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Abstract

Background: Since the 2009 A/H1N1 pandemic, Public Health England have developed a suite of real-time
statistical models utilising enhanced pandemic surveillance data to nowcast and forecast a future pandemic. Their
ability to track seasonal influenza and predict heightened winter healthcare burden in the light of high activity in
Australia in 2017 was untested.

Methods: Four transmission models were used in forecasting the 2017/2018 seasonal influenza epidemic in England:
a stratified primary care model using daily, region-specific, counts and virological swab positivity of influenza-like
illness consultations in general practice (GP); a strain-specific (SS) model using weekly, national GP ILI and virological
data; an intensive care model (ICU) using reports of ICU influenza admissions; and a synthesis model that included all
data sources. For the first 12 weeks of 2018, each model was applied to the latest data to provide estimates of
epidemic parameters and short-term influenza forecasts. The added value of pre-season population susceptibility
data was explored.

Results: The combined results provided valuable nowcasts of the state of the epidemic. Short-term predictions of
burden on primary and secondary health services were initially highly variable before reaching consensus beyond the
observed peaks in activity between weeks 3—4 of 2018. Estimates for Ry were consistent over time for three of the four
models until week 12 of 2018, and there was consistency in the estimation of Ry across the SPC and SS models, and in
the ICU attack rates estimated by the ICU and the synthesis model. Estimation and predictions varied according to the
assumed levels of pre-season immunity.

Conclusions: This exercise successfully applied a range of pandemic models to seasonal influenza. Forecasting early
in the season remains challenging but represents a crucially important activity to inform planning. Improved
knowledge of pre-existing levels of immunity would be valuable.
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Background

The evolution of influenza viruses results in annual epi-
demics of seasonal influenza, with less frequent global
pandemics occurring due to the emergence of novel
influenza viruses to which there is little population immu-
nity. Both have the potential to cause substantial burden of
disease to the population and to present significant chal-
lenges to already strained healthcare systems [1-3]. Many
countries have invested substantial resources to develop-
ing epidemiological and virological surveillance tools to
rapidly detect the onset of the influenza season each year
[4, 5]; to measure the level of activity and the impact on
the health service; and to characterise the main circulating
virus strains and how well they match the seasonal vac-
cine. Attempts, however, to undertake seasonal influenza
forecasting have been historically challenging due to the
complex interplay between the influenza virus, population
immunity, and environmental factors [6]. Nonetheless,
progress has been made in the provision of short-term
predictions of influenza in some countries in recent years
particularly in the United States [5, 7], encouraging similar
endeavours elsewhere.

In the UK, the National Risk Register of Civil Emergen-
cies lists an outbreak of pandemic influenza as the greatest
risk faced by its population [8]. Before, during and after
2009 A/HIN1pdm, quantitative approaches for real-time
modelling and forecasting burden have been developed
[9-11]. The availability of these models, together with
complementary surveillance and data collection systems
including sero-epidemiology for seasonal influenza, pro-
vided the opportunity to address the challenge of predict-
ing seasonal influenza activity in England. This became
a pressing need, when, following a particularly intense
2017 influenza season in Australia [12], prior to the win-
ter season 2017/8 the National Health Service (NHS) put
in place winter preparedness plans to manage potential
acute pressures on the health service [13]. Ultimately, Eng-
land experienced the most intense influenza season since
the first post-pandemic season in 2010/11 [13]. Questions
were raised about how the epidemic would evolve, when it
would peak, how intense the peak in activity would be, and
what would be the resulting demands on the health ser-
vice, in terms of burden on GPs, hospitals, and intensive
care units.

This study reports the advanced analytical and mod-
elling experience at a national level led by Public Health
England (PHE) during the 2017-2018 influenza sea-
son and in particular the attempt to undertake short-
and medium-term forecasts of influenza activity and the
impact of influenza on the health care service.

Methods

Data

The annual monitoring of influenza activity in England
is based on a series of data streams. Those specifi-
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cally utilised for the purposes of this work were weekly
and daily consultations for influenza-like illness (ILI) in
general practice (GP); virological testing of respiratory
swabs obtained from patients consulting in GP; laboratory
confirmed influenza admissions to hospitals and inten-
sive care and high dependence units (ICU/HDU); and
population-based strain- and age-specific serological data
on influenza immunity. These data sources have been
described in detail elsewhere and we review them only
briefly here [14—17].

The GP ILI data represents patients attending primary
care with acute ILI, a proportion of which will be due to
influenza infection. Data were obtained from two sources:
the Weekly Returns Service of the Royal College of Gen-
eral Practitioners (RCGP) Research and Surveillance Cen-
tre (RSC), a sentinel GP network covering a weekly pop-
ulation (in December 2017) of approximately 2 million
people from over 200 practices [18]; and the PHE GP
in-hours-syndromic-surveillance system, which collates
daily ILI consultations stratified by, amongst other things,
age group and NHS region from approximately 3,500 GP
practices, representing about 50% of the total practices
in England [16]. Both of these data sources are routinely
available throughout the year, with a period of enhanced
influenza surveillance starting at week 40, and ending
at week 20, irrespective of the amount of circulating
influenza. The RCGP RSC sentinel network has integrated
virological monitoring [18], whereby GPs undertake res-
piratory swabbing of a subset of patients consulting for
ILL. Swabs are tested by reverse transcription-polymerase
chain reaction to identify the component of ILI due to
each influenza strain through the presence of type and
subtype specific positive swabs in the sample.

Data on influenza confirmed hospitalizations and inten-
sive care admissions are collected through the UK Severe
Influenza Surveillance System (USISS) [15, 19]. Weekly
numbers of laboratory-confirmed influenza cases (of
all the commonly circulating strains: A/HIN1pdmO09,
A/H3N2, B) admitted to an ICU or high dependence unit
(HDU) and the number of confirmed influenza deaths in
ICU/HDU are reported from all NHS trusts in England
from week 40 to week 20 of the following year, along-
side attendant information including age and influenza
subtype. In addition to this mandatory scheme, a sub-
group of NHS trusts in England is recruited every year to
participate in the USISS sentinel scheme [20], which pro-
vides weekly numbers of laboratory confirmed influenza
hospitalisations (A/H1, A/H3 and B).

A final source of information is provided by intra-
seasonal cross-sectional population-based serological sur-
vey data. These data provide a measure of the seropreva-
lence of strain-specific antibodies to A/H3, A/H1 and
B influenza viruses using haemagglutination inhibition
(HALI) assays with an HAI titre > 1/40. These data inform
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the susceptibility of the population after the end of the
previous season, but prior to both the seasonal influenza
vaccination campaign (which should boost population
immunity) and the onset of seasonal virus circulation.

Influenza transmission models

Four deterministic compartmental transmission models
were employed to estimate and forecast the evolution of
the 2017/18 seasonal influenza in England: a Stratified
Primary Care Surveillance Model (SPC); a Strain-Specific
model (SS); a Severity-based model (ICU); and a Synthesis
model. The common transmission structure is of the Sus-
ceptible (S), Infectious (I), Removed (R) type, adapted for
greater realism to include additional Exposed (E) or I com-
partments in some cases. All the models assume homo-
geneous mixing between susceptible and infected indi-
viduals within population strata. Transmission dynamics
are linked to the observed data through appropriate dis-
ease reporting models. The data streams used to estimate
model parameters and relevant epidemic quantities vary
according to the model. Detailed information on the mod-
els’ structure, data used, distributional assumptions and
estimation approaches is given in the Web Extra Mate-
rial(Sections A-B; Table S1) while here we give a short
summary of each.

Stratified Primary Care Model This is a SEEIIR model,
a modified version of the model developed to recon-
struct the 2009 H1N1 influenza pandemic [11, 21, 22]. The
model uses daily (or weekly) data on the number of GP
consultations for ILI from the PHE influenza surveillance
dataset augmented with the RCGP’s virological data to
estimate the component of ILI due to influenza. In the first
week of analysis, the number of ILI consultations due to
influenza were simply estimated by multiplying the total
number of consultations in sentinel RCGP practices by the
proportion of swabs testing positive for an influenza virus,
obtaining what we term ILI+. When more detailed data
became available, it was possible to model jointly daily ILI
counts and swab positivity data, appropriately accounting
for the size of the virological samples, and to specify dis-
tinct epidemic models in each of five regions in England
[22]. A definition of the regions used is available in the
Web Extra Material (Section B.1.1). When using ILI rather
than ILI+, it is necessary to account for "background” rates
of consultation, the component of ILI not attributable to
influenza. This level of consultation is estimated by fitting
an endemic/epidemic model [23] to 3 years of historic ILI
data prior to the 2017/2018 flu season.

Strain-Specific Model The SS model has an SIR struc-
ture for each of the three influenza strains (A/H1, A/H3
and B), which are assumed to transmit independently
within the population [24]. The model uses weekly GP
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consultations for ILI from the RCGP RSC, together with
the strain-specific virological data from the RCGP RSC’s
virological monitoring to identify the contribution of each
strain to the overall number of consultations. Serological
data were used to inform strain-specific susceptibility at
the start of the season.

ICU-based Model The ICU model for seasonal influenza
represents a development of an existing influenza SEEIIR
transmission model, which uses intensive care influenza
admissions from the USISS system [25]. The transmission
rate is allowed to vary over time to account for school
holiday periods and the possible effects of changing pat-
terns of interaction between age groups [26]. Transmis-
sion dynamics are linked to the observed ICU admissions
through a delay from infection to admission and through
the assumption that only a proportion of the infections is
admitted to ICU.

Synthesis Model The synthesis model uses three data
streams to estimate the underlying transmission dynam-
ics: ICU and hospital admissions from USISS and the ILI+
dataset derived from RCGP surveillance. Transmission
dynamics are described by a SEEIIR model assuming a
constant transmission rate and random mixing. The basic
feature of the disease reporting process are taken from
previous studies [15, 21, 25].

Estimation of parameters and quantities of interest

Using weeks as defined by the International Organisa-
tion for Standardization (ISO), the above models were run
weekly in each of weeks 1 to 12 of 2018, with all analy-
ses covering the period from week 40 of 2017 (denoted
2017w40), which started on the 2" October. For each
week and each model, we estimate model parameters (see
Table S1 in the Web Extra Material) in a Bayesian frame-
work. Quantities that can be estimated from all models
and have a common interpretation were the focus of
comparisons. In particular, we estimated features of the
epidemic that are of great public health interest, including
the timing and magnitude of the peak in the burden on
healthcare services (influenza-related visits to GPs, hospi-
tal and ICU admissions); R, (¢), the effective reproduction
number, representing the average number of infections
generated by a single infection in the population (see
Web Extra Material); and the propensity of infected cases
to interact with the particular healthcare services (GP,
Hospital, ICU). In deterministic models, the reproduction
number decays over time with the depletion of suscepti-
bles, so estimates of its value at the start of the influenza
season only are presented and this quantity is denoted
R, = R.(0).
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Forecasting

From the estimates above it is possible to derive estimates
of burden in terms of new infections, GP consultations
and admissions to secondary care over the coming weeks.
However, these estimates refer to quantities that are not
directly observable from available data. Even GP consul-
tations and data on admissions for severe disease typically
refer only to a sub-sample of the whole population, repre-
senting a noisy version of these true underlying quantities.
To assess the ability of the models to make predictions,
it is necessary to contrast the model-based forecasts
for observable quantities with the corresponding subse-
quent observations. We carried out such assessment by
constructing posterior predictive distributions for future
data points and plotting them alongside the observed
values [7, 27].

Results

Parameter estimation

Detailed information on estimates from all models includ-
ing uncertainty can be found in Table S2 in the Web Extra
Material. Here we compare estimates (and 95% Credible
Intervals) of common parameters from the different mod-
elling approaches as they are estimated over successive
weeks. Note that as not all models provide comparable
outputs, each panel of Fig. 1 refers only to the relevant
models. Panel A reports estimates of the overall effective
reproductive number R, from three of the models (SPC,
ICU and Synthesis), whereas Panel B refers to the strain-
specific R, obtained from the SS model. The SPC model
persistently estimates the highest R, in Panel A, with the
central estimate comparable to the strain-specific esti-
mates in Panel B. Estimates from the Synthesis and ICU
models seem also to be consistent, converging to very sim-
ilar values (1.25-1.26) by ISO week 12 (Panel C). Only
the SS model made use of the population intra-seasonal
seroprevalence data.

Panels D-F report estimates of health care seeking rates
per 100,000 infections, of GP consultation for ILI (Panel
D), hospitalisation (Panel E) and ICU admission (Panel F).
These rates are not estimated if a model doesn’t utilise
the relevant dataset. In Panel D, after an initial volatile
pattern, the estimates settle down around 2018w4. In the
SPC model, the ILI+ data used in 2018wl are replaced
from 2018w2 by separate GP ILI and swab positivity
datasets. As a result, the estimated rate of GP consulta-
tion drops sharply and becomes much more precise. For
the SS and SPC models, estimates of the propensity to
consult in GP stabilise, over time, at around 0.5%. Results
from the Synthesis model of all three healthcare seeking
events, suggest a slightly higher value for the GP con-
sulting rate, a figure of around 0.3% of infections leading
to hospitalisation, with a lower estimate, below 0.02% of
infections requiring ICU admission, in agreement with the
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ICU model whose estimates are the most consistent over
the period.

Estimating timing and level of peak activity in primary and
secondary care

Figure 2 displays estimates (posterior means), with uncer-
tainty (95% Credible Intervals) of the timing of the peak
and the peak intensity for the influenza-attributable ILI
consultation rates and ICU admission rates by model and
analysis time. The grey-shaded band on each plot gives
the period of time over which peaks in the datasets were
observed. Specifically, Panel A shows the evolution of the
estimate of the peak week in GP ILI consultations as data
accumulate, from some initial, quite heterogeneous, esti-
mates, to a consensus estimate. For the GP consultation
rates this consensus, placing the peak between 2018w3
and 2018w8, is only reached after 2018w4. Before that the
uncertainty attached to the initial estimates varies sub-
stantially by model: the Synthesis model provides volatile
results, while both the SPC and SS models are giving by
this time a more precise indication on the position of the
peak. The SPC model’s estimates seem overly precise, per-
haps due to a lack of uncertainty in the estimation of the
non-influenza ILI consultation rates (see Section B.1 in
the Web Extra Material). Note also that the SPC model is
able to provide region-specific estimates (Panel B). A sim-
ilar message comes from the estimation of peak in the ICU
rates, with an initial uncertainty diminishing after 2018w4,
once a peak in the ICU data has definitely occurred.

In estimating the magnitude of the peak in GP con-
sultations (Panel D), both the Synthesis model and the
SPC model give initially a large estimate (based on ILI+
data). The SPC model prediction drops quickly in 2018w2,
whereas the Synthesis model takes two additional weeks
to do so. Over time the magnitude of the peak GP activ-
ity estimated under each of the three models gradually
declines, with the SPC model continuing to estimate
slightly higher peak activity. Although more consistent
over time, the estimates for the peak intensity in the SS
and SPC models again seem to be very precise given the
predicted fall in activity over time. In Panel E, the regional
estimates for the peak intensity behave in much the same
way as the national estimates for R, with a gradual decline
over time, with London and the Midlands having the low-
est rates of peak activity and the North and South-East
the highest. Estimates for the peak levels of ICU activity
(Panel F) from the ICU model are very consistent over
time, with the estimates from the Synthesis model con-
verging to similar values from 2018w4 onwards. Table 1
presents the forecasts for the attack rates, the cumulative
incidence of GP consultation, hospital and ICU admission
over the course of the influenza season. These forecasts
behave similarly to the forecasts for peak incidence (see
Fig. 2d—f), in that they take a similar amount of time to
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converge to stable values. However, over time, the attack
rate forecasts by the ICU model are steadily increasing
(due to a slower than anticipated decline in the num-
ber of admissions), whereas those for the SS model are

decreasing. There is little overlap between credible inter-
vals from week 5 to week 12 across all models except the
Synthesis model where forecasts are significantly less cer-
tain. Forecast ILI+ attack rates from the SS model tend to
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be higher than those from the SPC and Synthesis mod-
els, whereas forecasts from attack rates of ICU admission
are comparable between the ICU and Synthesis models.

The Synthesis model does, however, appear to estimate
a high ratio between the number of hospital admissions
and GP consultations, with there being less than three
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Table 1 Forecast attack rates
ISO SPC model SS model ICU model Synthesis model
Week 1L+ ILI+ ICU 1L+ Hosp. ICU
. 1650 365 4.54 19400 8730 594
(456, 2660) (315,424) (2.36,10.8) (163, 40700) (738, 19200) (50.1,1320)
5 188 485 4.10 18500 8020 528
(175, 206) (415, 549) (2.73,8.13) (1580, 33700) (710, 15200) (46.6,1010)
3 174 570 4.74 8460 3320 220
(165,183) (473, 648) (3.57,7.80) (134, 20600) (74.1,8270) (4.88,555)
4 185 370 453 197 717 4.63
(176,194) (322,417) (3.76,6.04) (61.1,441) (55.8,128) (3.54,849)
5 175 348 4.80 190 67.4 435
(167,184) (306, 378) (4.11,6.15) (68.0,331) (57.2,82.1) (3.64,5.42)
6 180 300 5.29 195 70.6 4.56
(171,189) (262, 345) (4.63,6.40) (71.4,329) (61.0,83.1) (3.89,547)
8 173 280 5.01 225 85.3 529
(164,182) (236, 305) (4.68,5.44) (110, 354) (70,9, 104) (4.38,6.53)
12 194 265 6.16 250 96.3 6.13
(185,202) (249,302) (5.50,6.97) (108, 400) (81.0,115) (5.10,7.42)

Posterior median (with 95% credible intervals underneath) for the ILI+ attack rate (per 100,000 people), Hospitalization attack rate (per 100,000 people), and ICU attack rate
(per 100,000 people). These attack rates are forecasts for the cumulative total number of GP consultations/Hospitalisation/ICU admissions attributable to influenza over the
course of the whole influenza season. The 'ISO Week’ gives the week of 2018 in which the forecast is made

GP consultations per Hospitalisation, suggesting some
possible unaccounted-for bias in the data sources.

Forecasting activity and impact including timing of the
peak

Moving from estimation to forecasting, Fig. 3 illustrates
the ability of each model to forecast relevant quantities.
Here, at each time in each plot, one-week ahead prob-
abilistic forecasts made in the previous week (in green)
and two-week ahead forecasts made two weeks prior (in
pink) are plotted alongside the data point subsequently
observed at that time (red dots, with blue dots in Panel B
corresponding to the ILI+ data that the SPC model used in
week 1). Panel A displays the GP ILI forecasts from the SS
model, showing how the model struggles to anticipate the
peak in observed consultations early in 2018 and how the
forecasts improve over 2018w5-9, after peaks in activity
have been observed. Forecasts from the SPC model (Panel
B) show a different pattern, displaying a better forecasting
ability in the early period, which degrades over 2018w5—
9, before very accurately predicting the GP ILI activity in
2018w12. This lack of forecasting ability over 2018w5-9,
however, is due to the overly precise estimation observed
above. Across each of the individual regions, the observed
ILI consultations over 2018w5-9 fall in the upper tail of
the posterior predictive distributions (as exemplified in
Panel D for the South West), but they combine to give a
national total ILI consultation that lies comfortably above

the predictive distribution as seen in Panel B. The Synthe-
sis model forecasts for the ILI data are shown in Panel C.
The one week-ahead forecasts appear to perform reason-
ably well, but there is often high uncertainty attached to
the two-week ahead forecasts, at times at odds with the
one-week ahead forecast produced the following week. A
similar big uncertainty is observed when using the Synthe-
sis model to forecast ICU admissions (Panel E). Finally, the
ICU model seems to exhibit good one-week and two-week
forecasting performance, with almost all the data points
lying within appropriate predictive intervals. However, it
is to be noted that none of the observed values lie in the
lower tail of the predictive distributions, suggesting some
likely under-estimation of the ICU admissions over time.

Discussion

This study shows how models designed for pandemic
influenza could be adapted to answer questions on unfold-
ing seasonal flu activity, in particular when it will peak,
what the level of peak activity will be and what is the
health service impact in terms of hospital and ICU admis-
sions. We addressed these questions through a number
of available transmission models, each sharing a common
population compartment structure, that used a range of
different standard data streams to make sequential esti-
mation of disease spread, of case/severity indicators, and
of future epidemic activity, all as data accumulated over
time. Estimates were typically consistent across models
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using similar information (e.g. the SPC and SS models)
and generally more stable towards the latter stages of the
season. There is a high-degree of volatility in estimates
that rely on the ILI+ data (Synthesis model and SPC model
in week 1). This is most likely due to the ILI+ data being
reliant on virological swab positivity data that only has
a relatively small number of positives. These data then
represent a highly noisy signal of flu activity that could
easily conflict with the other datasets used by the Syn-
thesis model. Estimation of timing and magnitude of peak

activity was particularly challenging, as heterogeneous
estimates were obtained from the different models in the
early stages prior to observing peaks in the data.

To understand the predictive ability of the models, one—
and two—week ahead forecasts were produced from each
model and contrasted with the corresponding quantity
subsequently observed. In this regard, models using a
single data stream were typically more reliable, with pre-
diction performance improving over time. More formal
methods for assessing the forecast ability of a model exist,
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which properly account for both coverage and precision of
the forecasts [27]. While interesting to investigate, these
are more appropriate to situations when comparing differ-
ent models forecasting the same indicators, unlike here.
Informally assessed, the SPC model which incorporated
daily surveillance data was best able to forecast peak activ-
ity, highlighting the importance of daily data streams for
nowcasting and forecasting purposes.

Each of the models used have some shared character-
istics and consequently some shared limitations. They
each have at their heart deterministic transmission struc-
tures relying on assumptions of heterogeneous mixing
(in the SPC model this heterogeneity is within regions,
not England-wide). Deterministic dynamics are suitable
for capturing pandemic dynamics when there is a sin-
gle circulating influenza strain to which the population
is almost entirely susceptible. With seasonal influenza
both environmental and demographic stochastic effects
will be influential, particularly in absorbing any lack of
fit. Here, for example, the single-strain models struggled
to adapt to the patterns in the data that are not charac-
teristic of SEIR-type dynamics and in particular the slow
decline of influenza activity following the peak. This lead
to increased estimates of attack rates in 2018w12. Con-
versely, the deterministic dynamics of the strain-specific
model couldn’t account for the presence of low-levels
of influenza A/H1 activity without eventually leading to
more widespread transmission. The increased flexibil-
ity in stochastic transmission models could potentially
absorb this lack of fit without biasing estimates to the
same extent.

A sensitivity analysis was conducted to understand the
role that serological data can have in the monitoring of
seasonal influenza (see Web Extra Material). The initial
susceptibility of a population, which is a parameter in the
models used here, cannot be estimated through the use
of the surveillance streams alone. External knowledge on
levels of population immunity prior to the start of the
season needs to be provided, knowledge to which esti-
mates of infection spread, attack rates, and case/severity
indicators are found to be highly sensitive. The sensitiv-
ity study showed that while R, estimates are robust to
the levels of initial susceptibility, estimates for the trans-
missibility (measured by Ry, see Web Extra Material)
are inversely proportional to the susceptibility. Assum-
ing higher initial susceptibility, the unaffected estimates
of R, will lead to higher rates of infection, as has been
shown elsewhere [28]. To be able to explain the observed
data there is a consequent impact on the case/severity
ratios, which are estimated to be lower, leading here to
differing estimates of (earlier) timing and magnitude of
(higher) peak activity if early in the season. To weaken our
strong assumption of homogeneous mixing, serological
data can be of even further value if they are sufficiently
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representative (by age, strain, region etc.) to permit
corresponding stratification of the transmission model.
Additionally, the contribution of influenza vaccine pro-
grammes (in terms of uptake and effectiveness) to suscep-
tibility also needs to be taken into account, as the vaccine
campaign occurs after the intra-seasonal sero-survey is
completed and will clearly further affect the population
sero-profile prior to the start of the season. This will
have been of particular importance in 2017/18, due to the
apparent impact of vaccine-related egg-adaption, which
may have reduced vaccine effectiveness against the cir-
culating influenza A(H3N2) strains [29]. Further work on
the potential role of sero-epidemiology to improving fore-
casting needs to be explored [30, 31] and a pilot study is
ongoing [32].

Conclusions

This exercise constituted a first attempt at establish-
ing routine short-term forecasting of seasonal influenza
activity in the UK with the aim of informing health ser-
vice planning during the winter. The UK has a strong,
integrated influenza surveillance system which provides
an important opportunity to develop such approaches.
Although modelling in the earlier stage of the season
remains particularly challenging this has been a very valu-
able enterprise, identifying the key information require-
ments and the optimal modelling approaches. Reliable
short-term predictions, particularly at local levels, for
the number of cases in primary and secondary care can
enable health service planners to optimally deploy lim-
ited capacity (e.g. hospital bed management). The work
described here has identified the further developments
required to achieve this: the use of more detailed sero-
logical data, the incorporation of information on vaccine
coverage and building in additional flexibility to models to
give less precise forecasts due to the presence of possible
biases.
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