias for 𝛿i when 𝜹 is



KIMANI ET AL. 3185

taken to be �̃�r , then the multiple-iteration adjusted estimate for 𝛿i is 𝛿i,MI = 𝛿i − bi(�̃�r) and the multiple-iteration
bias-adjusted estimator for 𝜃s is

�̂�s,MI =
s∑

i=1

(𝑝i − 𝑝i−1)𝛿i,MI

𝑝s
. (6)

The details of calculating bi(�̃�r) are given in the supplementary materials.

3.3 Shrinkage estimators
3.3.1 General principles for shrinkage estimation
A third technique for accounting for subpopulation selection is to use shrinkage methods. Hwang19 considered the case
of estimating a treatment mean after ordering independent sample means in a single-stage trial for K ≥ 4. A subpop-
ulation selection rule that corresponds to Hwang's case is that of selecting only one partition based on some ordering
of x̄11, … , x̄1K . We initially consider Hwang's selection rule and denote the selected partition by sH(sH ∈ {1, … ,K}).
Hwang assigns a common normal prior distribution N(𝜇, 𝜈2) to each 𝛿i(i = 1, … ,K). The posterior mean for 𝛿sH , its
Bayes estimator, is CX̄1sH + (1 − C)𝜇, where C = 1 − 2𝜎2∕(2𝜎2 + n𝜈2) and n is stage 1 sample size in each inter-
vention in each partition. Replacing the unknown 𝜇 and C with their unbiased estimators Ȳ1K =

∑K
i=1 X̄1𝑗∕K and

Ĉ = 1 − 2(K − 3)𝜎2∕[n
∑K

𝑗=1 (X̄1𝑗 − Ȳ1K)2], respectively, gives the empirical Bayes estimator. Let Ĉ+ = max{0, Ĉ}, Hwang
indicates that a better estimator, which we refer to as the shrinkage estimator, is 𝛿sH ,B1 = Ĉ+X̄1sH + (1 − Ĉ+)Ȳ1K .

Carreras and Brannath14 extended the work to two-stage trials. Define tsH = n1sH∕(n1sH + n2sH ) to be the proportion of
stage 1 data. The two-stage shrinkage estimator for 𝛿sH is 𝛿sH ,B = tsH𝛿sH ,B1 +(1− tsH )X̄2S. For K < 4, Carreras and Brannath
propose defining Ĉ = 1 − 2(K − 1)𝜎2∕[n

∑K
i=1 (X̄1i − Ȳ1K)2]. Using the fact that the estimator of Hwang19 applies for all

parameters 𝛿i (i = 1, … ,K) and that its examination by Carreras and Brannath showed that it works for any rule used
to pick the parameters on which to make inference, in Sections 3.3.2 and 3.3.3, we extend this work to give two shrinkage
estimators for the subpopulation selection rule in Section 2.3.

3.3.2 First shrinkage estimator
As in unbiased estimation, we consider both combining shrinkage estimators for treatment effects in partitions to obtain
an estimator for 𝜃s and directly obtaining a shrinkage estimator for 𝜃s. From Section 3.3.1, the shrinkage estimator for
𝛿i (i = 1, … , s) is 𝛿i,L = ts

[
Ĉ+X̄1i + (1 − Ĉ+)Ȳ1K

]
+ (1 − ts)X̄2i, where Ĉ+ = max{0, Ĉ} and for K ≥ 4, Ĉ = 1 − 2(K −

3)𝜎2∕[n
∑K

𝑗=1 (X̄1𝑗 − Ȳ1K)2], whereas for K < 4, Ĉ = 1 − 2(K − 1)𝜎2∕[n
∑K

𝑗=1 (X̄1𝑗 − Ȳ1K)2]. The first shrinkage estimator
for 𝜃s is

�̂�s,L1 =
s∑

i=1

(𝑝i − 𝑝i−1)𝛿i,L

𝑝s
. (7)

3.3.3 Second shrinkage estimator
The second shrinkage estimator, which we denote by �̂�s,L2 , involves using the entire parameter vector 𝜽. A multivariate
normal prior for 𝜽 is specified and updated with the data Ȳ1. The resulting posterior is multivariate normal with nonzero
covariance, and hence, the iterative procedure of Morris27 and Brüncker et al28 is utilized to obtain �̂�s,L2 (see supplementary
material).

4 WORKED EXAMPLE

We use data from the hypothetical trial for depression in Section 2.2 to demonstrate how to compute the naive (�̂�2,N ),
the UMVCUE (�̂�2,UMV ), the unbiased (�̂�2,U ), the single-iteration bias-adjusted (�̂�2,SI), the multiple-iteration bias-adjusted
(�̂�2,MI), the first shrinkage (�̂�2,L1 ), and the second shrinkage (�̂�2,L2 ) estimates. We also use the example to demonstrate
differences among the various estimates in a single trial. The data and the various estimates are summarized in Table 2.
The explicit computations for the various estimates and the R program used are provided in the supplementary material.
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TABLE 2 Worked example data and estimates
Data and Summary Measures

Stage 1 Partitions Stage 2 Partitions Estimating 𝜽2
Measure Subgroup 1 2 3 4 1 s = 2 Estimator Estimate

Sample Partition n11 = 90 n12 = 90 n13 = 90 n14 = 90 n21 = 120 n22 = 120 �̂�2,N 2.614
size Subgroup m11 = 90 m12 = 180 m13 = 270 m14 = 360 m21 = 120 m22 = 240 �̂�2,UMV 2.839

Sample Partition 𝜏2
11 = 2.178 𝜏2

12 = 2.178 𝜏2
13 = 2.178 𝜏2

14 = 2.178 𝜏2
21 = 1.633 𝜏2

22 = 1.633 �̂�2,U 2.965
variance Subgroup 𝜎2

11 = 2.178 𝜎2
12 = 1.089 𝜎2

13 = 0.726 𝜎2
14 = 0.544 𝜎2

21 = 1.633 𝜎2
22 = 0.817 �̂�2,SI 2.633

Sample Partition x̄11 = 3 x̄12 = 2 x̄13 = 0.8 x̄14 = 0 x̄21 = 3 x̄22 = 2.4 �̂�2,MI 2.666
mean Subgroup �̄�11 = 3 �̄�12 = 2.5 �̄�13 = 1.93 �̄�14 = 1.45 �̄�21 = 3 �̄�22 = 2.7 �̂�2,L1

2.164
�̂�2,L2

2.194

Here, we only give explicit details of computing �̂�2,UMV and �̂�2,U as they are easier to compute, and since based on the
simulations in the next section, we recommend �̂�2,UMV .

For the UMVCUE (�̂�2,UMV ) given by expression (3), the first term �̂�s,N = �̂�2,N = 2.614. Furthermore, 𝜎2
1s = 𝜎2

12 = 1.089

and 𝜎2
2s = 𝜎2

22 = 0.817 so that 𝜎2
2s√

𝜎2
1s+𝜎

2
2s

= 𝜎2
22√

𝜎2
12+𝜎

2
22

= 0.592 and
√

𝜎2
1s+𝜎

2
2s

𝜎2
1s

=
√

𝜎2
12+𝜎

2
22

𝜎2
12

= 1.268. Since ( pi − pi− 1) = 0.25 for

all i = 1, … , 4, then u (the observed value for U) is given by

u = min

{
𝑝3b − (𝑝3 − 𝑝2)x̄13

𝑝2
,
𝑝4b −

∑4
i=3(𝑝i − 𝑝i−1)x̄1i

𝑝2

}
= min

{
(0.75 × 2) − (0.25 × 0.8)

0.5
,

2 − [0.25 × (0.8 + 0)]
0.5

}
= 2.6.

Note that f (b) = 1.268 × (2.614 − 2) = 0.779 and f (u) = 1.268 × (2.614 − 2.6) = 0.018, so that substituting into
expression (3), �̂�2,UMV = 2.839.

For the unbiased estimator (�̂�2,U ) given by expression (4), we make the following calculations. The naive estimates
for partitions 1 and 2 are 𝛿1,N = [(90 × 3) + (120 × 3)]∕210 = 3 and 𝛿2,N = [(90 × 2) + (120 × 2.4)]∕210 = 2.229,

respectively. Note that 𝜏2
21√

𝜏2
11+𝜏

2
21

= 𝜏2
22√

𝜏2
21+𝜏

2
22

= 0.837 and
√

𝜏2
11+𝜏

2
21

𝜏2
11

=
√

𝜏2
21+𝜏

2
22

𝜏2
21

= 0.896. Since pi − pi− 1 = 0.25 (i = 1, … , 4),

v1 = 1
0.25

(
𝑝2b − 0.25

∑2
i=1
i≠1

x̄1i

)
= 4 × [(0.5 × 0.2) − (0.25 × 2)] = 2 and v2 = 1

0.25

(
𝑝2b − 0.25

∑2
i=1
i≠2

x̄1i

)
= 4 × [(0.5 ×

0.2) − (0.25 × 3)] = 1, respectively. For partition 1,

w1 = min
⎧⎪⎨⎪⎩
𝑝3b − 0.25

∑3
i=1
i≠1

x̄1i

0.25
,

𝑝4b − 0.25
∑4

i=1
i≠1

x̄1i

0.25

⎫⎪⎬⎪⎭
= min

{
(0.75 × 2) − 0.25 × (2 + 0.8)

0.25
,

2 − 0.25 × (2 + 0.8 + 0)
0.25

}
= 3.2.

Similarly, for partition 2, w2 = 2.2. Then, for partition 1, f (v1) = 0.896 × (3 − 2) = 0.896 and f (w1) = 0.896 × (3 − 3.2) =
−0.179, and for partition 2, f (w2) = 0.896 × (2.229 − 1) = 1.101 and f (w2) = 0.896 × (2.229 − 2.2) = 0.026. Now,
we have all components required to obtain UMVCUEs for the effects in partitions 1 and 2, which give 𝛿1,UMVCUE = 3.272
and 𝛿2,UMVCUE = 2.657, respectively. The unbiased estimate is the weighted sum of the UMVCUEs in the partitions giving
�̂�2,U = 2.965.

The estimates �̂�2,UMV , �̂�2,U , �̂�2,SI , and �̂�2,MI are greater than �̂�2,N (see Table 2). This may be explained by the observation
in Section 5.2 that, in some scenarios, the naive estimator is negatively biased. The estimate �̂�2,SI is slightly smaller than
�̂�2,MI . Again, this may be explained by an observation in Section 5.2 that, for all scenarios in the simulation study, on
average, the single-iteration bias-adjusted estimator gives a smaller estimate than the multiple-iteration estimator.
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5 SIMULATIONS TO COMPARE THE VARIOUS ESTIMATORS

5.1 Simulations setting
To evaluate the properties of the various estimators, we conducted simulations with 𝜎2 = 1 and b = 0. We initially
consider the case of K = 4 and pi − pi− 1 = 0.25 (i = 1, … , 4). In all simulations, if the trial continues to stage 2, the
combined stages 1 and 2 sample size is set to be 800. For example, if the stage 1 sample size is 400 patients, the stage 2
sample size is 400. The available patients in stage 1 are equally split among the four partitions and treatment arms. For
example, with 400 patients in stage 1, in each partition, 50 patients are randomly allocated to each of the control and
experimental treatment. Similarly, the patients available for testing in stage 2 are equally split among the partitions that
continue to stage 2 and among the treatment arms. Hence, with 400 patients available in stage 2, if F is selected, the patient
allocation in stage 2 is as in stage 1 with 400 patients. If S2 is selected so that two partitions are tested in stage 2, in each
partition, 100 patients are randomly allocated to each of the control and experimental treatment. We perform simulations
for three cases of stage 1 sample size (200, 400, and 600 patients). Taking the combined stages 1 and 2 to be 800 patients
is justified in the supplementary material.

We consider seven scenarios with true treatment effects as summarized in Table 3. The selection rule and estimators
developed are aimed at identifying predictive effects, but since we are estimating mean differences, the methods are valid
with or without prognostic effects. If the biomarker has no predictive effect but has a prognostic effect, we are in a scenario
of equal treatment effects in all partitions. Scenarios 1, 3, and 7 could be such cases. If there are prognostic and predictive
effects, we are in a scenario of unequal treatment effects in partitions. Scenarios 2, 4, 5, and 6 could be such cases. In
Scenarios 1 to 3, the right decision is to continue to stage 2 with F, but with decreasing probability of selecting F. The right
decisions for Scenarios 4 to 6 are to continue with S3, S2, and S1, respectively. The ideal decision for Scenario 7 is to stop
at stage 1. The probabilities for various decisions for different scenarios when stage 1 includes 200 patients (25 in each
treatment arm in each partition) are also given in Table 3. These have been calculated using expressions in Section 2.4 and
in the supplementary material. As expected, the probability of stopping the trial at stage 1 (last column) increases as the
treatment effects in partitions become less than b in more partitions (from 0.007 for Scenario 1 to 0.482 for Scenario 7).
In each of Scenarios 4 to 6, the probability of continuing with F is substantially larger than the probability of making the
right decision, demonstrating that, in some configurations, decision making is challenging. In Section 5.2.1, simulations
show that incorrect decisions tend to be made when observed means are substantially different from the true means and
hence lead to bias.

Table 4 gives probabilities of various decisions when the stage 1 sample sizes are 400 and 600. For scenario 3, where
treatment effects are equal in all partitions and equal to the futility boundary, the probabilities of various decisions are
approximately equal for different stage 1 sample sizes. For the other scenarios, by comparing the probabilities in bold, the
probability of making a correct decision increases with stage 1 sample size.

For each of the seven scenarios and three different stage 1 sample sizes, we simulated stage 1 data for N = 1 000 000
trials. For each trial, the subpopulation with the largest simulated sample mean difference ≥ 0 continues to stage 2. If
no subpopulation fulfills this, the trial stops. We consider estimation conditional on continuing to stage 2 and so bias
and MSE for each estimator are evaluated based on simulated trials that continue to stage 2. Using �̂�s,SI for illustration,
for each s(s = 1, … , 4), bias and MSE are calculated as bias(�̂�s,SI) =

∑N
i=1(�̂�i,SI − 𝜃i)1[i=s]∕

∑N
i=1 1[i=s] and MSE(�̂�s,SI) =∑N

i=1 (�̂�i,SI − 𝜃i)21[i=s]∕
∑N

i=1 1[i=s].

TABLE 3 Treatment effects and probabilities of different decisions for the various scenarios in the simulation study
(probabilities of correct decisions are in bold)

Treatment Effect Probability of a Decision (n1 = 200)
Scenario 𝜹1 𝜹2 𝜹3 𝜹4 Ideal Selection F S3 S2 S1 Stop

1 0.3 0.3 0.3 0.3 F 0.983 0.005 0.003 0.002 0.007
2 0.2 0.1 0.1 0.1 F 0.812 0.049 0.035 0.034 0.070
3 0.0 0.0 0.0 0.0 F 0.500 0.083 0.070 0.073 0.274
4 0.1 0.0 0.0 −0.2 S3 0.430 0.179 0.093 0.093 0.205
5 0.1 0.0 −0.2 −0.1 S2 0.362 0.112 0.179 0.115 0.232
6 0.1 −0.2 −0.1 −0.1 S1 0.298 0.098 0.104 0.214 0.286
7 −0.1 −0.1 −0.1 −0.1 Stop 0.240 0.083 0.087 0.108 0.482
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TABLE 4 Probabilities of different decisions for different stage 1 sample sizes for various scenarios in the simulation study (probabilities
of correct decisions are in bold)

Ideal Probability of a Decision (n1 = 400) Probability of a Decision (n1 = 600)
Scenario Selection F S3 S2 S1 Stop F S3 S2 S1 Stop

1 F 0.9987 0.0004 0.0002 0.0002 0.0005 0.99988 0.00004 0.00002 0.00002 0.00004
2 F 0.8944 0.0312 0.0212 0.0200 0.0332 0.93711 0.02033 0.01326 0.01213 0.01717
3 F 0.5000 0.0833 0.0698 0.0734 0.2735 0.50000 0.08333 0.06981 0.07342 0.27344
4 S3 0.4013 0.2286 0.0983 0.0971 0.1747 0.37973 0.26859 0.10095 0.09838 0.15235
5 S2 0.3085 0.1220 0.2386 0.1261 0.2048 0.27015 0.12853 0.28802 0.13147 0.18183
6 S1 0.2266 0.0977 0.1156 0.2939 0.2662 0.17916 0.09454 0.12250 0.35893 0.24487
7 Stop 0.1587 0.0724 0.0842 0.1157 0.5690 0.11034 0.06193 0.07895 0.11756 0.63122

5.2 Simulation results
5.2.1 Comparing biases for the various estimators
Figure 2 summarizes biases when the stage 1 sample size is 200 (top plots) and 600 patients (bottom plots). Plots for the
case where the stage 1 sample size is 400 patients are provided in the supplementary material. Plots in Columns 1 to 4
correspond to the cases of selecting F, S3, S2, and S1, respectively. The y-axes correspond to biases divided by approximate
standard errors (SEs). The approximate SE =

√
4∕(m1s + m2s) and so SEs are only equal when F is selected (Column 1).

Although SEs are not equal, we will later observe from the boxplots of the estimates that the trend for bias is the same
when bias is not divided by SE. The x-axes correspond to the seven scenarios. As per the legend, biases for different
estimators are distinguished by different line types. Estimators �̂�s,UMV and �̂�s,U are not included in Figure 2 because they
are mean unbiased. For Scenario 1, the probabilities for selecting S3, S2, and S1 are low and so simulations results are
highly variable when S3, S2, or S1 is selected but this does not change the general findings in this paper.

We first describe the results for the case where the stage 1 sample size is 200 (top row). When F is selected, the naive
estimator (�̂�s,N ) and the first shrinkage estimator (�̂�s,L1 ) are the same and correspond to the line showing the largest biases.
Focusing on the naive estimator, the bias when F is selected (Column 1) is positive in all scenarios. For scenarios where
the right decision is to continue with F (Scenarios 1 to 3, see Table 3), bias when F is selected is attributable to the futil-
ity rule with the bias negligible when the effect in F is substantially larger than the futility boundary (Scenario 1). When
the right decision is not to continue with F (Scenarios 4 to 7) but F is selected, the impact of selection and futility on
bias would increase and consequently give a larger bias. Still focusing on the top row, when S3 is selected (Column 2),
the naive estimator for 𝜃3 is negatively biased for some scenarios and positively biased for other scenarios. The expla-
nation for this pattern is given in the supplementary material. Comparing the bias when F, S3, S2, and S1 are selected
(Columns 1 to 4), the bias is smallest when S1 is selected. This can be attributed partly to the enrichment, where the
stage 2 sample size is fixed regardless of the size of the population selected so that when S1 is selected, proportionally,
there are more unbiased stage 2 data to estimate 𝜃1 compared to when F, S3, or S2 is selected. In summary, note that, in
some scenarios, the bias of the naive estimator is substantial and so it is essential to use an estimator that corrects for
subpopulation selection.

Still focusing on the top row, when F is selected, practically, the single-iteration bias corrected estimator �̂�s,SI is mean
unbiased, especially for Scenarios 1 to 3 where the correct decision is to select F. When S3 is selected, �̂�s,SI almost eradicates
bias in Scenarios 3 to 7 and is better than the naive estimator in Scenarios 1 and 2. When S2 or S1 is selected, �̂�s,SI eradicates
almost all bias in Scenarios 2 to 7 but does not do so in Scenario 1. In all scenarios, the line for the multiple-iteration
bias-adjusted estimator (�̂�s,MI) is always slightly above that of �̂�s,SI . Hence, comparing �̂�s,SI and �̂�s,MI , when �̂�s,SI is negatively
biased, �̂�s,MI is preferable, whereas �̂�s,SI is preferable when it is positively biased.

Comparing biases for the naive estimator for different stage 1 sample sizes (top versus bottom plots), as also indi-
cated by expression (2), the bias increases with the proportion of stage 1 data. Increase in bias is also seen for both the
single-iteration (�̂�s,SI) and multiple-iteration (�̂�s,MI) bias-adjusted estimators. From the bottom row, �̂�s,SI and �̂�s,MI perform
worst when some partitions that should be dropped at stage 1 continue to stage 2 or when some partitions that should
continue to stage 2 are dropped. As before, the line for �̂�s,MI is above that of �̂�s,SI with the distances between the lines
increasing with stage 1 sample size.

The pattern of the shrinkage estimators is best understood by considering all results in Figure 2. In all cases, the line
for the first shrinkage estimator (�̂�s,L1 ) overlaps or is above that of the second shrinkage estimator (�̂�s,L2 ). Estimator �̂�s,L1
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FIGURE 2 Biases in units of approximate standard error for different configurations. The dotted line is the point of no bias. Other line
types correspond to different estimators. SE, standard error

performs similar to or better than �̂�s,L2 when the selected subpopulation consists of partitions that should continue to
stage 2 such as when F is selected in Scenarios 1 to 3 and such as when S3 is selected in Scenarios 1 to 4. Estimator �̂�s,L2

performs better than �̂�s,L1 when the selected subpopulation consists of partitions that should not continue to stage 2 such
as when F is selected in Scenarios 4 to 7 and such as when S3 is selected in Scenarios 5 to 7.

In almost all scenarios, the two shrinkage estimators perform worse than the other estimators that account for adap-
tation. One reason for this may be the fact that the shrinkage estimators do not account for stopping for futility. When
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F is selected, the naive estimator is the same as the first shrinkage estimator. This is because the stage 1 estimate in
partition i is Ĉ+X̄1i + (1 − Ĉ+)Ȳ1K so that the shrinkage estimator shrinks to the effect in the full population, that is, to
Ȳ1K = (X̄11 + · · · + X̄1K)∕K. A reasonable alternative would be to use a weighted mean of Ȳ11, Ȳ12, … , Ȳ1K . For example,
if we shrink to (Ȳ11 + · · · + Ȳ1K)∕K, in terms of sample means in partitions, we are shrinking to a weighted sum such that
for i < i′, X̄1i has more weight than X̄1i′ . In such a case, shrinkage estimators will be closer to the naive estimators when
fewer partitions are selected (see additional simulations in the supplementary material).

5.2.2 Comparing MSEs for the various estimators
Mean squared errors for the various estimators are given in Figure 3. The y-axes are root mean squares (RMSE =

√
MSE)

divided by approximate SEs. The best shrinkage estimator in terms of bias (either �̂�s,L1 or �̂�s,L2 depending on the scenario)
has smaller or practically the same MSEs as the naive estimator. Hence, the best shrinkage estimators may be considered
to be better than the naive estimator in terms of MSE. The challenge, however, is determining the best shrinkage estimator
since the true treatment means are unknown.

Since estimators that extend the works of Kimani et al (�̂�s,U ) and of Robertson et al (�̂�s,UMV ) are mean unbiased, their
MSEs are variances. When S1 is selected, by derivation, the two estimators are the same and, hence, have equal MSE.
For any other selection, as expected, �̂�s,UMV has smaller MSE than �̂�s,U . The differences increase with stage 1 sample size
(top versus bottom plots) and the size of the selected subpopulation (right to left panels). The MSEs of �̂�s,U and �̂�s,UMV are
mostly larger than the MSEs for all the other estimators with the differences substantial when selection is performed later
in the trial.

In general, the MSEs for the single-iteration (�̂�s,SI) and multiple-iteration (�̂�s,MI) bias-adjusted estimators are practically
the same. Hence, since their biases are also similar, the two estimators are approximately equivalent and so it is sufficient
to compare one of them to the other estimators. The MSE for �̂�s,SI is larger than that of the naive estimator (�̂�s,N ) in most
cases while it is always smaller than the MSEs for the unbiased estimators (�̂�s,U and �̂�s,UMV ).

5.2.3 Comparing the estimators using both bias and MSE
Comparing the shrinkage estimators (�̂�s,L1 and �̂�s,L2 ) to the naive estimator (�̂�s,N ), we prefer �̂�s,N . This is because although
a shrinkage estimator sometimes has a smaller MSE, it can have substantially higher bias than �̂�s,N (for example, compare
Columns 4 in Figures 2 and 3).

Comparing the single-iteration bias-adjusted estimator (�̂�s,SI) and the naive estimator (�̂�s,N ), when F is selected, �̂�s,SI
is preferable as it reduces bias substantially and has smaller MSE. However, when S1 is selected, �̂�s,N is better as it has
smaller MSE and it does not differ from �̂�s,SI in terms of bias. When S3 or S2 is selected, �̂�s,N is better when bias is not
substantial (Scenarios 3 and 4), whereas for Scenarios 5 to 7, �̂�s,SI is better as it reduces bias and its MSE is better or only
slightly higher than that of �̂�s,N . Overall, we consider �̂�s,SI as a better estimator than �̂�s,N as it performs better in cases with
substantial bias.

When F is selected, the bias of the naive estimator (�̂�s,N ) is substantial and compared to the UMVCUE (�̂�s,UMV ), we
prefer the latter since the difference in RMSE between the two estimators is smaller than the bias eradicated. When S1 is
selected, we would also recommend �̂�s,UMV over �̂�s,N as the former is mean unbiased in all scenarios, with the only case
where it is not clearly superior due to high RMSE being when n1 = 600. The conclusion when S3 or S2 is selected is the
same as when S1 is selected, that is, �̂�s,UMV is better than �̂�s,N .

Comparing the single-iteration bias-adjusted estimator �̂�s,SI to the UMVCUE �̂�s,UMV , we recommend the latter since,
when F is selected, �̂�s,SI has substantial bias that is larger than the difference in RMSE between it and �̂�s,UMV . In addition,
when S1 is selected, the difference in RMSE between the two estimators is smaller than the bias of �̂�s,SI . Consequently,
based on the performance across the scenarios in the simulation study, we recommend �̂�s,UMV when an adaptive threshold
enrichment design is used.

For a more detailed comparison of the estimators, Figures 4 and 5 give boxplots of simulated estimates for Scenarios 1
(top plots), 4 (middle plots), and 6 (bottom plots) described in Table 3 when F and S3 are selected. The boxplots emphasize
the findings summarized above. As an example, when n1 = 600 (Figure 5), for Scenario 6 (bottom left panel), almost all
naive estimates are above the true value and �̂�s,UMV performs well in that case. From the left panels, we note the unbiased
estimators (�̂�s,UMV and �̂�s,U ) have substantially higher variances compared to the other estimators.
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5.2.4 Summary findings and recommendations from the simulation study
The bias of the naive estimator can be substantial, and so it is essential to use an estimator that corrects for the deci-
sion made using stage 1 data. We recommend the estimator that follows the work of Robertson et al (�̂�s,UMV ) since
it is mean unbiased. Although it has larger MSE than some estimators, the bias eradicated in most cases was larger
than the difference in RMSEs. Although the simulation study was based on four partitions and specific treatment effect

n
1=

20
0;

 n
2=

60
0

n
1=

60
0;

 n
2=

20
0

M
S

E
/S

E
M

S
E

/S
E

F selected S3 selected S2 selected S1 selected

^
s,N

^
s,U

^
s,UMV

^
s,SI

^
s,L1

^
s,MI

^
s,L2

       

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

       

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

       

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

       

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

       

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

4=0.3

3=0.3

2=0.3

1=0.3

0.1

0.1

0.1

0.2

0

0

0

0

−0.2

0

0

0.1

−0.1

−0.2

0

0.1

−0.1

−0.1

−0.2

0.1

−0.1

−0.1

−0.1

−0.1

       

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

4=0.3

3=0.3

2=0.3

1=0.3

0.1

0.1

0.1

0.2

0

0

0

0

−0.2

0

0

0.1

−0.1

−0.2

0

0.1

−0.1

−0.1

−0.2

0.1

−0.1

−0.1

−0.1

−0.1

       

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

4=0.3

3=0.3

2=0.3

1=0.3

0.1

0.1

0.1

0.2

0

0

0

0

−0.2

0

0

0.1

−0.1

−0.2

0

0.1

−0.1

−0.1

−0.2

0.1

−0.1

−0.1

−0.1

−0.1

       

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

4=0.3

3=0.3

2=0.3

1=0.3

0.1

0.1

0.1

0.2

0

0

0

0

−0.2

0

0

0.1

−0.1

−0.2

0

0.1

−0.1

−0.1

−0.2

0.1

−0.1

−0.1

−0.1

−0.1

FIGURE 3 Root mean squares in units of approximate standard error for different configurations. Different line types correspond to
different estimators. MSE, mean squared error; SE, standard error
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Scenarios 1 (top panels), 4 (middle panels), and 6 (bottom panels). The dashed lines correspond to the true means in the selected subpopulation

scenarios, we expect similar findings for other configurations (that is, more candidate partitions and/or different effect
sizes). Simulations for the case of 8 partitions are in the supplementary material.

We have recommended one estimator for all scenarios. An alternative is a hybrid estimator where the recommended
estimator (�̂�s,SI or �̂�s,UMV ) depends on the subpopulation selected. This is suitable if investigators are willing to sacrifice
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unbiasedness for more precision. In this case, before the trial, a simulation study based on plausible scenarios would be
required to compare bias and MSE conditional on the selected subpopulation.
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6 DISCUSSION

Acknowledging that different patients may require different care has led to trial designs that incorporate assessment of
treatment effects in different subsets of the population. Most statistical methodologies for such designs focus on hypothesis
testing.2,5,24,26,29-33 In this paper, we have considered point estimation following an adaptive threshold enrichment clinical
trial. We have assessed bias for the naive estimator when different subpopulations are selected. Depending on the scenario,
the bias of the naive estimator of the treatment effect in the selected subpopulation is substantial and can be negative or
positive. There is thus a need for new estimators. Building on estimators that have been proposed for treatment selection,
we have derived several estimators that account for subpopulation selection. By derivation, two estimators are mean
unbiased. In this paper, we have recommended the best among these two, that is, the UMVCUE. An alternative is a
hybrid estimator where different estimators are recommended based on the selected subpopulation. This would require a
simulation study before the trial and is suitable if investigators can accept some unbiasedness for a more precise estimator.

We have considered a specific selection rule but the proposed estimators can be modified for other selection rules. For
example, it may be desired that different subpopulations have different futility boundaries. Futility boundaries may be
based on factors such as subpopulation prevalence, and sponsor and public health gains.34 Another factor is safety where
the futility boundary may be chosen to reflect investigators' willingness to accept moderate efficacy if the new treatment
is substantially safer than the control. The selection rule we have used specifies that a higher biomarker value leads to a
smaller treatment effect. If this is a misspecification of the relationship between the biomarker and treatment effect, the
unbiased estimators will remain so because we condition on the selection rule. However, the probability of making the
right decision will be low and we anticipate that the naive estimator will have more bias and that the unbiased estimators
will have higher MSE.

In the derivations, we have not required the prevalences in different partitions to be equal. If the biomarker values are
approximately continuous, then it is reasonable to subdivide the full population into equal partitions as we have done in
the example and the simulations. Other numerical biomarker values may be discrete with few possible values, leading to
partitions with varying sizes.

We have assumed the number of patients in each partition, and hence prevalence, is known. For the case of two par-
titions and a fixed cut-off value, taking the stage 1 number of patients in a partition to have a binomial distribution,
Kimani et al7 showed that using stage 1 prevalence estimates in the expressions for the unbiased estimators provides unbi-
ased estimates for the treatment effects. This extends to the case of more than two partitions, where numbers of patients
in partitions are taken to have a multinomial distribution. The proof is based on the fact that the estimator in a partition is
unbiased conditional on the number of patients in an interval and that the proportion of patients in a partition is unbiased
for the prevalence in the partition. The proof for the case of estimating the cut-off values using stage 1 data is similar.

Conditional on continuing to stage 2, we have derived estimators for the effect in the selected subpopulation. Continuing
to stage 2 is necessary for the unbiased estimators. This is not the case for the other estimators as they involve obtaining
stage 1 estimates in all partitions that correct for the subpopulation selection and then combine them with the stage 2
unbiased estimates. Hence, estimates for effects in the dropped partitions that correct for subpopulation selection can be
obtained using the shrinkage and bias-adjusted estimators. However, they are not necessarily mean unbiased.

Methods developed for normally distributed data following treatment selection have been adapted for time-to-event
data.28 Even after assuming asymptotic normality of the log hazard ratio, some of the estimators we have derived such as
the UMVCUE may not be valid for time-to-event data. For example, if there is a quantitative interaction with hazard ratios
in different partitions being unequal, a model that accounts for this is required. In this case, obtaining separate estimates
for each partition is the valid approach.

Finally, since in all simulations, the combined stages 1 and 2 sample size was 800, for the different stage 1 sample
sizes considered, there would be no savings or losses in terms of the cost of treating patients. The saving/loss is only
made in terms of costs associated with biomarker testing. Hence, the case for performing subpopulation selection with a
small proportion of patients can be justified if the biomarker is expensive, leading to savings if F is selected. The case for
performing subpopulation selection with a large proportion of patients is justifiable if the biomarker is not expensive. In
this case, the resources loss is not substantial if F is selected and yet, if only a part of the population will benefit, there
is a higher probability of making the right decision that may improve power. The setting of fixed total sample size is
sometimes referred to as enrichment because if some partitions are dropped in stage 2, the number of patients recruited
from partitions in stage 2 is higher than if more partitions were selected. To save money on treatment costs or reduce the
total sample size, subpopulation selection could be performed early, with no enrichment in stage 2. With no enrichment,
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the number of patients in a partition in stage 2 is fixed. The statistical properties of the estimators for the setting with no
enrichment can be evaluated as in the case of enrichment.
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