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ABSTRACT
We used RNA sequencing (RNA-Seq) technology to investigate changes in the 

transcriptome profile in the Caki-1 clear cell renal cell carcinoma (ccRCC) cells, which 
overexpress monocyte chemoattractant protein-induced protein 1 (MCPIP1). RNA-
Seq data showed changes in 11.6% and 41.8% of the global transcriptome of Caki-
1 cells overexpressing wild-type MCPIP1 or its D141N mutant, respectively. Gene 
ontology and KEGG pathway functional analyses showed that these transcripts encoded 
proteins involved in cell cycle progression, protein folding in the endoplasmic reticulum, 
hypoxia response and cell signalling. We identified 219 downregulated transcripts 
in MCPIP1-expressing cells that were either unchanged or upregulated in D141N-
expressing cells. We validated downregulation of 15 transcripts belonging to different 
functional pathways by qRT-PCR. The growth and viability of MCPIP1-expressing cells 
was reduced because of elevated p21Cip1 levels. MCPIP1-expressing cells also showed 
reduced levels of DDB1 transcript that encodes component of the E3 ubiquitin ligase 
that degrades p21Cip1. These results demonstrate that MCPIP1 influences the growth 
and viability of ccRCC cells by increasing or decreasing the transcript levels for proteins 
involved in cell cycle progression, protein folding, hypoxia response, and cell signaling.

INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is the most 
frequent kidney cancer, which is highly vascularized and 
characterized by malignant renal epithelial cells with clear 
cytoplasm. Deletion of the short arm of chromosome 3 
that includes the von Hippel Lindau tumor suppressor 
(VHL) gene correlates with increased expression and 
activity of HIF-1α and HIF-2α in 90% of the ccRCC 
patient samples [1]. This is because the VHL protein is 
part of an active E3 ubiquitin ligase complex that targets 
HIF-1α for ubiquitin-mediated degradation [2]. The HIF 
proteins are polyubiquitinated and targeted for degradation 

during normoxia. However, they accumulate in the 
nucleus during hypoxia and drive the expression of genes 
that regulate glycolysis, angiogenesis, and metastasis [3]. 

HIF-2α is negatively regulated during hypoxia by 
Monocyte Chemoattractant Protein-induced protein 1 
(MCPIP1) in the ccRCC cell line, Caki-1 [4].  Moreover, 
exogenous expression of HIF2-α in Caki-1 cells decreases 
MCPIP1 protein levels, thereby indicating a negative 
feedback loop between these two proteins [4].  MCPIP1, 
also known as Regnase 1, is an RNase that degrades 
mRNAs and miRNAs [5–7]. The PilT N terminus (PIN) 
domain is essential for the endonucleolytic activity of 
MCPIP1 [5, 8]. MCPIP1 negatively regulates expression 
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of various pro-inflammatory cytokines such as IL-6 or IL-
1β [5, 8, 9] and also NF-κB or AP-1 transcription factors 
[10,11]. Furthermore, ectopic overexpression of wild-type 
MCPIP1 downregulates VEGFA and GLUT1 transcripts 
that are induced during hypoxia [4]. However, regulation 
of the whole transcriptome of ccRCC cell line by MCPIP1 
has not been studied.

Low MCPIP1 levels have been reported in 
neuroblastoma [12], breast cancer [13] and ccRCC [4,14]. 
MCPIP1 inhibits growth of ccRCC and neuroblastoma cell 
lines [4, 12] by enhancing the decay of anti-apoptotic gene 
transcripts, including Bcl2L1, Bcl2A1, RelB, Birc3, and 
Bcl3 [13] and negatively regulating the rate of metabolism 
and angiogenesis [4]. Furthermore, MCPIP1 regulates the 
secretion of VEGF, IL-8, and CXCL12, which are factors 
that promote chemotaxis of microvascular endothelial 
cells, phosphorylation of VE-cadherin, and increased 
vascular permeability [14]. In vitro and in vivo studies 
show that downregulation of MCPIP1 is associated 
with epithelial to mesenchymal transition (EMT) and 
progression of ccRCC [14]. Therefore, in this study, we 
investigated the role of MCPIP1 in global transcriptional 
regulation by performing RNA-Seq analysis of Caki-
1 cells that overexpress wild type or RNase-deficient 
MCPIP1 proteins. 

RESULTS AND DISCUSSION

Global transcriptome changes in Caki-1 cells 
expressing wild type or mutant MCPIP1

To characterize global transcriptome changes upon 
MCPIP1 overexpression, we generated Caki-1 cell lines 
expressing doxycycline-inducible wild-type (MCPIP1) 
or mutant MCPIP1 (inactivated PIN domain; D141N) 
using lentiviral vectors. Caki-1 cells transduced with a 
control lentiviral vector (PURO) were used as control. 
We performed RNA-Seq analysis of RNA isolated from 
MCPIP1, D141N and PURO cells, which were grown 
in media containing puromycin for 10 days. Principal 
component analysis (PCA) demonstrated differential 
gene expression in all the 3 cell types (Figure 1A). We 
performed pairwise comparison of gene expression in 
MCPIP1 and D141N samples against PURO (adj. p. 
value < 0.05) and showed that 1189 and 4500 transcripts 
were upregulated and 1270 and 4201 transcripts were 
downregulated in MCPIP1 and D141N cells, respectively 
(Figure 1B, Supplementary Table 1). This accounts for 
11.6% and 41.8% of the global transcriptome for MCPIP1 
and D141N, respectively, because the AmpliSeq-based 
RNA-Seq covers 20812 human transcripts. 

We performed Gene Ontology (GO) and KEGG 
enrichment analysis on the differentially expressed 
genes in the MCPIP1 vs. PURO and D141N vs. PURO 
groups. The upregulated genes in the MCPIP1 vs. PURO 
group were enriched in GO terms belonging to 54 

biological processes (BP), 4 molecular function (MF), 
and 13 cellular component (CC) categories (p-adj. < 
0.05; Figure 2, Supplementary Table 2). The upregulated 
genes in the D141N vs. PURO group belonged to 40 
BP, 10 MF and 17 CC categories (p-adj. < 0.05; Figure 
2 and Supplementary Table 3). The downregulated genes 
in the MCPIP1 vs. PURO group were enriched in 10 
BP, 9 MF, and 7 CC functional categories, whereas the 
downregulated genes in the D141N vs. PURO group were 
enriched in 13 BP, 4 MF and 10 CC categories (p-adj. 
< 0.05; Figure 2, Supplementary Tables 2 and 3). The 
biological processes upregulated in MCPIP1 and D141N 
cells (p-adj. < 0.0001) were common in both cell lines 
and involved in cell cycle, cell division, DNA replication, 
and DNA repair, whereas those downregulated (p-adj. <  
0.01) were distinct in MCPIP1 and D141N cells, and were 
involved in endoplasmic reticulum stress and nucleotide 
metabolism, respectively. Moreover, transcripts associated 
with lysosomes were downregulated in both MCPIP1 and 
D141N cells. 

KEGG enrichment analysis shows 8 upregulated and 
2 downregulated pathways in MCPIP1 cells, whereas, 12 
upregulated and 7 downregulated pathways were observed 
in D141N cells (p-adj. < 0.05; Table 1, Supplementary 
Figure 1, Supplementary Tables 2 and 3). Cell cycle was 
the top upregulated KEGG pathway, whereas lysosomal 
regulation was the most downregulated KEGG pathway 
in MCPIP1 and D141N cells. We additionally analyzed 
the differentially expressed genes between MCPIP1 and 
D141N overexpressing cells. GO analysis showed that 
upregulated genes belonged to 37 BP, 11 MF and 11 CC 
GO terms, whereas the downregulated genes belonged to 
50 BP, 12MF and 20 CC GO terms. KEGG enrichment 
analysis showed 8 upregulated and 16 downregulated 
pathways in MCPIP1 cells than in D141N cells. Both 
GO and KEGG analyses showed that wild-type MCPIP1 
downregulated cell cycle, DNA repair and endoplasmic 
reticulum protein processing (Supplementary Table 4).

Thus, the RNA-Seq analysis revealed widespread 
changes in transcript levels in both MCPIP1 and D141N 
cells. These changes were more pronounced in D141N 
cells.  The functional analysis with GO and KEGG 
databases demonstrated overlapping and distinct cellular 
processes for cell lines overexpressing wild type and 
mutated MCPIP1 protein. 

Putative MCPIP1 targets

Next, we analyzed 219 genes that were were 
downregulated in MCPIP1 cells based on RNA-Seq 
analysis as possible targets of MCPIP1 RNase. Among 
these, 183 genes were unchanged in D141N cells (p-adj. 
< 0.05), whereas, the remaining 36 were upregulated 
in D141N cells (fold change > 1.5 and p-adj. < 0.05; 
Supplementary Table 1). On the basis of our functional 
analysis and on the literature data we selected 15 out 
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of these 219 genes for further validation. These were 
involved in protein folding, cell cycle regulation, hypoxia 
response and cell signaling (Table 2). We verified the 
expression of these 15 selected genes by quantitative real 
time PCR (qRT-PCR) using the primer sequences listed in 
Supplementary Table 5. 

PIN domain is important for viability and 
proliferation of Caki-1 cells

Previous reports show that overexpression of wild-
type MCPIP1 in Caki-1 cells decreases cell survival and 
proliferation [4]. We confirmed that the MCPIP1 cells 
showed decreased confluence than in PURO and also in 
D141N cells. MTT assay also showed that MCPIP1 cells 

were less viable than PURO and D141N cells (Figure 3A). 
BrdU incorporation assay showed decreased proliferation 
of MCPIP1 cells than in PURO and D141N cells (Figure 
3A). These results suggest that MCPIP1 regulates 
proliferation and viability of Caki-1 cells.

MCPIP1 regulates transcripts of cell cycle 
regulatory genes 

We investigated growth inhibition in MCPIP1 
cells by analyzing expression of some cell cycle genes. 
MCPIP1 cells showed increased expression of the p21Cip1 
(CDKN1A) protein and mRNA than in PURO and 
D141N cells (Figure 3B). The p21Cip1 protein belongs to 
the Cip/Kip family of inhibitors and blocks cell cycle 

Figure 1: RNA-Seq analysis of global transcriptome changes based on MCPIP1 expression. (A) Principal component 
analysis (PCA) of RNA-Seq datasets and (B) Venn diagrams show the number of differentially expressed transcripts (adj. P-value < 0.05) 
in the MCPIP1 and D141N cells relative to the PURO cells (MCPIP1 vs. PURO and D141N vs. PURO datasets).  PCA is based on the 
abundances of all transcripts detected in RNA-Seq analysis. 
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by inhibiting G1/S and S-phase Cyclin-Cdks (Cyclin D, 
E and A) [15]. During S phase, p21Cip1 degradation is 
regulated by the activity of Cul4-DDB1-Cdt2 E3 ligase 
[16]. In our RNA-Seq analysis, DDB1 (Damage Specific 
DNA Binding Protein 1) transcript levels were reduced in 
MCPIP1 cells than in PURO and D141N controls (Table 
2 and Supplementary Table 1). QRT-PCR analysis showed 
that DDB1 mRNA levels were reduced by 2.3-fold and 
2-fold in MCPIP1 cells than in PURO and D141N cells 
(Figure 3B). Therefore, we postulate that lower levels 
of DDB1 will decrease the growth of MCPIP1 cells by 
reducing p21Cip1 degradation. Cang et al. showed that 
conditional knockout of DDB1 in mouse brain blocks the 
cell cycle and promotes apoptosis [17]. DDB1 knockdown 
upregulates both p21 protein and mRNA levels, thereby 
suggesting that regulation of p21 is complex [18]. 

We also observed that CDT1 (Chromatin Licensing 
and DNA Replication Factor 1) mRNA levels are 
upregulated in MCP1P cells (adj. p-value = 3.076E-08 
as compared to PURO) and unchanged in D141N cells 
(Supplementary Table 1). CDT1 is negatively regulated 
by Cul4-DDB1-Cdt2 complex [17, 19, 20]. It is required 
for the assembly of pre-replicative complexes (pre-RC) 
at origins of replication in G1 phase [21]. In human cells, 
elevated Cdt1 levels promotes re-replication, prevents 
entry into mitosis and inhibits cell growth by activating 
Chk1/Chk2 kinases and p21Cip1 [22, 23]. This suggests that 

MCPIP1 overexpression inhibits cell cycling and growth 
by upregulating the p21Cip1 cell cycle inhibitor in cells.

MCPIP1 regulates transcripts of factors involved 
in ER protein misfolding response 

MCP1P1 overexpression downregulates transcripts 
that encode proteins involved in protein folding in the ER 
(Figure 2, Table 2, Supplementary Table 1). Chaperones 
facilitate protein re-folding and target misfolded proteins 
for degradation [24]. The protein folding machinery 
is dysregulated in MCPIP1 cells, which results in the 
accumulation of misfolded proteins. This may inhibit their 
proliferation [25]. We validated expression of HSPA5 and 
AGR2 transcripts, which are involved in protein folding 
and are downregulated in MCPIP1 cells (Table 2 and 
Supplementary Table 1). 

HSPA5 is a member of the heat shock protein 70 
(HSP70) family, which is induced during various stress 
conditions such as hypoxia to regulate protein folding 
and assembly in the ER [26]. QRT-PCR analysis showed 
that HSPA5 mRNA levels in MCPIP1 cells were reduced 
by 2.8-fold and 2.4-fold than in PURO and D141N cells, 
respectively (Figure 4A). 

Anterior gradient 2 (AGR2) is a member of the family 
of disulphide isomerases that regulate protein folding, 
maturation and secretion of proteins in the ER and is 

Figure 2: Bubble plot of significantly enriched GO terms in the MCPIP1 vs. PURO and D141N vs. PURO comparative 
datasets.  The differentially regulated genes were based on the cut-off set at adj. p-value of 10-4 and 10-2 for upregulated and downregulated 
genes, respectively. The y-axis represents the -log10 (p-value) and the x-axis represents the z-score (computed with GOplot R-package). 
The area of the displayed circles is proportional to the number of genes assigned to the term in the analysis. The threshold indicates adj.  
p value = 0.05
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regulated by HIF-1α [27]. AGR2 mRNA levels in MCPIP1 
cells were 2.8-fold and 2.5-fold lower than in PURO and 
D141N cells, respectively (Figure 4A). AGR2 specifically 

binds and stabilizes HIF-1α decreasing its proteasomal 
degradation [28]. Moreover, AGR2 overexpression 
is associated with survival, invasion and epithelial-

Table 1: KEGG pathways overrepresented among genes differentiating control and MCPIP1 and 
D141N cells

ID Description GeneRatio BgRatio p value q value Count
M

C
PI

P1
 v

s C
on

tr
ol

Upregulated
hsa03030 DNA replication 18/481 32/4312 5.61E-10 1.45E-07 18
hsa05322 Systemic lupus erythematosus 28/481 74/4312 1.44E-09 1.86E-07 28
hsa04110 Cell cycle 34/481 113/4312 2.45E-08 2.10E-06 34
hsa05034 Alcoholism 34/481 125/4312 3.74E-07 2.41E-05 34
hsa03010 Ribosome 32/481 118/4312 8.97E-07 4.63E-05 32
hsa04115 p53 signaling pathway 16/481 55/4312 2.11E-04 9.08E-03 16
hsa03430 Mismatch repair 8/481 20/4312 8.42E-04 3.10E-02 8
hsa03420 Nucleotide excision repair 12/481 40/4312 9.62E-04 3.10E-02 12

Downregulated
hsa04142 Lysosome 29/517 103/4312 5.63E-06 1.52E-03 29

hsa04610 Complement and coagulation 
cascades 13/517 32/4312 3.63E-05 4.90E-03 13

D
14

N
 v

s C
on

tr
ol

Upregulated
hsa04110 Cell cycle 76/1574 116/4752 5.18E-13 1.45E-10 76
hsa04114 Oocyte meiosis 58/1574 95/4752 1.65E-08 2.30E-06 58
hsa04120 Ubiquitin mediated proteolysis 63/1574 119/4752 5.03E-06 4.68E-04 63

hsa04914 Progesterone-mediated oocyte 
maturation 41/1574 78/4752 2.76E-04 1.93E-02 41

hsa04141 Protein processing in 
endoplasmic reticulum 70/1574 151/4752 4.07E-04 2.27E-02 70

hsa03430 Mismatch repair 15/1574 22/4752 7.94E-04 3.69E-02 15
hsa03420 Nucleotide excision repair 24/1574 42/4752 1.11E-03 3.87E-02 24
hsa03013 RNA transport 62/1574 135/4752 1.15E-03 3.87E-02 62
hsa03018 RNA degradation 35/1574 68/4752 1.25E-03 3.87E-02 35
hsa03460 Fanconi anemia pathway 25/1574 45/4752 1.53E-03 4.01E-02 25
hsa03015 mRNA surveillance pathway 38/1574 76/4752 1.58E-03 4.01E-02 38
hsa03040 Spliceosome 57/1574 124/4752 1.75E-03 4.06E-02 57

Downregulated
hsa04142 Lysosome 63/1564 113/4752 3.61E-07 1.03E-04 63
hsa01230 Biosynthesis of amino acids 33/1564 54/4752 1.79E-05 2.55E-03 33

hsa04932 Non-alcoholic fatty liver 
disease 64/1564 127/4752 2.71E-05 2.58E-03 64

hsa01200 Carbon metabolism 47/1564 91/4752 1.48E-04 1.05E-02 47
hsa00190 Oxidative phosphorylation 52/1564 104/4752 1.96E-04 1.12E-02 52
hsa05012 Parkinson’s disease 53/1564 108/4752 3.13E-04 1.49E-02 53

Terms common for both comparisons are bolded. ID – KEGG identifier, GeneRatio – the ratio of number of differentiating 
genes in a given pathway to the number of differentiating genes with KEGG identifier ; BgRatio – the ratio of number of 
not differentiating genes in a given pathway to the number of expressed genes with KEGG identifier; p-value - p-value 
in hypergeometric test; q-value - p-value after FDR correction; Count – number of differentiating genes contributing to a 
given pathway.
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mesenchymal transition of many cancers; for instance head 
and neck squamous cell carcinoma, pancreatic and breast 
cancers [29–31]. These data suggest that factors such as 
HSPA5 and AGR2 protect the cancer cells that reside in a 
hypoxic environment from ER-stress induced apoptosis. 

It was shown that in hypoxic conditions in mouse 
beta cells downregulation of the protein folding machinery 
in the ER promotes cell death [32].  Here, we postulate 
that low MCPIP1 levels promotes growth and progression 
of ccRCC cells by upregulating factors such as HSPA5 

Table 2: List of 15 transcripts selected for validation based on the RNA-Seq analysis  
Gene 

Symbol Description Function/Characteristics
MCPIP1 vs PURO D141N vs PURO
adj.pval FC adj.pval FC

AGR2 Anterior Gradient 2 •  Protein folding and maturation 
in the endoplasmic reticulum

•  Hypoxia-induced expression
0.00733 0.47 0.01477 1.59

DDB1 Damage Specific DNA 
Binding Protein 1

•   Involved in degradation of cell 
cycle regulators

•  DNA Repair
0.01228 0.69 0.52111 1.09

ENPP2
Ectonucleotide 

Pyrophosphatase/ 
Phosphodiesterase 2

•  Hypoxia-induced expression
•   Promoting cancer cell metastasis 

and angiogenesis
0.03466 0.46 0.00479 2.29

FRAT1
Frequently Rearranged 

In Advanced T-Cell 
Lymphomas 1

•  Signal Transduction
•  Regulating Wnt signaling 0.00631 0.42 0.70815 0.90

GPRC5B
G Protein-Coupled 

Receptor Class C Group 5 
Member B

•  Signal Transduction
•  Hypoxia-induced expression
•  Associated with lipid metabolism

0.01287 0.58 0.95273 1.01

HSPA5 Heat shock 70kDa protein 5
•  Protein folding and maturation 

in the endoplasmic reticulum
•  Hypoxia-induced expression

0.00042 0.59 0.82536 0.96

MMP2 Matrix  Metallopeptidase 2
•  Hypoxia-induced expression
•   Promoting cancer cell metastasis 

and angiogenesis
0.01807 0.42 0.00003 3.31

NDRG1 N-Myc Downstream 
Regulated 1 •  Hypoxia-induced expression 0.00000 0.36 0.05544 0.76

NDRG2 NDRG Family   Member 2 •  Hypoxia-induced expression 0.00924 0.54 0.28197 0.80

NGEF
Neuronal Guanine 

Nucleotide Exchange 
Factor

•  Signal Transduction
•  Associated with lipid metabolism 0.00030 0.41 0.90357 0.98

PLOD2
Procollagen-Lysine,2-

Oxoglutarate 
5-Dioxygenase 2

•  Hypoxia-induced expression
•  Promoting cancer cell metastasis 0.00244 0.48 0.00000 5.00

RIPK4 Receptor Interacting Serine/
Threonine  Kinase 4

•  Signal Transduction
•  Regulating Wnt signaling 0.00733 0.45 0.86098 0.94

SGK2 Serine/Threonine  Kinase 2 •  Signal Transduction
•  Regulating sodium transporters 0.00200 0.49 0.09619 1.26

SPHK1 Sphingosine Kinase 1

•  Hypoxia-induced expression
•  Signal Transduction
•   Promoting cancer cell metastasis 

and angiogenesis 

0.00000 0.32 0.23539 0.83

TSC22D3 TSC22 Domain Family 
Member 3

•  Signal Transduction
•  Interfering with NF-κB signaling
•  Regulating sodium transporters

0.00430 0.52 0.77541 0.95

The fold change (FC) and adjusted P-values for the MCPIP1 vs. PURO and D141N vs. PURO comparisons are provided. 
The full list of transcripts is shown in Supplementary Table 1.
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and AGR2, which are involved in protein folding and 
secretion in the ER.

MCPIP1 downregulates hypoxia-response 
transcripts

We have already showed that MCPIP1 
overexpression negatively regulates vascular endothelial 
growth factor (VEGF) [4], a well-known pro-angiogenic  
factor that is upregulated in many tumors [33–35]. In 
RNA-Seq we consistently found VEGF to be significantly 
downregulated (adj. p-value = 4.69E-04 as compared to 
PURO) in MCPIP1 overexpressing cells (Supplementary 
Table 1). Although the role of MCPIP1 in hypoxia and 
angiogenesis has been previously reported, the molecular 
mechanism is not fully elucidated. 

As reported above, HSPA5 and AGR2 are two 
MCPIP1-regulated ER proteins that play an important role 
in hypoxia. Therefore, we validated a subset of hypoxia-
related genes that are downregulated in MCPIP1 cells, but 
remained unchanged or upregulated in D141N cells (Table 
2 and Supplementary Table 1). 

Sphingosine Kinase 1 (SPHK1) is classified under 
the organonitrogen compound catabolic process, one of 
the top BP term for transcripts that are downregulated in 
MCPIP1 vs. PURO group (Figure 2 and Supplementary 
Table 2). SPHK1 catalyzes phosphorylation of 
sphingosine to sphingosine-1-phosphate (S1P), which 
promotes proliferation; meanwhile, sphingosine induces 
cell growth arrest and apoptosis (reviewed in [36, 37]). 
During hypoxia, SPHK1 regulates expression of HIF1α 
and HIF2α [38, 39]. SPHK1 overexpression promotes 
angiogenesis by inducing VEGFA and MMP2 expression 
in many tumors [40, 41]. SPHK1 transcript levels were 
reduced by  3.7-fold and 3.8-fold in MCPIP1 cells than 
in PURO and D141N cells, respectively (Figure 4B). 
Therefore, we postulate that low MCPIP1 expression in 
ccRCC cells increase S1P levels by enhancing SPHK1, 
which results in higher proliferation rates. 

RNA-Seq data also showed that ENPP2 (Ectonucleotide 
Pyrophosphatase/ Phosphodiesterase family member 2) 
transcript levels were significantly downregulated in MCPIP1 
cells (Supplementary Table 1 and Table 2). ENPP2 or 
autotaxin functions as a phosphodiesterase and phospholipase 

Figure 3: MCPIP1 overexpression decreases growth of Caki-1 cells. (A) Graphical representation of cell viability, proliferation 
and growth of PURO, MCPIP1 and D141N cells. Cell growth and viability was measured by the MTT assay at 24, 48 and 72 h in the 3 cell 
lines after induction with doxycycline for 24 h. Cell proliferation was measured by BrdU incorporation for 8 h in the three cell lines after 
induction with doxycycline for 24 h. (B) Representative western blots show MCPIP1 and p21 expression in PURO, MCPIP1 and D141N 
cells induced with doxycycline for 24 h. β-Actin is used as a loading control. Histograms show CDKN1A and DDB1 transcript levels 
relative to RPS13 transcript levels in PURO, MCPIP1 and D141N cells induced with doxycycline for 24 h. Blots represent two out of three 
identical experiments. Graphs represent mean ± SD from three (B) or four (A) independent experiments. The p-values were estimated by 
one-way ANOVA followed by Tukey’s HSD tests (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). Note: For the cell growth analysis the 
two-way ANOVA followed by Tukeys’s independent test was used (* relates to PURO vs. MCPIP1 comparison and # relates to MCPIP1 
vs. D141N comparison).
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that generates lysophosphatidic acid (LPA), which stimulates 
cell proliferation and chemotaxis [42]. ENPP2 is upregulated 
in several carcinomas and promotes angiogenesis [42, 43]. 
Hypoxia stimulates expression of ENPP2 as well as production 
of LPA [44]. Moreover, LPA induces HIF1α expression in 
colon cancer cells at the transcriptional level [45]. ENPP2 
transcript levels were reduced in MCPIP1 cells by 1.9-fold and 
2.4-fold than in PURO and D141N cells, respectively (Figure 
4B). Since VEGF-A and LPA is a are both proangiogenic 
factors, our findings suggest that MCPIP1 overexpression 
inhibits angiogenesis in Caki-1 cells by downregulating 
VEGFA and ENPP2. 

We further showed that the transcript encoding 
PLOD2 (Procollagen-Lysine 2-Oxoglutarate 5-Dioxygenase 
2) was downregulated in MCPIP1 cells by 3.2-fold and 

2.9 than in PURO and D141N cells, respectively (Figure 
4B). Similarly, transcript encoding MMP2 (matrix 
metalloproteinase) was also decreased by 2.8-fold and 
3.2-fold in MCPIP1 cells than in PURO and D141N 
cells, respectively (Figure 4B). PLOD2 is an enzyme 
that catalyzes the hydroxylation of lysyl residues in 
collagen-like peptides and is involved in extracellular 
matrix remodeling and hypoxia-induced breast cancer 
metastasis [46]. PLOD2 expression is induced in hypoxia 
by HIF1α [46–48]. MMP2 is also activated by hypoxia 
and facilitates vascular invasion during angiogenesis [49–
51]. MMP2 cleaves extracellular matrix proteins and is 
involved in signal transduction. Hypoxia-driven MMP2 
activation promotes cancer progression and metastasis [52, 
53]. Zhu et al. showed that high MMP-2 expression was 

Figure 4: MCPIP1 decreases transcripts of protein folding and hypoxia response genes. (A) QRT-PCR analysis of HSPA5 
and AGR2 mRNA levels in PURO, MCPIP1 and D141N cells induced with doxycycline for 24 h. (B) QRT-PCR analysis of SPHK1, 
ENPP2, PLOD2, MMP2, NDRG1 and NDRG2 mRNA levels in PURO, MCPIP1 and D141N cells induced with doxycycline for 24 h. 
Transcript levels are normalized to RPS13 mRNA levels as control. Graphs represent mean ± SD of three independent experiments. The 
p-values were estimated by one-way ANOVA followed by Tukey’s HSD test (* p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). 
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associated with poor prognosis and rapid progression of 
RCC [54]. These results suggest that MCPIP1 modulates 
extracellular matrix remodeling in angiogenesis and 
various cancers by regulating expression of factors such 
as MMP2 and PLOD2.

N-Myc downstream-regulated gene 1 (NDRG1) 
and NDRG Family   Member 2 (NDRG2) are two other 
hypoxia-related transcripts that are downregulated in 
MCPIP1 cells. NDRG1 transcript levels were decreased by 
2.1-fold and 2.8-fold in MCPIP1 cells than in PURO and 
D141N cells, respectively (Figure 4B). NDRG1 is involved 
in stress and hormone responses as well as cell growth and 
differentiation. NDRG1 is necessary for p53-mediated 
caspase activation and apoptosis [55]. High NDRG1 
expression has shown potential as a prognostic biomarker 
in many types of cancers [56, 57], including ccRCC [58]. 
Moreover, NDRG1 expression is differentially regulated 
during diverse physiological and pathological conditions 
such as hypoxia, cellular differentiation, heavy metal 
response and neoplasia [56, 59–61]. NDRG2 mRNA 
levels were reduced by 2.9-fold and 3.4-fold in MCPIP1 
cells than in PURO and D141N, respectively (Figure 4B). 
NDRG2 suppresses renal cell carcinoma proliferation 
and invasion [62, 63]. NDRG2 regulation is complex and 
involves both N-Myc and MCPIP1 [64].

MCPIP1 negatively regulates transcripts 
encoding signaling mediators

Finally, we validated six transcripts that encode 
signaling pathway mediators, which were downregulated 
in MCPIP1 cells  (Supplementary Table 1; Table 2 and  
Figure 5). These included the transcript encoding for 
neuronal guanine nucleotide exchange factor (NGEF) or 
Ephexin1. NGEF gene polymorphism is associated with 
obesity and adipose tissue content [65, 66]. Moreover, 
ccRCC is composed of cells whose cytoplasm is filled 
with lipid droplets [67, 68]. We previously reported 
the role of MCPIP1 in adipocyte differentiation 
[69] and that forced expression of MCPIP1 reduces 
differentiation potential of pre-adipocytes [70]. NGEF 
mRNA levels were reduced by 2.7-fold and 4.3-fold 
in MCPIP1 cells  than in PURO and D141N cells, 
respectively (Figure 5). We postulate that changes in 
NGEF mRNA levels may impact lipid storage in Caki-
1 cells. 

G-protein coupled receptor family C group 5 
member B (GPRC5B) is a putative glutamate G-protein 
coupled receptor [71–75], which is associated with 
obesity by promoting adipose inflammation [76–78]. We 
observed that the GPRC5B mRNA levels in MCPIP1 

Figure 5: MCPIP1 decreases transcripts of signaling mediators. QRT-PCR analysis of NGEF, GPRC5B, TSC22D3, SGK2, 
FRAT1 and RIPK4 mRNA levels relative to RPS13 in PURO, MCPIP1 and D141N cells induced with doxycycline for 24 h Graphs 
represent mean ± SD of three independent experiments. The p-values were estimated by one-way ANOVA followed by Tukey’s HSD test 
((* p <0.05; **p <0.01; ***p <0.001; ****p <0.0001).
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were reduced by 2.2-fold and 3.7-fold than in PURO and 
D141N cells, respectively (Figure 5). 

TSC22D3 (TSC22 Domain Family Member 3) 
transcript encodes the glucocorticoid-induced leucine 
zipper (GILZ) protein, which inhibits adipogenesis by 
downregulating PPARγ and CEBPα [79]. Moreover, 
GILZ protein is an important mediator of anti-
inflammatory effects in gastric cancer [80–85]. GILZ 
binds to NF-κB and inhibits its nuclear translocation 
[86–88]. It mediates anti-inflammatory effects by 
directly interacting with AP-1 [89] and/or inhibiting 
upstream signaling pathways by binding to Ras and Raf-
1 kinase [90, 91]. Similar to the other hypoxia-related 
transcripts that are downregulated in MCPIP1 cells, 
GILZ is induced by hypoxia [92]. Moreover, GILZ is 
involved in the epithelial Na+ transport by cooperating 
with SGK2 (Serine/Threonine Kinase 2), which 
regulates the expression of sodium-coupled transporters 
that mediate transmembrane transport of important 
metabolites [93–100]. Figure 5 shows that TSC2DD3 
transcript levels were reduced by 2-fold and 3.2-fold in 
the MCPIP1 cells relative to PURO and D141N cells, 
respectively (Figure 5). The levels of SGK2 mRNA 
were 2.7-fold and 3.1-fold lower in MCPIP1 cells than 
in PURO and D141N cells (Figure 5)

We also observed a 3.4-fold and 3.8-fold reduction 
in FRAT1 (Frequently Rearranged in Advanced T-cell 
lymphomas 1) and 3-fold and 3.3 fold RIPK4 (Receptor 
Interacting Serine/Threonine  Kinase 4) mRNA levels 
in the MCPIP1 cells relative to PURO and D141N 
cells (Figure 5). FRAT1 and RIPK4 modulate the Wnt 
signaling pathway, which is a crucial player in initiation 
and development of many cancers [101]. FRAT1 is a 
member of the GSK-3 (Glycogen Synthase Kinase 3) 
binding protein family, which selectively inhibits GSK3-
mediated phosphorylation that is critical for stabilization 
and accumulation of β-catenin in cancer cells [102–106]. 
FRAT1 overexpression leads to aberrant activation 
β-catenin in many types of cancers [107–114]. Similarly, 
RIPK4 serine/threonine protein kinase overexpression 
has been reported in many cancers [115] and is 
attributed to aberrant activation of Wnt signaling [116]. 
Therefore, we postulate that MCPIP overexpression 
promotes growth inhibition and apoptosis in Caki-1 
cells by downregulating FRAT1 and RIPK4, thereby 
decreasing Wnt signaling.

In conclusion, we identified 219 transcripts that 
are downregulated in MCPIP1 cells, but are unchanged 
or upregulated in D141N cells that overexpress MCPIP1 
that lacks the functional PIN domain. We further 
validated 15 selected transcripts by qRT-PCR. As shown 
in Figure 6, MCPIP1 overexpression leads to large scale 
changes in transcript levels, especially those involved 
in protein folding, cell cycle progression, hypoxia 
response, angiogenesis and cell signaling.  

MATERIALS AND METHODS

Cell culture

The human ccRCC cell line, Caki-1, was cultured 
in Eagle minimal essential medium (EMEM; Lonza) 
containing 10% fetal bovine serum (FBS; BioWest) 
at 37ºC and 5% CO2. Cells were passaged at 80–90% 
confluence, thrice a week. 

Transfection of Caki-1 with lentiviral constructs

We used the doxycycline-dependent TetON 
overexpression system for stable expression of wild type 
MCPIP1 and mutant form of MCPIP1 with inactivated 
PIN domain (D141N) (pLIX MCPIP1, pLIX D141N). 
Lentiviruses with the empty lentiviral vector (pLIX 
PURO) were transduced into Caki-1 cells to generate the 
negative control cells. Caki-1 cells were transduced with 
the lentiviruses carrying the different expression constructs 
at an MOI of 50 when they were 50–70% confluent. After 
24 h, the virus containing media was replaced with fresh 
media for 24 h followed by selection in media containing 
2 µg/ml puromycin (InvivoGen) for 10 days to select 
stably transduced cells.

BrdU cell proliferation assay

Cell proliferation was measured with the BrdU 
Cell Proliferation Assay Kit (Roche). We seeded 5 × 103 
MCPIP1, D141N and PURO cells in 96-well plates and 
stimulated them with 1 µg/ml doxycycline (BioShop) for 
24 h. Then, the cells were incubated with 10 μM BrdU for 
8 h and the incorporated BrdU was quantified according 
to the manufacturer’s instructions by measuring the 
chemiluminescence with the Tecan Spectra Fluor Plus 
Microplate Reader (Tecan Group Ltd.). The experiment 
was performed four times and the data was presented as 
the mean luminescence value (percentage) for each sample 
relative to the PURO cells. Mean luminescence of the 
PURO cells was set as 100%.

MTT cell viability assay

Cell viability was measured with the colorimetric 
MTT assay (Sigma). We seeded MCPIP1, D141N and 
PURO cells (5 × 103 per well) in 96-well plates and 
stimulated them with doxycycline (DOX) for 24 h. 
Then, MTT assay was performed at 24, 48 and 72 h and 
measured the absorbance at 570 nm relative to 690 nm 
in a Tecan Spectra Fluor Plus Microplate Reader (Tecan 
Group Ltd.). The experiment was performed four times 
with quintuplicate samples in each experiment. Data was 
expressed as the mean absorbance of each sample relative 
to PURO cells.
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Statistical analysis

All statistical analyses were performed using 
GraphPad Prism (ver. 6.0). Statistical data is expressed 
as mean ± SD from at least three independent replicate 
experiments. Analysis of multiple datasets was performed 
by a one-way ANOVA analysis followed by Tukey’s 
HSD (honest significant difference) test. The significant 
p-values were marked as follows: * denotes p < 0.05; ** 
denotes p < 0.01; *** denotes p < 0.001; **** denotes p < 
0.0001.

RNA isolation

Total RNA was isolated from stably transfected 
Caki-1 cells stimulated with doxycycline for 24 h with 
the guanidium isothiocyanate (GTC) method. Total RNA 
preparation was checked by 1% denaturing formaldehyde 
agarose gel electrophoresis for ribosomal RNA and DNA 
contamination. Total RNA concentration and its purity 
were assessed by determining the A260/280 and A260/230 
ratios, respectively (NanoDrop).

Generation of the transcriptome library and 
RNA sequencing

RNA integrity was assessed with the Agilent RNA 
6000 Nano Kit on 2100 Bioanalyzer (Agilent) followed by 
library preparation with the Ion AmpliSeq Transcriptome 
Human Gene Expression Panel (Thermo) according to the 
manufacturer’s protocol  [117]. Briefly, equal amounts of 
total RNA from all samples were reverse transcribed and 
the cDNAs were subjected to multiplex PCR to amplify 
parts of the target transcripts. The resultant amplicons were 
partially digested AND ligated with adapters. Ligation 
products were then purified with AMPure® XP beads 

(Beckman). The  library was quantified in the Bioanalyzer 
2100 and the concentration was adjusted to ~100 pM 
prior for template preparation. Then, eight barcoded 
library templates were clonally amplified on Ion Sphere 
particles (ISPs) with the Ion PI IC 200 Kit (Thermo) on 
the Ion Chef Instrument (Thermo Fisher Scientific, USA), 
loaded onto Ion PI chips and sequenced on an Ion Proton 
sequencer (Thermo) with the Ion PI IC 200 Kit, according 
to the manufacturer’s instructions.

Analysis of RNA-sequence reads 

The raw reads were processed by the Torrent 
Suite analysis pipeline and mapped to the human 
genome assembly hg19 AmpliSeqTranscriptome 
version by TMAP. The reads corresponding to each 
gene were counted with htseq-count [118]. The data 
was normalized and the differential expression of 
various genes was determined by DESeq2 using default 
parameters [119]. Overrepresentation of gene ontology 
(GO) terms was determined by the R/BioConductor 
package clusterProfiler with the hypergeometric test 
[120]. GO visualization was performed with the GOplot 
R package [121]. KEGG visualization was performed 
with the Pathview package [122]. The RNA-Seq data 
(Accession number: PRJEB20908) was deposited as 
BAM files in the European Nucleotide Archive (https://
www.ebi.ac.uk/ena).

Quantitative real-time PCR

We validated the selected transcripts by qRT-
PCR. Total RNA was isolated from PURO, MCPIP1 and 
D141N cells from three independent experiments with the 
guanidium isothiocyanate (GTC) method as described.. 
Subsequently, 1 μg of total RNA was reverse-transcribed 

Figure 6: Schematic diagram shows transcriptome regulation by MCPIP1 in Caki-1 cells. Detailed description is included 
in the Results and Discussion section.
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with oligo (dT15) primers (Promega) and M-MLV reverse 
transcriptase (Promega). The cDNA was diluted 5-times 
and real-time PCR was carried out using Eco Real-Time 
PCR System (Illumina) with the SYBR Green master 
mix (A&A Biotechnology) and primers that are listed 
in Supplementary Table 5. The relative levels of the 
transcripts were determined relative to RPS13 (ribosomal 
protein S13) by ΔΔCT method. 

Western Blot

Total protein lysates were prepared from MCPIP1, 
D141N and PURO cells and quantified with the bicinchoninic 
acid assay. Equal amounts of protein samples were resolved 
by SDS/PAGE on 10% Bis-Tris acrylamide gels at a constant 
voltage of 120V. The resolved proteins were then transferred 
to a PVDF membrane (Millipore) for 90 minutes at a constant 
voltage of 90 V. Then, the membranes were blocked with 
5% non-fat milk in Tris-buffered saline containing 0.1% 
Tween-20 (TBST; BioShop) for 1 h at room temperature. 
Membranes were incubated with primary antibodies against 
MCPIP1 (1:2000; GeneTex 1:2000), p21 Waf1/Cip1 (12D1; 
1:1000; Cell Signaling Technology) and β-actin (1:3000; 
Sigma), overnight at 40C. Then, the membranes were 
incubated with HRP-conjugated secondary antibodies (anti-
rabbit IgG or anti-mouse IgG, Sigma 1:30000). For signal 
detection, Immobilon Western HRP substrate (Millipore) 
was used and the chemiluminescence was determined in a 
ChemiDoc system (BioRad). 
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