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Background: Somatic mutations are widespread in patients with

Myelodysplastic Syndrome (MDS) and are associated with prognosis.

However, a practical prognostic model for MDS that incorporates somatic

mutations urgently needs to be developed.

Methods: A cohort of 201 MDS patients from the Gene Expression Omnibus

(GEO) database was used to develop the model, and a single-center cohort of

115 MDS cohorts from Northwest China was used for external validation.

Kaplan-Meier analysis was performed to compare the effects of karyotype

classifications and genemutations on the prognosis of MDS patients. Univariate

and multivariate Cox regression analyses and Lasso regression were used to

screen for key prognostic factors. The shinyapps website was used to create

dynamic nomograms with multiple variables. The time-dependent receiver

operating characteristic (ROC) curves, calibration plots, and decision curve

analysis (DCA) were used to evaluate the model’s discrimination, accuracy and

clinical utility.

Results: Six risk factors (age, bonemorrow blast percentage, ETV6, TP53, EZH2,

and ASXL1) were considered as predictor variables in the nomogram. The

nomogram showed excellent discrimination, with respective the area under

the ROC curve (AUC) values of 0.850, 0.839, 0.933 for the training cohort at 1

year, 3 years and 5 years; 0.715, 0.802 and 0.750 for the testing cohort at 1 year,

3 years and 5 years; and 0.668, 0.646 and 0.731 for the external validation

cohort at 1 year, 3 years and 5 years. The calibration curves and decision curve

showed that the nomogram had good consistency and clinical practical

benefit. Finally, a stratified analysis showed that MDS patients with high risk

had worse survival outcomes than patients with low risk.
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Conclusion: We developed a nomogram containing six risk factors, which

provides reliable and objective predictions of prognosis for MDS patients.
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Introduction

Myelodysplastic syndrome (MDS) is a rare group of clonal

myeloid malignancies characterized by ineffective hematopoiesis

and high-risk progression to acute myeloid leukemia (AML) (1).

The incidence of MDS increases with age, especially in patients

over 70 years old (2, 3). Due to the heterogeneity of clinical

manifestations, the survival time of patients ranges from

approximately a few months to several years. Accurately

estimating the prognosis of patients at primary diagnosis could

allow patients to benefit from the management of disease and

assist doctors in implementing precise treatment (4).

Currently, several prognostic scoring systems have been

developed to stratify the risk of MDS patients, including the

International Prognostic Scoring System (IPSS), Revised IPSS

(IPSS-R), World Health Organization-based Prognostic

Scoring System (WPSS) and Global MD Anderson

Prognostic Scoring System (MDAPSS) (5, 6). These systems

apply several variables, such as bone marrow blast percentage,

cytogenetics and laboratory testing, which are widely used in

clinical practice. With the maturation of high-throughput

sequencing technology, somatic mutations have been

accurately detected and found to play a crucial role in the

clinical phenotype, prognosis, and response to therapy of MDS

patients (7, 8). This advance has enabled our understanding of

the genetics of MDS to leap from chromosomal abnormalities

to somatic mutations at the genome-wide level (9). Therefore,

the genetics of MDS urgently need to be reviewed to

comprehensively analyze MDS disease-related factors and

construct a novel prognostic model.

In this study, we aimed to develop and validate a novel

prognostic model that will incorporate more molecular genetic
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features. Furthermore, the model will assist clinicians in easily

and reliably evaluating the prognosis of individual

MDS patients.
Material and methods

Data collection

Two GEO datasets [GSE58831 (10) and GSE129828 (11)]

were downloaded from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/) for model

construction. Inclusion criteria for this study were definite

pathologically diagnosed de novo myelodysplastic syndrome

with complete clinical information and follow-up data. Study

variables list as follow (1): patient admission status, such as

age, gender, hemoglobin, absolute neutrophil count, platelet

count, and percentage of bone marrow blast cell(BM%); (2)

molecular biological examination includes karyotypes and

gene mutations. The primary outcome measure was 1-year,

3-year and 5-year overall survival (OS) rate. Overall survival

was defined as the time from initial diagnosis until death or

censoring at the time of the last follow-up for patients last

known to be alive. In addition, we also collected clinical

information from 115 MDS patients who visited the First

Hospital of Lanzhou University range from June 2015 to June

2022, which was used for external validation of the model.

This study was approved by the Ethics Committee of the First

Hospital of Lanzhou University.
Variable selection

In the R software, the “createDataPartition” function in the

“caret” package is used for random grouping. The entire GEO

cohort is divided into a training cohort and a testing cohort at a

1:1 ratio. In the training cohort, univariate, lasso, and

multivariate cox regression analyses were used to screen for

key prognostic factors. Specifically, univariate, multivariate Cox

regression analysis was performed using the “survival” package

to identify prognostic-related variables. Lasso regression analysis

using “glmnet” has solved the collinearity problem.
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Nomogram construction

The identified independent prognostic factors were

constructed using the “regplot” package to construct a

nomogram, where continuous variables were showed by line

segments and categorical variables were showed by boxes. By

matching each variable in the nomogram, we could calculate the

corresponding score and total points. Correspondingly, the 1-

year, 3-year, and 5-year survival rates of the patient were

calculated. In addition, we have shared and deployed our

nomogram on the shinyapps website (www.shinyapps.io) so

that clinicians can easily and quickly apply the nomogram to

assess patient outcomes.
External validation of the nomogram

In the training cohort, the time-dependent receiver

operating characteristic (ROC) curve was plotted using the

“timeROC” package to evaluate the discriminativeness of the

prediction model. Use the “rms” package to draw a calibration

curve, and cycle sampling 1,000 times by the Bootstrap method

to compare the closeness of the predicted survival rate to the

actual survival rate, thereby judging the accuracy of the model. A

decision curve analysis (DCA) was drawn using the “ggDCA”

package to evaluate the net benefit of prognostic model in

guiding clinical decision-making. In addition, the above

metrics were also evaluated in the internal testing cohort, the

entire cohort and the external validation cohort.
Frontiers in Oncology 03
Statistical analysis

All statistical analyses and graphs were performed using R

software 4.1.2 (www.r-project.org) and Graph-pad Prism 8.3

software (San Diego, California, USA). For overall survival of

patients in different groups were estimated by Kaplan-Meier

methodology and Log-rank test.
Results

Patient characteristics and work flow

In the present study, we screened 201 MDS patients with

complete clinical information according to strict inclusion and

exclusion criteria. The patients were randomly divided into two

groups at a 1:1 ratio to explore the relationship between clinical

variables and the prognosis of MDS patients. The training cohort

included 101 MDS patients with a median survival time of 31

months, and the testing cohort included 100 MDS patients with

a median survival time of 36.8 months. The clinical

characteristics of the two groups of patients are shown in

Supplementary Table 1. As the flowchart shown in Figure 1,

we used univariate, lasso, and multivariate cox regression

analyses to screen for key prognostic factors and construct a

nomogram. Subsequently, ROC curves, calibration plots, and

DCA analysis were used to evaluate the predictive performance

of the model. Finally, we stratified patients using risk scores in

all cohorts.
FIGURE 1

Flowchart of study.
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Association between gene mutations and
MDS patient prognosis

First, we describe the 18 MDS-related gene mutations in 201

MDS patients from the entire GEO cohort. Different patients

showed a gross difference in mutation burden (Figure 2A). The

number of gene mutations ranged from none to eight, and the

vast majority (85%) of patients had fewer than three types of

mutated genes. Specifically, SF3B1 was the most frequently

mutated gene, with a mutation rate of 31%, followed by TET2

and ASXL1, with mutation rates of 30% and 22%, respectively.
Frontiers in Oncology 04
The mutation rates of KRAS, PTPN11, and IDH1 were the

lowest (1%). The mutation status of the external validation

cohort is also shown in Supplementary Figure 1. TET2 and

ASXL1 still had higher mutation rates in the external validation

cohort. A further survival analysis showed that five gene

mutations were associated with the OS of patients with MDS,

including the beneficial mutation SF3B1 (P=0.050), and four

unfavorable mutations, RUNX1 (P<0.001), ASXL1 (P=0.003),

TP53 (P<0.001) and EZH2 (P=0.008) (Figures 2B–F).

Interestingly, we found that the number of mutations was also

associated with prognosis (P=0.013) (Figure 2G), which fully
A

B D

E F G

C

FIGURE 2

Association between gene mutations and MDS patients’ prognosis. (A) Landscape profile of 18 somatic gene mutations in 201 MDS patients.
Mutations of each genes in each patient were shown in waterfall plot. Each column presented each patient. The left is the number of mutations
in each patient, and the right is the mutation frequency of the gene in 201 patients. (B) Kaplan-Meier analysis of SF3B1 wild-type and mutant
MDS patients. (C) Kaplan-Meier analysis of RUNX1 wild-type and mutant MDS patients. (D) Kaplan-Meier analysis of ASXL1 wild-type and mutant
MDS patients. (E) Kaplan-Meier analysis of TP53 wild-type and mutant MDS patients. (F) Kaplan-Meier analysis of EZH2 wild-type and mutant
MDS patients. (G) Kaplan-Meier analysis of MDS patients with different numbers of mutated genes. The log-rank test was used to compare
survival rates between the two groups.
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suggested that the role of gene mutations in the prognosis of

MDS patients should not be underestimated.
Association between karyotype
classification and MDS patient prognosis

Subsequently, to clarify the influence of abnormal

chromosomal karyotypes on the prognosis of MDS patients,

we analyzed the relationship between different karyotype

classifications and the prognosis of MDS patients. Four

different representative karyotype classifications were selected

to characterize karyotype-prognostic relationships. According

to the IPSS karyotype classification, 72.6% of the patients had

good karyotypes, 15.9% had moderate karyotypes, and 11.5%

had poor karyotypes in the entire cohort. According to the

IPSS-R karyotype classification, 62.2% of the patients had a

very good karyotype, 12.4% had a good karyotype, 12.9% had a

moderate karyotype, and 6.0% had a poor karyotype, and very

poor karyotypes accounted for 6.5% of all patients.

Considering the monosomal karyotype (MK), 61.7% of

patients had a normal karyotype, 1.5% of patients had a MK,

6.5% of patients had a complex karyotype, and 31.3% of other

patients had a normal karyotype. Considering only complex

karyotypes (CK), 72.6% of patients had normal karyotypes,

15.9% of patients had complex karyotypes, and 11.5% of

patients had noncomplex karyotypes. A further Kaplan-
Frontiers in Oncology 05
Meier survival analysis showed that in the entire cohort, all

classifications other than the IPSS-R classification were related

to prognosis (P<0.05, Figures 3A–D).
Screening for prognosis-related variables

To build the model, the entire cohort was randomly divided

into a training cohort and a validation cohort. A univariate Cox

regression model was performed to identify all prognostic risk

factors(gender, age, hemoglobin, absolute neutrophil count,

platelet count, percentage of bone marrow blast cell, 18 MDS-

related gene mutations, IPSS karyotype classification, IPSS-R

karyotype classification, MK karyotype classification, and CK

karyotype classification) in the training cohort. Meanwhile, we

again evaluated the impact of different karyotypes on patient

prognosis in the training cohort (Supplementary Figures 2A–D)

and validation cohort (Supplementary Figures 2E–H) to

comprehensively identify key feature. Eight characteristics,

including age, platelets, BM blast percentage, and mutations in

ASXL1, EZH2, RUNX1, ETV6 and TP53, were associated with

MDS patient OS (Figure 4A, Supplementary Table 2). A Lasso-

Cox regression analysis further retained these eight features for

subsequent analysis (Figures 4B, C). Finally, age, BM blast

percentage, and ASXL1, EZH2, ETV6, and TP53 mutations

were identified as key independent prognostic factors by a

multivariate Cox regression analysis (Figure 4D).
A B

DC

FIGURE 3

Association between karyotype classification and MDS patients’ prognosis. (A) Kaplan-Meier analysis of MDS patients with different IPSS
karyotype classification. (B) Kaplan-Meier analysis of MDS patients with different IPSS-R karyotype classification. (C) Kaplan-Meier analysis of
MDS patients with different monosomal karyotypes (MK) classification. (D) Kaplan-Meier analysis of MDS patients with different complex
karyotypes (CK) classification. The log-rank test was used to compare survival rates between the two groups.
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Nomogram and dynamic nomogram
MDS for OS

Based on the above screening analysis, we established a

prognostic nomogram with six variables, including age, BM

blast percentage, ASXL1, EZH2, ETV6 and TP53 mutations

(Figure 5A). In the nomogram, each variable is matched to a

specific score by weight, and the sum of all scores corresponds to

the predicted probability of 1-year, 3-year and 5-year overall

survival. For example, a 73-year-old female patient with a BM

blast percentage of 6% and genetic assay showed that she

harbored an ASXL1 mutation. According to the nomogram,
Frontiers in Oncology 06
the patient has a risk score of 226, which determines her 1-year

(72.8%), 3- year (17.8%) and 5-year (4.7%) probability of

survival (Figure 5A). Moreover, we deployed the nomogram

on the shinyapps website (https://seeapple.shinyapps.io/MDS_

Nomogram/), which allows clinicians to conveniently and

directly utilize our model in real time (Figure 5B).
Model validation and performance

To evaluate and verify the performance of the nomogram,

ROC curves, calibration curves and DCA analysis were
A

B

D

C

FIGURE 4

Screening for prognosis-related variables. (A) Univariate Cox analyses on variables for the prediction of overall survival of MDS patients in
training cohort. Graph only shows significant results (P<0.05). (B, C) LASSO-Cox regression by 10-fold cross-validation was performed to select
key variables. (D) Multivariate Cox proportional hazards were used for identifying independent prognostic variables.
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performed for each cohort. In the training cohort, the

nomogram concordance index (C-index) for predicting OS

was 0.763. The area under the ROC curve (AUC) values for

the 1-year, 3-year, and 5-year OS were 0.850 (95%CI, 75.23 to

94.80), 0.839 (95%CI, 75.36 to 92.52) and 0.933 (95%CI, 87.39 to

99.21), respectively (Figure 6A). Subsequently, the predictive

accuracy was measured in the testing cohort. C-index was 0.678,
Frontiers in Oncology 07
and AUC values for the 1-year, 3-year, and 5-year OS were 0.715

(95%CI, 56.96 to 86.12), 0.802 (95%CI, 70.11 to 90.26) and 0.750

(95%CI, 61.51 to 88.28), respectively (Figure 6B). Meanwhile,

the favorable calibration of the nomogram for the predicted

probabilities of 1-year, 3-year, and 5-year OS was observed both

in the training and internal testing cohorts, with good

correlations between the predicted and observed survival
A

B

FIGURE 5

Construction of nomogram and dynamic nomogram. (A) Nomogram for predicted 1-year, 3-year and 5-year survival probability for MDS
patients. A 73-year-old female patient had a bone marrow blast percentage of 6% with ASXL1 mutation and ETV6 mutation. According to the
nomogram, the patient has a risk score of 226, which determines her survival probability of 1 year (72.8%), 3 years (17.8%) and 5 years (4.7%),
respectively. (B) A dynamic Nomogram to predict the survival of MDS patients in Shinyapps website.
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proportions at different time points (Figures 6D, E). In addition,

the external validation cohort included 115 patients from a

single-center cohort in China northwestern for the final

evaluation. The nomogram C-index for predicting OS was
Frontiers in Oncology 08
0.639. The AUC values for the 1-year, 3-year, and 5-year OS

were 0.668 (95%CI, 55.70 to 77.99), 0.646 (95%CI, 52.53 to

76.66) and 0.731 (95%CI, 55.06 to 91.08), respectively

(Figure 6C). Moreover, the external calibration plots for the
A B

D E F

G IH

J K L

C

FIGURE 6

Performance and validation of the Nomogram. (A–C) The time-dependent receiver operating characteristic (ROC) curve and the area under the ROC
curve (AUC) of nomogram at 1 year, 3 years and 5 years in the training cohort, testing cohort and external validation cohort. (D–F) The calibration plots
of nomogram for predicting the 1 year, 3 years and 5 years in the training cohort, testing cohort and external validation cohort. (G–I) The Decision
curve analysis (DCA) of nomogram for predicting the 5 years OS in the training cohort, testing cohort and external validation cohort. (J–L) ROC curves
and the AUC of IPSS score, IPSS-R score, IPSS-M score and nomogram at 1 year, 3 years and 5 years in the entire GEO cohort.
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predicted probabilities of 1 year, 3 years, and 5 years OS also

showed adequate consistency (Figure 6F). The DCA analysis of

the nomogram was higher than that of the None and All lines

in training cohort, internal testing cohort and external

validation cohort, indicating that the nomogram would be

more beneficial (Figures 6G–I). Compared to the IPSS and

IPSS-R, the nomogram achieved an improved AUC at 1 year, 3

years and 5 years in the entire GEO cohort (1 year: 0.783 (95%

CI, 70.01 to 86.64) vs. 0.584 (95%CI, 47.14 to 69.67) vs. 0.680

(95%CI, 58.14 to 77.87); 3 years: 0.819 (95%CI, 75.29 to 88.57)

vs. 0.676 (95%CI, 60.01 to 75.22) vs. 0.721 (95%CI, 64.33 to

79.85); 5 years: 0.822 (95%CI, 73.45 to 90.98) vs. 0.691 (95%CI,

58.38 to 79.85) vs. 0.699 (95%CI, 59.12 to 80.72); Figures 6J–L).

A recent study reported a clinical-molecular prognostic model

(IPSS-Molecular [IPSS-M]) for risk stratification in patients

with MDS (12). By comparing the IPSS-M score with

nomogram of present study, our model was slightly non-

inferior to IPSS-M in predicting patients 1 year, 3 years and

5 years OS (Figures 6J–L).
Risk stratification

Based on the total points calculated by the nomogram, we

divided all cohorts into high-risk and low-risk groups based on

the median risk score in the training cohort (cut off by -0.37). In

the training cohort, the risk score scatterplot showed that most

of the patients who died were distributed in the high-risk group,

while the Kaplan-Meier analysis showed that high-risk patients

had lower 5 years survival rates (54% vs 0%) (Figures 7A, B). In

addition, risk scores were effective in stratifying patients in the

internal testing cohort (Figures 7C, D), the entire cohort

(Figures 7E, F) and the external cohort (Figures 7G, H). In the

entire GEO cohort, elderly patients (over 65 years old) with MDS

were divided into high-risk and low-risk groups, and high-risk

patients had lower 5 years survival rates (51% vs 13%)

(Figure 7I). In addition, the model performed equally well in

the risk classification of young MDS patients (Figure 7J).

Moreover, the model achieved good risk stratification for

elderly and young patients in the external validation cohort

(Figures 7K, L). In terms of gender, the model was applicable in

both the GEO cohort and the external validation cohort in both

male and female patients (Figures 7M–P).
Discussion

In the present study, we performed an integrative analysis of

clinical, disease, and biological variables to identify MDS

prognosis-associated characteristics, and constructed a

dynamic nomogram. In total, we collected publicly accessible

cases from 201 patients with MDS. The correlations between

chromosomal abnormalities and gene mutations and the
Frontiers in Oncology 09
prognosis of patients with MDS were analyzed and compared.

Subsequently, all patients were divided into the training and

testing cohorts. Univariate and multivariate Cox regression

analyses and LASSO regression were performed to select key

prognostic variables, and a web-based dynamic nomogram that

included patient age, BM blast cell percentage, ETV6, TP53,

EZH2, and ASXL1 mutations was constructed simultaneously.

Receiver operating characteristic (ROC) curves, calibration

plots, and DCA analyses were used to evaluate the predictive

performance and applicability of the nomogram. In addition,

this model externally validated using a single-center cohort of

115 patients with MDS.

Age is the primary risk factor for the development of MDS,

with the median age at diagnosis exceeding 70 years. The

interaction of diseases, comorbidities, and frailty results in

poor prognoses in elderly patients, which can be seen in most

diseases, especially in patients with cancer (13). The percentage

of blast cells has long been considered a major criterion for the

diagnosis of MDS, and serves as the basis for prognostic

classification. A higher blast cell percentage is thought to

reflect a greater disease burden and more advanced disease,

and is associated with worse outcomes (14, 15). Consistent with

our findings, when we constructed a prognostic model, age and

BM blast percentage remained the essential features that we

prioritized and screened.

With the advancement of sequencing technology, next-

generation sequencing (NGS) has become a popular method for

the diagnosis of MDS. Specific genes involved in epigenetic

regulation (TET2, ASXL1, EZH2, DNMT3A, and IDH1/2), RNA

splicing (SF3B1, SRSF2, U2AF1, and ZRSR2), DNA damage

response (TP53), transcriptional regulation (RUNX1, BCOR, and

ETV6), and signal transduction (CBL,NRAS, and JAK2) have been

identified in MDS (16, 17). More than 90% of patients with MDS

harbor somatic myeloid-related mutations (18, 19). In this study,

four important genes, TP53, ASXL1, EZH2, and ETV6, were

selected to construct a nomogram. Tumor protein 53 (TP53) is a

tumor suppressor gene that has received considerable attention in

all types of tumors. TP53 mutations are strongly associated with

rapid transformation of high-risk MDS into AML, resistance to

conventional therapy, and poor outcomes (20). Based on these,

TP53-mutant MDS was once called a “black hole of hematology”

(21). A recent study of 3324 patients with MDS reported that

patients with TP53 mutations have both monoallelic (1/3) and

biallelic mutations (2/3). Interestingly, monoallelic mutations did

not differ from those of TP53 wild-type patients in terms of

outcome and response to treatment (22). In contrast, previously

reported complex karyotypes, rare co-occurring mutations, high-

risk manifestations, and poor outcomes were strongly associated

with biallelic mutations. This finding is largely attributable to the

fact thatmonoallelicmutations need to cooperatewith other driver

mutations or secondaryTP53dysfunction tomaintainmalignancy,

which alone is not sufficient to cause MDS (23). Additional sex

comb-like 1 (ASXL1) plays a crucial role in epigenetic regulation,
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including themodificationofhistonemethylation and regulationof

transcription of genes involved in differentiation and proliferation.

ASXL1 mutations are usually associated with distinct epigenomic

alterations that increase the sensitivity of patients with MDS to

venetoclax and azacytidine (24). ASXL1 mutations are frequent

epigenetic regulatory aberrations in MDS that predict adverse

prognostic outcomes. Thus, screening patients for ASXL1

mutations may be useful for clinical risk stratification and

treatment decisions in the future (25). Mutations in the enhancer

of zeste homolog 2 (EZH2) gene are frequently affected by

abnormalities in chromosome 7, which is frequently detected in
Frontiers in Oncology 10
myeloid malignancies (26). EZH2 is the core component of the

polycomb repressive complex 2 (PRC2), which is responsible for

gene silencing by posttranslational histone modifications (27).

EZH2 mutations are associated with oncogenesis and

progression, and predict poor prognosis in patients with myeloid

neoplasms (28). As a tumor suppressor gene, ETS variant

transcription factor 6 (ETV6) plays an important role in

hematopoietic stem cell maintenance and lineage differentiation,

participates in oncogenic fusion, and regulates thrombopoiesis

(29). Rearrangement is a common form of ETV6 mutation, and

ETV6 can form fusion genes with ARNT, MN1, ACS2, EVI1/
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FIGURE 7

Risk stratification. (A) Risk scores and survival times of patients were in the training cohort. (B) Kaplan-Meier analysis of MDS patients with
different risk level in the training cohort. (C) Risk scores and survival times of patients were in the internal testing cohort. (D) Kaplan-Meier
analysis of MDS patients with different risk level in the internal testing cohort. (E) Risk scores and survival times of patients were in the entire
GEO cohort. (F) Kaplan-Meier analysis of MDS patients with different risk level in the entire GEO cohort. (G) Risk scores and survival times of
patients were in the external validation cohort. (H) Kaplan-Meier analysis of MDS patients with different risk level in the external validation
cohort. (I, J) Kaplan-Meier analysis of elderly and young patients with different risk level in the entire GEO cohort. (K, L) Kaplan-Meier analysis of
elderly and young patients with different risk level in the external validation cohort. (M, N) Kaplan-Meier analysis of male and female patients
with different risk level in the entire GEO cohort. (O, P) Kaplan-Meier analysis of male and female patients with different risk level in the external
validation cohort. The log-rank test was used to compare survival rates between the two groups.
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MDS1, and JAK2. A higher ETV6 rearrangement rate is closely

related to the disease stage and prognosis of MDS (30).

Although current clinical risk stratification tools perform

well in predicting the prognosis of patients with MDS, neither

IPSS nor IPSS-R consider somatic mutations (31). NGS in

patients with MDS is now a routine laboratory test for

physicians. Similar to the emergence of ChromoSeq

technology, whole-genome sequencing will gradually replace

traditional cytogenetic testing, especially for the detection of

mysterious and rare chromosomal abnormalitie (32). Therefore,

consideration of genetic mutations in the prognostic analysis of

MDS is overwhelming. By comparing the area under the ROC

curve, we found that the area under the nomogram was superior

to those of both IPSS and IPSS-R in predicting 1, 3, and 5 years

patient survival status.

In recent years, several similar studies have also focused on

the risk stratification of patients with MDS, such as the IPSS-M

and Aziz Nazha’s model (12, 33). The IPSS-M included

hematologic parameters, cytogenetic abnormalities, and

somatic mutations of 31 genes, emphasizing the importance

of gene mutations in the prognosis of patients with MDS.

However, the nomogram was noninferior to the IPSS-M in

predicting the survival of patients with MDS. Nazha et al.

proposed an integrated IPSS-R scoring system and mutational

data, where IPSS-R has a smaller proportion than gene

mutations. Based on this study, we replaced IPSS-R with the

percentage of blast cells, which improved the performance of

the model. Nevertheless, large-scale, multicenter cohorts are

still needed to verify the applicability of the results. In addition,

some gene signatures to predict the prognosis of patients with

MDS have also been reported, such as autophagy gene

signatures by Hu et al. and metabolic gene signatures by

Liang et al. (34, 35). The nomogram in this study performed

considerably better than the previous signatures in

discr iminat ing power using only readi ly avai lable

information on four genetic mutations.

This study had several advantages. First, our study strongly

emphasizes the role of genetic mutations in the prognosis of

MDS compared to previous prognostic models. Second, we

developed and validated the model using MDS cohorts from

the United Kingdom and the United States, and supplied an

MDS cohort from a single center in Northwest China for

external validation, which greatly improved the applicability

of the predictive model. Most importantly, we uploaded the

nomogram to a website that can be easily accessed by

physicians and patients through internet terminals.

This study had some limitations. First, owing to the limited

number of study patients, some low-frequency, functionally

important gene mutations may have been overlooked.

Moreover, the public data did not specify the type of gene

mutation, and the role of gene mutations in prognosis could
Frontiers in Oncology 11
not be deeply explored. Second, because the three centers lacked

a unified pathological classification for MDS, pathological

classification was not considered in this study. Third, our

cohort was retrospective; thus, it was inevitably affected by

selection and recall bias. In addition, we will also consider

treatment-related factors and leukemia transformation, and

analyze the relationship between risk groups and treatment

strategies in future studies.

In conclusion, we developed a nomogram containing six risk

factors that provides reliable and objective predictions of the

prognoses of patients with MDS. Importantly, a dynamic

nomogram is a functional and practical tool that can help

clinicians assess patient prognosis and determine appropriate

treatment strategies.
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