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Abstract

Original Article

IntroductIon

Papillary thyroid carcinoma (PTC) constitutes approximately 
84% of all thyroid malignancies.[1] There has been a substantial 
increase in the incidence of PTC, in part due to early detection 
of mainly microcarcinomas and also more relaxed histologic 
criteria for detection of follicular variant of papillary thyroid 
carcinoma (FVPTC). Histologic diagnosis of FVPTC is based 
on detection of nuclear features of PTC, which are frequently 
less evident than classic PTC (cPTC). Papillary structures 
and psammomatous calcifications are absent, and nuclear 

pseudoinclusions are rare.[2] Until recently, the encapsulated 
FVPTC without invasion (EFVPTC) represented up to 
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20% of all PTCs.[3] Encapsulated or partially encapsulated/
well-circumscribed FVPTCs with no associated capsular 
penetration or lymphovascular invasion have virtually no 
metastatic potential or risk of recurrence. Moreover, although 
there is some variability in results, in most cases, FVPTC 
harbors RAS mutations and PAX8/PPARG rearrangements 
and lacks BRAF mutations.[4,5] This cancer has recently been 
reclassified as a neoplasm of low malignant potential and is 
now termed “noninvasive follicular thyroid neoplasm with 
papillary-like nuclear features” (NIFTP).[6] This change will 
result in a corresponding reduction in the number of thyroid 
malignancies. Before the introduction of NIFTP, many of these 
patients were treated with total thyroidectomy followed by 
radioactive iodine therapy. Now, these patients are spared the 
anxiety of cancer diagnosis, and they will be managed more 
conservatively, requiring only lobectomy without the need for 
radioactive iodine therapy.[7]

Fine‑needle aspiration (FNA) is the most essential and reliable 
procedure for preoperative evaluation of thyroid nodules. The 
cytopathologists follow the Bethesda system for reporting 
thyroid cytopathology (TBS). One important objective of TBS is 
to link each diagnostic category with a risk of malignancy (ROM) 
and an evidence-based clinical management guideline.[8] NIFTP 
and tumors historically classified as FVPTC do not typically 
exhibit the full range of cytologic features associated with cPTC 
and as a result have tended to be classified in the indeterminate 
categories of TBS (i.e., atypia of undetermined significance/
follicular lesion of undetermined significance [category III, 
AUS/FLUS], suspicious for a follicular neoplasm/follicular 
neoplasm [category IV, SFN/FN], and suspicious for 
malignancy [category V]).[9] The two studies done by Strickland 
et al. and Faquin et al.[10-12] showed a significant decrease in 
the ROM in the indeterminate categories of TBS after this 
new classification with very little change in non‑diagnostic, 
benign, and positive for malignancy categories (categories I, II, 
and VI). Therefore, this reclassification will change the ROM 
associated with some of TBS diagnostic categories and to triage 
patients with NIFTP to more conservative clinical management, 
cytopathologists need to distinguish NIFTP/FVPTC from 
cPTC. Recent studies show various cytomorphological features 
that can assist in the cytologic differentiation of cPTC from 
EFVPTC (previously) and NIFTP. Howitt et al.[13] examined 
a cohort of 39 cases including 11 EFVPTCs and 28 cPTCs. 
Cases of cPTC were significantly more frequently associated 
with a predominance of tumor sheets, papillae, and nuclear 
pseudoinclusions compared with EFVPTCs. Maletta et al. 
also showed that although the most common diagnosis that 
is given in the cases of NIFTP is “follicular neoplasm,” a 
number of these cases do have nuclear features of PTC and 
these nuclear features are significantly different from those 
of benign follicular tumors and hyperplastic nodules, but not 
from those of invasive FVPTC. Therefore, the presence of PTC 
nuclear features in a follicular patterned nodule may indicate 
the possibility of both FVPTC and NIFTP.[14] Strickland et al. 
also reinforced the results of previous studies by indicating 

that simple cytologic and architectural features (i.e., papillae, 
nuclear pseudoinclusions, psammomatous calcifications, and 
microfollicular architecture) can be used to distinguish the 
majority of NIFTPs and other follicular-patterned lesions from 
cPTCs prospectively.[15]

In recent years, attempts have been made to use machine 
learning algorithms in digital pathology for computer-assisted 
diagnosis. Machine learning techniques often used in digital 
pathology image analysis include supervised learning 
(e.g., support vector machine [SVM], random forest, and 
convolutional neural networks) and unsupervised learning 
(e.g., k-means, autoencoders, and principal component 
analysis).[16] However, there have been few attempts on 
using machine learning algorithms on pathology reports. The 
benefit of such an algorithm is to help the pathologists with 
decision-making in challenging cases and as an aid to pattern 
recognition software for computer-assisted diagnosis.[17,18] 
Herein, we took an alternative approach and evaluated 
the performance of SVM, a machine learning algorithm, 
in differentiating NIFTP from cPTC by analysis of the 
microscopic description part of cytopathology reports. SVM 
is a supervised learning algorithm that is used in classification 
problems. It assigns the input data to one of two categories by 
building a model based on a set of training examples (learning) 
and then using that learned model to classify new examples.[19]

Methods

Study population
The study was approved by our institution’s institutional review 
board. The dataset comprised surgical pathology cases with the 
diagnosis of cPTC, NIFTP, or EFVPTC on the final pathology 
report, 1 cm in size or larger, obtained from the laboratory 
information system. Only cases with existing FNA matching 
the tumor and available microscopic description were included. 
NIFTP cases with ipsilateral micro-PTC were excluded. 
For cases with multiple nodules, clinical history, radiologic 
findings, and surgical pathology report were reviewed to ensure 
the FNA correlated with the correct nodule. The final cohort 
consisted of 59 cases (29 cPTCs and 30 NIFTP/EFVPTCs) 
resected in the time frame of 2010–2016. A total of nine 
different cytopathologists had diagnosed the FNAs in the 
department of pathology in that period.

Data processing and machine learning algorithms
The data processing was done using Matlab Text Analytics 
Toolbox. We preprocessed the cytomorphological descriptions, 
by making all text lowercase, removing common words, such as 
“the, a, at, to” and reduce words into their root forms by trimming 
their endings. We also removed language that pertained to the 
differential diagnosis and only focused on the description.

To digitize and convert the microscopic descriptions to 
a format usable by the machine learning algorithm, the 
preprocessed microscopic descriptions were reviewed, and 
59 cytomorphologic keywords/phrases that were used by the 
pathologists were identified. The synonymous phrases were 
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then grouped into 32 categories [Table 1]. The presence or 
absence of each category in each case was recorded by values 
of 1 or 0 respectively in arrays 32 bins in length.

We used a supervised machine learning algorithm, (SVM, 
specifically an L1 regularized SVM implementation through 
LIBLINEAR),[20] to train a linear classifier on the digitized 
microscopic descriptions, assigning them as NIFTP/EFVPTC 
or cPTC.

Linear SVM has one modifying parameter, C (i.e., 
misclassification cost and error penalty). When a small 
misclassification cost is used, the algorithm can find more global 
and generalizable trends in the data but is prone to making 
errors. A higher misclassification cost is associated with more 
specific solutions, a lower error rate, but less generalizability. 
The goal is a misclassification cost best balancing error and 
generalizability. We thus explored misclassifications (C) values 
ranging from 0.1 to 100 (log scale) to find the C with the best 
balance between error and generalizability. In addition, we used 
a regularized version of SVM here. This means that we used a 
penalty for model complexity and forced the SVM algorithm to 
use the fewest number of keywords in making the prediction. 
Limiting complexity would make model interpretation easier 
and also increases its generalizability.

The classifier was trained on a training set comprising all 
cases except for one random case of NIFTP/EFVPTC and 
one random case of cPTC. The trained model’s ability to 
classify (performance) was then assessed on predicting the 
left-out cases (i.e., leave-2-out cross-validation). We repeated 
this process for all possible iterations of leave‑2‑out. As a 
post hoc analysis, we interrogated the classifier post training 
to identify the keywords that were used to assign cases to 
NIFTP/EFVPTC versus cPTC.

results

The demographic data are shown in Table 2. The Bethesda 
categories ranged from II to V in the NIFTP/EFVPTC cases 
with 66% being Bethesda categories III and IV. The Bethesda 
categories ranged from III to VI in the cPTC cases with category 
VI being the most common (59%) [Table 3]. The average 
length of the microscopic description was 22.17 ± 9.38 words 
for NIFTP/EFVPTC and 26.31 ± 10.60 words for cPTC. Word 
counts did not differ significantly between NIFTP/EFVPTC 
and cPTC microscopic descriptions (Student’s t-test, P = 0.12). 
Frequency of various cytomorphologic features as mentioned 
in the microscopic description part of the cytology reports 
are shown in Table 4. Microfollicles were more commonly 
described in the NIFTP/EFVPTC cases, and sheets were 
more commonly described in the cPTC cases. Nuclear 
grooves, pseudoinclusions, and papillary structures were more 
commonly described in the cPTC cases compared to the cases 
of NIFTP/EFVPTC.

The SVM‑trained classifier correctly identified cPTC from 
NIFTP/EFVPTC in 76.05 ± 0.96% of cases in a cross‑validated 
sample (predictions were done on test set that the model 
was not trained on). This performance was above chance 
(>50%, P < 0.001). For detection of cPTC, the sensitivity 
of prediction was 72.6% and the specificity was 81.6%. 
Area under the receiver operating characteristic curve was 
0.79 (95% confidence interval 0.77–0.81) [Figure 1].

We then conducted a post hoc analysis, assessing the strategy 
that was used by the machine learning algorithm to make the 
decision. Through its training, SVM assigns a weight to each 
of the phrases in the text: a positive weight means that the 
occurrence of that word is associated with cPTC diagnosis, and 

Table 1: Keywords or phrases found commonly in the microscopic descriptions
1. Follicular cells 12. Cystic 25. Nuclear enlargement
2. Small follicular cells 13. Metaplastic 25. Enlarged nuclei
2. Benign follicular cells 13. Metaplasia 25. Enlarged
2. Benign appearing follicular cells 14. Reactive 26. Pale chromatin
3. Oncocytic cells 15. Hypercellular 26. Powdery chromatin
3. Oncocyte 15. Cellular 26. Fine chromatin
4. Histiocytes 16. Crowded 27. Intranuclear inclusion
4. Macrophages 17. Syncytial 27. Nuclear pseudoinclusion
4. Pigmented macrophages 18. Overlap 27. Pseudoinclusions
4. Hemosiderin-laden macrophages 19. Cluster 27. Pseudoinclusion
4. Pigment-laden macrophages 20. Microfollicular pattern 28. Nuclear grooves
4. Hemosiderin macrophages 20. Microfollicular arrangement 28. Grooves
5. Multinucleated 20. Microfollicular 28. Irregular nuclei
6. Cyst‑lining cells 20. Microfollicle 28. Irregular nuclear contour
7. Scant colloid 21. Macrofollicles 29. Hyperchromatic
8. Abundant colloid 22. Sheets 29. Nuclear hyperchromasia
9. Dense colloid 23. Papillary 29. Hyperchromasia
9. Thick colloid 24. Atypical 30. Nucleoli
10. Calcification 24. Atypia 31. Pinpoint nucleoli
11. Focal 32. Prominent nucleoli
The synonymous phrases are assigned to 32 different categories
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a negative weight implies that the occurrence of that phrase 
is associated with NIFTP/EFVPTC diagnosis. Figure 2 shows 
the categories with a nonzero weight that were used by the 
classifier to differentiate NIFTP/EFVPTC from cPTC.

conclusIons

Reclassification of EFVPTC as a neoplasm of low malignant 
potential (NIFTP) will result in a smaller number of diagnosed 
thyroid cancer cases and more conservative management of 
these patients.[6] Therefore, preoperative differentiation of cPTC 

from FVPTC is of utmost importance. Cytopathologic evaluation 
according to TBS is the most reliable diagnostic procedure used 
in the preoperative assessment of thyroid nodules. Due to subtle 
nuclear features of FVPTC, these tumors are usually classified 
in the indeterminate categories of TBS, and as described by 
Strickland et al. and Faquin et al.,[10,11] this reclassification will 
change the ROM associated with these diagnostic categories. 
Various cytomorphological features such as the predominance of 
tumor sheets versus microfollicular architecture, papillae, nuclear 
pseudoinclusions, and psammomatous calcifications[13‑15] can assist 
in the cytologic differentiation of cPTC from FVPTC and NIFTP.

In this study, we evaluated the performance of SVM, a 
supervised machine learning algorithm, in differentiating 
NIFTP/EFVPTC from cPTC by analyzing the microscopic 
description part of cytopathology reports using a cohort of 
cPTCs and NIFTP/EFVPTCs with a corresponding FNA. 
We demonstrated that a machine learning algorithm was 
able to successfully distinguish microscopic descriptions of 
NIFTP/EFVPTC and cPTC FNAs in 76.05% ± 0.96% of cases 
with high sensitivity and specificity.

The significant aspect of this study was applying predictive 
analytics and machine learning to analyze cytomorphologic 
descriptions, written by practicing cytopathologists. In 
distinguishing cPTC versus NIFTP/EFVPTC, the model relied 
on keywords that were not unexpected, but the analysis provided 

Table 2: Age, gender, tumor location, and tumor size in patients with noninvasive follicular thyroid neoplasm with 
papillary‑like nuclear features/encapsulated follicular variant of papillary thyroid carcinoma with no capsular or 
lymphovascular invasion and classic papillary thyroid carcinoma

Average age (range) Male/female (%) Right/left/isthmus (%) Average size (range)
NIFTP/EFVPTC 47.45 (29‑80) 3.33/67.77 56.67/43.33/0.00 3.71 cm (1.00‑7.80 cm)
cPTC 45.29 (11‑80) 6.90/93.10 41.38/44.83/13.79 2.57 cm (1.00‑6.00 cm)
NIFTP: Noninvasive follicular thyroid neoplasm with papillary-like nuclear features, EFVPTC: Encapsulated follicular variant of papillary thyroid 
carcinoma with no capsular or lymphovascular invasion, cPTC: Classic papillary thyroid carcinoma

Table 3: The frequency of the Bethesda categories in 
cases of noninvasive follicular thyroid neoplasm with 
papillary‑like nuclear features/encapsulated follicular 
variant of papillary thyroid carcinoma with no capsular 
or lymphovascular invasion and classic papillary thyroid 
carcinoma (%)

Bethesda category NIFTP/EFVPTC (%) cPTC (%)
I 0 (0) 0 (0)
II 10 (33) 0 (0)
III 10 (33) 5 (17)
IV 7 (23) 2 (7)
V 3 (10) 5 (17)
VI 0 (0) 17 (59)
NIFTP: Noninvasive follicular thyroid neoplasm with papillary-like 
nuclear features, EFVPTC: Encapsulated follicular variant of papillary 
thyroid carcinoma with no capsular or lymphovascular invasion, cPTC: 
Classic papillary thyroid carcinoma

Table 4: The frequency of various cytomorphologic 
features noted in the microscopic descriptions of 
noninvasive follicular thyroid neoplasm with papillary‑like 
nuclear features/encapsulated follicular variant of 
papillary thyroid carcinoma with no capsular or 
lymphovascular invasion and classic papillary thyroid 
carcinoma cases (%)

NIFTP/EFVPTC (%) cPTC (%)
Microfollicles 37 10
Sheets 43 66
Nuclear grooves 43 90
Nuclear pseudoinclusions 17 69
Papillae 3 17
NIFTP: Noninvasive follicular thyroid neoplasm with papillary-like 
nuclear features, EFVPTC: Encapsulated follicular variant of papillary 
thyroid carcinoma with no capsular or lymphovascular invasion, cPTC: 
Classic papillary thyroid carcinoma

Figure 1: Receiver operating characteristic curve, representing the 
support vector machine algorithm’s performance in distinguishing classic 
papillary thyroid carcinoma from noninvasive follicular thyroid neoplasm 
with papillary‑like nuclear features cases (cross‑validated). The shaded 
area represents 95% confidence interval calculated through bootstrapping
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relative weights (i.e., importance) for each of these keywords. 
Machine learning algorithms can be used as a decision-making 
tool in challenging cases or as an aid to pattern recognition 
software for computer-assisted diagnosis.[17] Although there 
is a lot of interest in applying machine learning algorithms 
in digital pathology, most studies have focused on machine 
vision and image analysis. We, however, employed semantic 
and text‑based analysis methods. Semantic methods cannot be 
deployed as an independent tool in making diagnostic decisions, 
but they can help provide a better understanding of the intuitions 
and the tacit approaches that are used by pathologists when 
making diagnoses. These intuitions then can turn into tangible 
criteria, guiding others. They can also be used in providing 
feedback and confirmation when diagnoses are made. 
Although the diagnosis of NIFTP/EFVPTC is not a cytological 
diagnosis and relies on tumor excision to exclude capsular and 
vascular invasion and the presence of papillary structures, it 
will be helpful to cytologically distinguish NIFTP/EFVPTC 
from cPTC as these patients require a more conservative 
surgery (hemithyroidectomy versus total thyroidectomy). 
The model introduced here was able to correctly categorize 
NIFTP/EFVPTC and cPTC in three-quarter of the cases. 
Similar to many other medical diagnostic tools, this approach 
has predictive value, but the predictive power is not absolute. 
However, it can help better stratify the risk of cancer and can 
be used in making clinical decisions by providers and patients.

This work is based on modest sample size, collected in one 
center. This raises the possibility that the performance we found 
could represent overfitting, which means that the algorithm 
learns trends in the data not generalizable to other samples. 
We addressed this by (1) using regularization (limiting model 
complexity), and (2) using cross-validation by training and 
testing the model on two separate datasets. Replication with 
larger samples, however, would be required to bolster the 
strength of our observation. Despite these methodological 
limitations, we found validated and clinically meaningful 
results. In conclusion, this study shows the power and 
potential of this method for clinical use. Ideally, this approach 
can be used to develop data-driven scoring systems, which 
can act as a guide for cytopathology and surgical pathology 
diagnosis.
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