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Abstract

Scoring functions are important components in molecular docking for structure-based drug discovery. Traditional scoring functions,
generally empirical- or force field-based, are robust and have proven to be useful for identifying hits and lead optimizations. Although
multiple highly accurate deep learning- or machine learning-based scoring functions have been developed, their direct applications
for docking and screening are limited. We describe a novel strategy to develop a reliable protein–ligand scoring function by augmenting
the traditional scoring function Vina score using a correction term (OnionNet-SFCT). The correction term is developed based on an
AdaBoost random forest model, utilizing multiple layers of contacts formed between protein residues and ligand atoms. In addition
to the Vina score, the model considerably enhances the AutoDock Vina prediction abilities for docking and screening tasks based on
different benchmarks (such as cross-docking dataset, CASF-2016, DUD-E and DUD-AD). Furthermore, our model could be combined
with multiple docking applications to increase pose selection accuracies and screening abilities, indicating its wide usage for structure-
based drug discoveries. Furthermore, in a reverse practice, the combined scoring strategy successfully identified multiple known
receptors of a plant hormone. To summarize, the results show that the combination of data-driven model (OnionNet-SFCT) and
empirical scoring function (Vina score) is a good scoring strategy that could be useful for structure-based drug discoveries and
potentially target fishing in future.
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Introduction
Molecular docking is a useful tool for structure-based
drug discoveries [1–4]. Scoring function is one of the
most important components of a docking application
[1]. A well-balanced scoring function should have the
following three abilities. First, it should be fast and
accurate to score and rank the large number of docking
poses generated in docking simulations [1, 5, 6]. From
the application aspect, accurate ligand pose selection
would guide inhibitor design, agonist design, and

enzyme–substrate catalytic mechanism exploration [7–
10]. Second, a good scoring function should be able to
screen the compound libraries, select the right binding
poses and identify the active molecules, which are
usually an extremely small portion of libraries having
affordable computation resources and calculation times
[5, 6, 11]. This ability would facilitate the ‘hits’ molecules
identification via high throughput virtual screening at
quite an early stage in a drug discovery project for small
molecules. Finally, good scoring should allow strong
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binding between a small molecule and its native receptor
but weak binding toward other off-target proteins [12].
Naturally, by adopting the reverse virtual screening
pipeline, the capacity to identify the native receptor for
a small molecule would be extremely useful in small
molecule off-target evaluation, drug safety evaluation
and target fishing [12–15]. The identification of native
targets for natural products [15] or hormones (both in
animals or plants) is an important area assuming there
exists a reliable reverse screening pipeline that would
help shortlist possible binding proteins for the query
compound with a relatively lower false positive rate.
Moreover, to locate the true target protein, limited wet
lab experiments would be required. The current scoring
functions generally are quite good at the first direction
but not the last two. Some of the most successful
traditional scoring functions for docking and screening
tasks are Vina score (in AutoDock Vina [16]), ChemPLP (in
GOLD [17]) and Glide score (in Glide [18]); however, they
still have quite a high false positive rate during screening
[6]. More recently developed machine learning (ML) and
deep learning (DL) scoring functions were reported to
have higher scoring ability for crystal protein–ligand
complexes [19–28]. However, for docking and screening
tasks, many of these functions are even not better
than traditional scoring functions such as Vina score,
Goldscore and ChemPLP [28, 29]. Traditional scoring
functions, such as force field-based, statistical-based or
empirical scoring functions-based, are mostly trained
on datasets formed by experimentally determined high-
quality protein–ligand complex structures, whereas
docking poses are not observed [16, 30–32]. The limitation
is that, when ranking the docking poses, the false positive
poses (those are far away from the native pose) would be
selected because the scoring functions cannot separate
them from the native pose [5, 6]. Another limitation of
the traditional scoring functions is that they are mostly
expressed by over-simplified linear energy combinations;
thus, they lack the ability to learn from corner cases and
large-scale decoy datasets. A recent study [33] proposed
a scoring function by building ML models to combine
energy terms in ten traditional scoring functions for
highly accurate screening tasks; however, the docking
ability of the scoring function is not tested.

Both ML and DL models have the ability to capture
high-level complexities in protein–ligand complexes and
have the potential to formulate a powerful scoring func-
tion for more practical docking and screening tasks [20,
21, 29]. Previous models such as OnionNet [19], Onion-
Net2 [20], Pafnucy [34], Kdeep [35] and RosENet [23] have
been reported to have high scoring and ranking scores;
however, their performance on virtual screening is not
as good as expected [28, 29], possibly because of the over-
fitting to the experimental complex structures datasets.
A recent docking application Gnina [22, 36] adopts a 3D
convolutional neural network (CNN) model [37] to pro-
vide a score to the docking poses. It can largely improve
both redocking and cross-docking task performance but

its performance for screening power is not evaluated.
The idea of training a DL model with docking poses in a
suitable manner appears to be a good approach to obtain
a more accurate scoring function [38]. Previous methods
such as �vinaXGB [39] and �vinaRF20 [40] were trained
on docking decoy datasets. Their learning labels were
artificial binding affinities calculated as per the docking
pose root mean square deviation (RMSD) and Vina scores
with the hypothesis that these poses having larger RMSD
should be labeled to have a lower binding affinity [40].
Inspired by these prior studies and our own DL exercises
[19, 20], we suggest that the robustness of Vina score
could be optimized by augmenting a ML-based score
term. Accordingly, the screening power and power to dif-
ferentiate the ‘good’ molecules from ‘bad’ ones could be
enhanced. Here, in this study, a scoring model (OnionNet-
SFCT) is built based on an AdaBoost random forests [41,
42] trained on docking poses with a broad range of devi-
ations (RMSD) from native poses (the crystal ligand con-
formation). Unlike what the authors did for developing
�vinaXGB and �vinaRF20, we did not apply artificial labels
in model training; instead, only the RMSD values were
used as labels [38], and the trained model works as a scor-
ing function correction term (SFCT). The input features
of this model are the multiple layers of protein–ligand
intermolecular contacts (between protein residues and
ligand atoms) [19, 20, 43]. The performance of adding
OnionNet-SFCT term to the Vina score is verified by dock-
ing (in particular redocking and cross-docking) tasks,
virtual screening tasks and reverse docking tasks.

Using OnionNet-SFCT, the top1 pose docking success
rates of AutoDock Vina are largely improved. When the
docking box center is predefined, the top1 pose success
rate of AutoDock Vina increases from 70.5% to 76.8%
for the redocking task using the PDBbind v2016 coreset
[44] and from 32.3% to 42.9% for cross-docking task. Fur-
thermore, OnionNet-SFCT+Vina increases the docking
power by 3% for top1 poses with the CASF-2016 bench-
mark [6], and it greatly improves the screening power by
almost doubling the enrichment factor of AutoDock Vina.
Moreover, equipped with OnionNet-SFCT, the enrichment
abilities of AutoDock Vina and Gnina on DUD-E [45]
and DUD-AD [11] benchmarks are largely improved. Fur-
thermore, we combine the OnionNet-SFCT correction
term with other scoring functions in LeDock [46], iDock
[47] and Gnina [36], as well as witness the increased
redocking and cross-docking success rates, indicating
that it could function as a general scoring term that is
beneficial for different scoring functions. In a reverse
docking task of abscisic acid (ABA) [48] on the Arabidop-
sis thaliana genome-wide proteins, OnionNet-SFCT+Vina
score scheme detected 4 known targets (there are 14
known abscisic acid binding proteins) in the top-ranked
10 proteins. None of the known targets can be identified
in the top-ranked 10 proteins only by the Vina score.

To summarize, the ML model that we developed can
greatly improve the performance of docking applications
in many tasks combined with traditional scoring func-
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Table 1. The datasets included in this study

SN Name Source # Samples Notes

1 Train PDBBind v2018 general set 12 906 Crystal structures
2 Validate PDBBind v2018 refineset 1000 Crystal structures
3 test1 CASF2016 coreset 285 Crystal structures
4 test2 PDBBind v2013 coreset 195 Crystal structures
5 docking (train) Docking poses based on train 10 208 × 90 Docking poses generated by iDock
6 docking (validate) Docking poses based on validate 978 × 90 Docking poses generated by iDock
7 docking (test1) Docking poses based on test1 285 × 90 Docking poses generated by iDock
8 docking (test2) Docking poses test2 195 × 90 Docking poses generated by iDock
9 redocking (validate) validate set 292 Crystal structures
10 redocking (v2016 coreset) test1 dataset 285 Crystal structures
11 cross-docking 3D DISCO cross-docking benchmark [48] 4399 Cross-docking protein-ligand

structures
12 CASF2016 CASF2016 docking and screening decoys [6] 57 targets Docking and cross-docking poses
13 DUD-E DUD-E actives and decoys [44] 102 targets Docking poses generated by

AutoDock Vina and Gnina
14 DUD-AD DUD-AD actives and decoys [11] 102 targets Docking poses generated by

AutoDock Vina and Gnina

tions. The OnionNet-SFCT model could be accessed via
the github repository (https: //www.github.com/zhenglz/
OnionNet-SFCT.git).

Method
Datasets
We used protein–ligand complexes structures with
experimentally determined binding affinity data (Ki/Kd)
from PDBbind v2018 [44] (http://www.pdbbind-cn.org/
download/pdbbind_2018_intro.pdf), as well as docking
poses generated based on these protein–ligand com-
plexes as training, validation and test sets for the
ML scoring model development (Table 1). The dataset
splitting scheme is similar to a previous study [19] by our
group.

First, we selected the two core sets of the protein–
ligand structures in CASF-2016 (test1 in Table 1, 285 sam-
ples) and CASF-2013 (test2 in Table 1, 195 samples) as test
sets. These two test sets are manually calibrated high-
precision datasets in which the properties of the binding
pocket, the binding strength and the sizes of the ligands
are relatively uniformly distributed; they have been used
as standard test sets in multiple other studies [19, 21, 35].
Note that there are 107 overlapping samples in these two
test sets.

PDBbind v2018 dataset has a total of 16 126 protein–
ligand complexes; it can be divided into two independent
data sets: the refined (4463) and general sets (11663).
We excluded all samples with binding strength deter-
mination criteria of IC50 and short peptides as ligands.
The primary concern is that the binding measurement
strength by IC50 has a large difference with Ki or Kd,
which is not suitable for mixing. Other method such as
�VinaRF20 also excluded the IC50 data. To fairly compare
with them, we did not include IC50 data here. More-
over, short peptides have more rotatable bonds, which
are more difficult to predict and tend to increase noise.
After excluding short peptides and IC50 samples, there

are 13 279 samples left in the general and refined sets.
Next, we removed all complexes in the two test sets
(373 unique PDB complexes)from PDBbind v2018 refined
set, resulting in 12 906 samples. Then, 1000 samples are
randomly selected from the remaining samples in the
refined set. These 1000 samples serve as the validation
set samples, which was the same subset in OnionNet.
After removing the test and validation sets, the remain-
ing 11 906 samples serve as training samples (as used in
OnionNet). Table 1 lists the number of samples in each
set. For all samples in the test, training and validation
sets, we removed the water molecules and metal ions
from complexes before docking or featurization. The PDB
entries of samples in Datasets 1–4 (in Table 1) are listed
in the Supplementary Table.

For the abovementioned four datasets (train, validate,
test1 and test2), docking simulations were used to
generate docking poses. The docking poses (datasets 5–8
in Table 1), in addition to the native poses in the protein–
ligand complexes crystal structures, are collected to train
and validate our AdaBoost Random Forest-based scoring
model OnionNet-SFCT. Here, we used iDock v2.2.1 to
generate docking poses. iDock is a docking tool that
adopts the same scoring function used in AutoDock
Vina in the docking process and implements the RF
score model for the output poses scoring. For each
protein–ligand complex, the ligand was first extracted
and prepared using AutoDock MGLTools 1.5.4 [7] (http://
mgltools.scripps.edu) and prepare_ligand4.py to assign
polar hydrogen atoms and convert the format from pdb
to pdbqt. Then, the water molecules, metal ions, and
any other non-ligand molecules were removed from
the protein structure, which was then converted to
pdbqt from the pdb format using AutoDock MGLTools
prepare_receptor4.py script. The center of binding pocket
(in Cartesian space) of the receptor (protein) was set
as the geometry center of the native pose of ligand
in the complex structure. Furthermore, the docking
box size for all three dimensions was 15 Å, and other
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parameters were set as default values. For each complex,
we performed ten independent repeats to generate a
total of 90 poses (nine poses per run). All the docking
poses generated by iDock here are used for OnionNet-
SCT model training, validating and testing, but not for
redocking and cross-docking or screening performance
evaluation.

Note that 871 samples (849 in the training set and 22 in
the validation set) failed to generate docking poses. Thus,
we only obtained docking poses for remaining 10 208 and
978 protein–ligand complexes in the train and validation
sets (Table 1), respectively. For each docking pose, RMSD
with respect to its native pose was calculated using
obrms in OpenBabel v2.2.3 [49]. Moreover, to evaluate the
docking and screening powers, we adopted the popular
CASF2016 docking decoys and screening decoys for scor-
ing. The docking and screening powers are calculated
based on Python script obtained from the CASF-2016
package [6].

Redocking and cross-docking protocol
To evaluate the docking performance of our scoring
model, we adopted three independent datasets for
redocking scoring and cross-docking tasks. In redocking
scoring tasks, the ligand in the crystal structure was
extracted and redocked in the original ligand-binding
pocket in the receptor; furthermore, deviations were
calculated for each docking pose with respect to the
native pose. In the redocking protocol, the docking
success rate is defined as the ratio of samples where
the RMSD of the top-ranking pose is <2Å [6]. Moreover,
the average of RMSD values of the top-ranking poses
for all protein–ligand complexes is computed. The
smaller the average top-ranking pose RMSD is, the better
the scoring function or scoring model performs. For
redocking tasks, we adopted two datasets: redocking
(validate) and redocking (v2016 coreset). In the first
dataset, the complexes were randomly selected from
the validation set; they were then used to confirm the
redocking performance. Moreover, the second dataset
contains 285 complexes used in CASF-2016.

As for cross-docking tasks, it is based on a stan-
dard benchmark (3D DISCO [50]), where 95 different
target proteins with an average ∼46.3 ligands per
target extracted from the PDB entries (same protein
but different PDB entries) to form an ‘artificial’ set
with 4399 protein-ligand complexes. In each ‘artificial
complex’, the receptor structure is a predefined structure
(used in DUD-E dataset), called ‘representative receptor
structure’. The ‘native pose’ of the ligand was generated
as following: superimposing the protein structure (in
the same PDB entry as the ligand) to the ‘representa-
tive receptor structure’ together with the ligand. The
superimposed ligand was taken out and combined with
the ‘representative receptor structure’ to form the so
called ‘artificial complex’. We assume that the ligand
pose in the ‘artificial complex’ is correct or ‘near-native’.
Then, we cross-dock the ligand back into the ‘artificial

complex’ pocket, and calculate the RMSD values of
docking poses, and also use RMSD ≤ 2 Å to evaluate
whether the docking pose is a ‘near-native’ pose or not.
The detailed information of 3D DISCO could be reported
in Wierbowski’s study [50].

We augmented the scoring model OnionNet-SFCT to
the scoring functions in four different docking engines
(AutoDock Vina, iDock, LeDock and Gnina). To evaluate
the redocking performance of OnionNet-SFCT in combi-
nation with different docking applications, the docking
poses are generated by that docking engine. For all dock-
ing experiments, the receptor was prepared by removing
water molecules, ions, and metal ions as well as other
small molecules. The ligand was then extracted from the
original complex structure. For both Vina and iDock, all
hydrogen atoms were removed, and then polar hydrogen
atoms were added. Except the docking pocket definitions,
we then followed the standard docking protocol for the
four docking engines with their default scoring function
and parameters.

For each protein-ligand crystal complex in different
data sets, the ligand is extracted and docked into its
corresponding protein pocket (the same PDB entry) only
once using either iDock (nine poses), LeDock (less than
20 poses), Vina (20 poses) or Gnina (less than 20 poses) to
generate docking poses. For the docking poses generated
by different docking applications, they are rescored and
ranked (by OnionNet-SFCT or OnionNet-SFCT with the
docking scores generated by corresponding application)
to evaluate the docking pose ranking ability of different
scoring strategies.

Both redocking and cross-docking performances were
separately evaluated for the original docking scoring
functions, the scoring model OnionNet-SFCT, and the
combination of them.

For Vina, two types of docking box are defined, one is
centered at the geometry center of the original ligand
with a 15 Å lenght cubic region, another is centered at
the protein geometry center with a 100 Å length cubic
region (Experiment 1 and 2 in Table 2). For iDock docking,
we used the default parameters for sampling; however,
the docking box was adjusted by extending the reference
ligand region (in 3D space to 6Å) to mimic the ‘autobox’
setting (Experiment 3 in Table 2) in docking application
such as Gnina. For LeDock, a docking box with 15 Å for all
three dimensions are used (Experiment 4 in Table 2). In
terms of Gnina (Experiment 5 in Table 2), the postscoring
mode was used; furthermore, the default CNN scoring
function for pose RMSD estimation (the CNN pose score)
was used to ranking the poses.

DUD-E benchmark and DUD-AD benchmark
To evaluate the screening performance of OnionNet-
SFCT for larger screening tasks, we adopted the DUD-
E [45] (Accessed on 8 May 2021) and DUD-AD bench-
marks [11] for docking and rescoring, respectively. For all
102 targets in the DUD-E benchmark, there were ∼224
active molecules and ∼11 200 decoy molecules per target.
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Table 2. The docking pocket setting in different docking simulations

Experiments SN Docking engine Pocket center Pocket size setting

1 AutoDock Vina Original ligand center 15 Å for all three dimensions
2 AutoDock Vina Receptor center 100Å for all three dimensions
3 iDock Original ligand center Autobox, with ligand extend 6Å
4 LeDock Original ligand center 15Å for all three dimensions
5 Gnina Original ligand center Autobox, with ligand extend 6Å
6 Gnina Original ligand center 15Å for all three dimensions

Although the DUD-AD benchmark was compiled to use
the active molecules of the other 101 targets as decoys for
a specific target, it is designed to remove the potential
bias in the DUD-E dataset. For both datasets, for each
target, we docked both active and decoy molecules to
the receptor using the AutoDock Vina and Gnina and
used OnionNet-SFCT (or combined scoring strategies)
to rescore the docking results. The docking protocols
are same as previous redocking or cross-docking exper-
iments 1 and 6, as listed in Table 2. For virtual screening
with Gnina, the CNN affinity score of the top-ranked pose
by the CNN pose score was used to rank the ligand or
decoy. For screening performance evaluation, for each
ligand, the best score of the generated poses (not higher
than 20) is used to represent the ranking score of the
ligand. The screening performance of different scoring
methods was then measured by the enrichment factor
at different level as well as the area under curve (AUC)
value.

Reverse docking protocols
We downloaded the proteome-wide structure predictions
(27 434 proteins) of A. thaliana from the AlphaFold
protein structure database (https://alphafold.ebi.ac.
uk/download) [51, 52]. The target small molecule is a
plant hormone ABA [48], which has around 14 known
binding (UniProt) targets recorded in the GO database [53]
(https://www.ebi.ac.uk/QuickGO/annotations?goUsage=
descendants&goUsageRelationships=is_a,part_of,occurs
_in&goId = GO:0010427&taxonId = 3702&taxonUsage = de
scendants) (access date 15 August 2021). The ABA
structure is obtained from the crystal structure A8S in
PDB entry 3 K90 [48] and is prepared using MGLTools
prepare_ligand4.py script to add polar hydrogens. The
proteins from AlphaFold2 predictions are then prepared
using MGLTools prepare_receptor4.py script to add polar
hydrogens. The binding sites (or binding site residues)
are then determined using PointSite [ 54]. For each
protein structure, PointSite assigns a probability score
(between 0 and 1.0) for each atom. When the score is
>0.5, we tend to believe this atom is located around
with a binding pocket. Based on the per-atom pocket
probability scores, we calculated the residue level scores
by averaging the scores of atoms in a residue and ranked
the residues by their scores. Then, a list of nonshort-
range pocketable residues (where the residue-level score
is >0.5) is generated in the descending order by their
per-residue scores. If two residues are separated by >4
residues (such as residue i and residue i + 5) in the

sequence, they are nonshort-range residues. We select
a maximum of top-ranked 10 residues from the list.
For each residue, we defined the geometry center of the
residue as the pocket center, and then a box size as 15 Å
for all three dimensions. There are in total 16 378 proteins
with at least one pocket site residue. AutoDock Vina was
used to dock the molecule ABA in the protein pockets
centered on a maximum of 10 binding site residues;
furthermore, the binding strength between the protein
and ABA is defined by the lowest energy (Vina score or
OnionNet-SFCT+Vina) of all docking poses. The docking
parameters used in the reverse docking are obtained
from Table 2 and Experiment 1. Therefore, the ABA-
binding proteins can be predicted by ranking the 16 378
proteins based on their binding strengths to obtain the
tightest binders.

The RMSD prediction model
We collected both the crystal complexes and docking
poses generated by iDock for OnionNet-SFCT model
training (Datasets 1–8 in Table 1). The input features
of a complex structure were calculated based on
OnionNet2 with the modified number of shells and
distance gap between shells (14 shells and distance
gap of 1.5 Å). The labels of these complexes are the
RMSD values of ligand pose with respect to their native
pose. Therefore, for the crystal complexes, the RMSD is
0Å. While training, we excluded all complexes whose
RMSD value is >10Å because large RMSD poses are
generally quite far away from the binding site and
may introduce noises to the scoring model. Then, we
trained an AdaBoostRegressor [41] model with random
forest [42] as the base estimator using the scikit-
learn ensemble module. AdaBoost is known as a meta-
estimator that first creates a regressor on the training
data, and then adds additional estimators and weights
to focus more on the difficult samples for the subsequent
estimators. It has been confirmed to be a powerful
model for many tasks [55–57]. Here, in this study, the
AdaBoostRegressor is based on 10 base estimators. Each
base estimator is a random forest model formed by
50 trees with max_features = 512, max_depth = 50 and
oob_score = True (Supplementary Table S1). Moreover,
we attempted CNN models for the RMSD prediction,
although the root mean squared error (RMSE) of the test
sets (with their docking pose complexes) was relatively
low (Supplementary Table S1). Their performance for the
redocking tasks on redocking (validate) dataset was not
better than the AdaBoost model with the random forest

https://alphafold.ebi.ac.uk/download
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac051#supplementary-data
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model, indicating that the CNN model tends to overfit
the data in our case.

Finally, as shown in Equation 1, we applied a simple
linear combination of the correction term (S(R), from our
OnionNet-SFCT model) and the original scoring function
(P(R)) (could be a scoring function from Gnina, LeDock,
Vina or iDock),

E (R) = α ∗ P (R) + β ∗ S (R) (1)

where R is the coordinates of the complex structure
formed by the protein and ligand poses. Although the
unit of the correction term S(R) (predicted RMSD, in Å)
is different from that of the docking scores, generally
the free energies (kcal/mol). On the other hand, these
two terms have some common features. When S(R) = 0,
it takes only one possible state (the native state), and
the larger the S(R) values, the structures deviate further
away from the native state and adopt more diverse states.
The same goes for free energies of protein-ligand binding
states. Therefore, the RMSD value could be viewed as a
‘pseudo-free energy’ term and thus it is meaningful to
combine two terms together.

A similar combining strategy was applied in another
study (�VinaXGB) [39], where they used the binding affin-
ity minus (RMSD−1) × 0.5 as the train label for part of the
samples. The weight parameter α and β was optimized
using the OnionNet-SFCT+Vina scoring strategy on the
redocking (validate) set, and α,β = 0.5 was reported to
be a good selection for redocking (Figure S1 in Support
Information) for Vina score; thus, we used α,β = 0.5 for
all the analysis unless stated otherwise. The weighting
factors may not necessarily be optimal for other scoring
functions (such as those in LeDock and Gnina), although
their scoring values may locate in the similar range. For
simplicity, we only optimize the weighting factors for
Vina score, but not LeDock or Gnina, to indicate that
the idea itself works even though no delicate fine-tuning
is performed. However, future works may be required
to fine tune the weighting factors for all other scoring
functions to obtain more accurate scoring strategies.

Results and discussion
OnionNet-SFCT improves redocking
and cross-docking performance
At the first place, a good scoring function should be able
to identify the native or near-native poses during dock-
ing simulations [6]. The performance of Autodock Vina
with or without rescoring using OnionNet-SFCT+Vina on
redocking and cross-docking tasks is reported when then
ligand-binding pocket is defined or unknown [36].

For AutoDock Vina, the success rates of top1 poses
are 61.6% and 70.5% for these two redocking datasets
(validate and v2016coreset), when the exhaustiveness
value is 64 and the docking box sizes is set as 15Å for
all three dimensions in docking. If docking poses were
rescored using OnionNet-SFCT energy term alone, the
success rates for top1 poses were not improved in the

redocking datasets; even worse, it is less accurate than
the Vina score. As for the cross-docking task, OnionNet-
SFCT shows higher success rate compared to the Vina
score. However, if rescored by a combined OnionNet-
SFCT+Vina function, the top1 pose success rates could
be improved to 66.4% and 76.8%. In terms of the cross-
docking task, the top1 pose success rate increases
from 32.3% to 42.9% after rescoring by OnionNet-
SFCT+Vina. iDock then implements the same scoring
function as AutoDock Vina but with a redesigned
acceleration scheme to speed up docking simulations.
Similarly, OnionNet-SFCT alone as the rescoring energy
is not capable to improve the redocking performance.
If combining Vina score with the correction term, we,
however, observe the performance enhancement in
the rescoring (top1 pose success rate from 63.0% to
70.2% and 71.2% to 78.6% for redocking (validate and
v2016coreset) and cross-docking (from 35.8% to 44.9%)
tasks (Figure S2A).) For all the three datasets, the RMSD
values for the top1 poses (generated either by AutoDock
Vina or iDock) largely decreased after rescoring by
OnionNet-SFCT+Vina (Figure 1C and Figure S2 in Sup-
port Information), indicating that OnionNet-SFCT+Vina
tends to select lower RMSD poses than Vina and iDock.
When the ligand-binding site is not defined, it is a more
tough task for docking, although the binding site could
be predicted using physics-based or deep learning-based
algorithms. However, in this study, we set the geometry
center of the receptor (the protein structure) as the
docking box center and use a very large box size of 100 Å
to mimic the setting in the Gnina evaluation experiments
[36]. Under such circumstances, additional sampling
efforts should be placed, and the docking success rate
drops [36]. For AutoDock Vina, the top1 pose success
rates of the two redocking datasets are 28.4% and 27.7%,
whereas the success rate of the cross-docking task is only
14.4%. By adding the correction term OnionNet-SFCT,
the success rates increase to 34.7%, 33.2% and 19.6%
(Figure 1B). Comparing the experiments with the pre-
defined binding pocket center, the improvement is less
obvious, partially because OnionNet-SFCT is trained with
poses RMSD values of <10 Å; however, in blind docking
conditions, many docking poses are quite far away from
the native poses with considerably larger RMSD values.

In summary, by adding OnionNet-SFCT as a scoring
term, the new score (OnionNet-SFCT+Vina) is more accu-
rate for selecting the lower RMSD poses from docking
poses.

OnionNet-SFCT improves redocking and
cross-docking performance for different docking
applications
Currently, most scoring functions for molecular docking
are trained on crystal structures [16, 19, 23, 30, 34,
35]. These scoring functions thus primarily obtain the
‘true’ information from experimental protein–ligand
complexes. However, during virtual screening exercises,
large number of poses (or decoys) are generated; they
are not previously seen in the scoring function training

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac051#supplementary-data
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Figure 1. The performance of different scoring models (OnionNet-SFCT only, Vina score only and OnionNet-SFCT+Vina) on redocking and cross-docking
tasks. (A–B) the success rate of different scoring methods with ligand binding pocket was predefined (A) or unknown (setting receptor geometry center
as the docking box center) (B). (C) The RMSD values of the top-ranking poses for each protein-ligand complex with (y-axis) or without (x-axis) OnionNet-
SFCT term.

steps. It is hypothesized that the accuracy of scoring
functions that are trained with decoys could be improved
[36, 39, 40, 50]. Gnina, e.g. a forked version of AutoDock
Vina and Smina [58], predicts the binding affinities and
pose RMSD values in the same framework; moreover,
it outperforms its ancestor Vina. CNN-based scoring
function used in Gnina was trained using a large amount
of docking/decoy poses in the Crossdock2020 benchmark
[50]. In a same spirit, the augmentation of OnionNet-
SFCT term to the Autodock Vina scoring function largely
increases the overall scoring power. It is interesting to
verify the generality of such chimeric scoring strategy.
For this purpose, we attempted to add the correction
term to the original scoring function of other docking
applications (such as iDock, LeDock and Gnina), as shown
in Equation 1.

Clearly, for all docking applications, the chimeric
scoring functions, by adding the correction term, improve

the docking success rates for the top1 poses and the
average top1 pose RMSD values (Figure 2). In particular,
OnionNet-SFCT+iDock decreases the top1 pose average
RMSD by 0.46, 0.443 and 0.6745 for redocking datasets
and the crossdocking dataset; moreover, it largely
increases the top1 pose docking success rates. Further-
more, LeDock is less able to rank the near-native poses
with low energies; however, with the correction term,
the docking success rate of OnionNet-SFCT+LeDock is
largely improved on all three datasets. Furthermore,
the top1 pose average RMSD values are decreased,
particularly for the cross-docking dataset. Finally, the
combination (OnionNet-SFCT+Gnina) only slightly
decreases the average top1 pose RMSD and improves
the top1 pose success rate for two datasets (PDBbind
v2016 coreset and cross-docking dataset, Table 1). To
summarize, the results suggest that OnionNet-SFCT has
the potential to combine with other scoring functions
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Figure 2. The performance of OnionNet-SFCT along with different scoring functions on redocking and cross-docking tasks. (A) The change of the average
top-ranking pose RMSD values after rescoring with OnionNet-SFCT combined scoring functions. (B) The change of the success rate of the top-ranking
poses after rescoring with OnionNet-SFCT combined scoring functions.

for redocking and cross-docking tasks and for low RMSD
pose selections.

Improved docking power for Vina with
OnionNet-SFCT on CASF-2016 benchmark
CASF-2016 is a popular benchmark for evaluating scoring
functions [6]. It proposes four metrics (scoring power,
ranking power, docking power and screening power) to
assess the ability of scoring functions for pose rank-
ing, selection and screening. The docking power rep-
resents the ability of a scoring function to select the
near-native poses (RMSD of <2 Å with respect to the
native pose) and rank them ahead as per the energies
or predicted affinities [6, 39, 40]. In particular, a good
scoring function would select the near-native poses in
the top-ranking poses with a higher success rate (num-
ber of successful picked cases out of 285 protein–ligand
complexes).

Based on the analysis of predictions provided by a
list of scoring functions with the CASF-2016 benchmark,
AutoDock Vina achieves the best docking power with a
90.2% success rate for the top1 poses among the tradi-
tional scoring functions, indicating that for 257 out of
285 protein–ligand complexes, the top1 poses are the

near-native or native poses. �vinaRF20 and �vinaXGB were
reported to achieve high success rate for 90% and 92%.
Here, we calculated the docking power of the calibrated
scoring function OnionNet-SFCT+Vina, which can obtain
the highest success rate (93.7%) for the top1 poses, suc-
cessfully identified the near-native poses for 267 protein–
ligand complexes. Furthermore, another indication of
good docking power is correlations between the energies
or affinities with the pose RMSD values [6]. The new scor-
ing function has higher correlations with RMSD values of
poses compared to the original Vina score for all RMSD
ranges (Figure 3D). To summarize, these results suggest
that OnionNet-SFCT+Vina is a better scoring function for
near-native pose selection.

Improved screening power for Vina with
OnionNet-SFCT
In addition to the docking power, the screening power is
another evaluation metric for scoring function assess-
ment, which is adopted in scoring function development
practices [5, 6]. The screening power shows the ability
of a scoring function to enrich the active molecules at
different levels and identify the best active molecules.
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Figure 3. The docking power (A) and RMSD-energy correlations (B) of OnionNet-SFCT+Vina scoring strategy.

Figure 4. The screening power of the OnionNet-SFCT+Vina scoring strategy. (A) The enrichment factor (1%) of different scoring functions. (B) The
success rate for identifying the best ligand in the top-ranking poses for different scoring functions. The confident intervals at 95% are indicated by
black lines.

The enrichment factor, which is the concentration of
the active ligands among the top-scoring docking hits
compared to their concentration throughout the entire
database [6, 11, 31, 45], is usually used for assessing

the screening power of docking tools. In the CASF-
2016 benchmark, OnionNet-SFCT+Vina achieves the
highest average enrichment factor of 15.5 at 1% level,
which is two times of Vina score itself (7.7) (Figure 4A).
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Furthermore, the average enrichment factor is much
higher than other well-behaved scoring functions such
as ChemPLP [17] (11.91) implemented in GOLD and
�vinaRF20 (11.73). What’s more, OnionNet-SFCT+Vina
ranks after GlideScore-SP [18], similar to ChemPLP in
identifying the best active molecules for the top 1%
poses ((Figure 4B). The best-performed scoring functions
are �vinaXGB, �vinaRF20 and GlideScore-SP in this
assessment. In summary, OnionNet-SFCT+Vina is one
of the top-ranking scoring strategies for screening tasks
tested in CASF 2016.

Improved screening performance with the
DUD-E and DUD-AD benchmark
DUD-E benchmark is designed to fairly compare different
scoring functions for screening. Certain scoring functions
[31] are trained on part of it and tested with the remain-
ing targets, and this type of evaluation would promote
the scoring functions remember the ‘active’ molecules,
thus including potential hidden bias [11]. Therefore, the
active as decoy benchmark (DUD-AD) is designed to use
the active molecules in other targets as decoys for a spe-
cific target. This DUD-AD benchmark is a more difficult
screening dataset for scoring function evaluation. In this
study, we do not train our OnionNet-SFCT neither with
a part of the DUD-E dataset, nor the DUD-AD dataset to
avoid potential bias.

Here, we first report the screening performance of
AutoDock Vina and OnionNet-SFCT+Vina on the DUD-
E benchmark. The average enrichment factors (1%) for
AutoDock Vina and OnionNet-SFCT+Vina is 8.823 and
15.544, respectively. For most targets, after rescoring
(with OnionNet-SFCT+Vina), the enrichment factors are
doubled or near doubled (Figure 5A). Similarly, OnionNet-
SFCT improves the screening performance for Gnina
(CNN scoring), the average enrichment factor (1%) is
18.687 and 7.932 with or without rescoring by OnionNet-
SFT + Gnina, and the per-target enrichment factors
increase by a large margin (Figure 5B). Here, we attempt
to employ the similar docking pocket definitions for
AutoDock Vina and Gnina for a fair comparison between
the two docking applications. We notice that the average
enrichment factor of Gnina does not greatly outperform
AutoDock Vina, indicating that a deep learning scoring
function good at docking (Gnina is originally designed for
docking) is not necessarily good at screening. However,
by rescoring with the hybrid scoring function equipped
with OnionNet-SFCT, the screening performance of both
AutoDock Vina and Gnina could be greatly improved.

We observe large improvements with rescoring on the
unbiased DUD-AD benchmark. For docking results gener-
ated using AutoDock Vina, the average enrichment factor
(1%) increased from 1.903 (Vina) to 5.223 after rescoring
using OnionNet-SFCT+Vina (Table 3). Although for the
docking poses from Gnina, with or without rescoring by
OnionNet-SFCT+Gnina, the average enrichment factor
(1%) is 8.502 and 2.332, respectively (Table 3). Note that

for the DUD-AD benchmark, OnionNet-SFCT alone gen-
erally is more capable to have higher enrichment factors
or ROC–AUC values.

For each subset in the DUD-AD (or DUD-E) bench-
mark, the average enrichments and AUC scores largely
increased after rescoring for all targets and targets in
different subsets (Supplementary Table S1). The results
therefore indicate that the OnionNet-SFCT+Vina scoring
function or OnionNet-SFCT+Gnina scoring function are
more accurate for screening tasks.

Comparing the performance increase in redocking and
cross-docking tasks, OnionNet-SFCT+Vina or (OnionNet-
SFCT+Gnina) achieves much higher accuracy. So why
less significant docking power performance gain would
lead to large screening power increase? We believe most
docking programs in use are all quite good in scoring
power and docking power, e.g. be able to find the
native-like poses. And there is no big room for improving
the docking power further. On the other hand, there
is a large space for improving screening power, by
separating decoy molecules from the true binders. In
virtual screening, the binding affinity only, may not
be a good target function, because some true binders
have low binding affinity as well. In a protein–ligand
docking task, when the majority poses are decoys (bad
poses), the binding affinity score (Vina score in this case)
would be more likely to make mistakes, resulting in
high false positive rate. Thus, the ability to correct the
Vina scores by putting penalty on the bad pose (RMSD
prediction) would filter out the ‘bad’ poses and reduce
false positive rate.

OnionNet-SFCT could be applied for reverse
screening
Reverse virtual screening is both useful in drug repo-
sitioning and drug rescue [12–14] and promising in
identify potential drug targets [12–15]. With the open
source of AlphaFold2 [51], the highly accurate predicted
structures (with an average accuracy lDDT [59] around
85.0 in CASP14) open the gateway to the high-throughput
structure-based drug discoveries and other functional
analysis. In this study, we consider the reverse screening
task against the stress responses related plant hormone
ABA as an example to demonstrate the usability of
OnionNet-SFCT. The Arabidopsis thalian protein struc-
tures were obtained from AlphaFold2 protein structure
database [52]. The binding pockets were predicted
using PointSite and docking poses of ABA generated
by AutoDock Vina. Moreover, the predicted binding
strengths were predicted by either using Vina score or
OnionNet-SFCT+Vina.

Interestingly, using OnionNet-SFCT+Vina as the scor-
ing function, out of the 14 known ABA receptors in Ara-
bidopsis thalian proteome, we detected four targets in
the top-ranked 10 proteins and eight targets in the top-
ranked 100 proteins (Support Information). As for the
first identified ABA target PYL9 (UniProt ID Q84MC7),
the binding pose selected by OnionNet-SFCT+Vina is

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac051#supplementary-data
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Figure 5. The per-target enrichment factor comparison with or without rescoring by OnionNet-SFCT+Vina or OnionNet-SFCT+Gnina on the two
benchmarks DUD-E (A and B) and DUD-AD (C and D). For targets whose enrichment factors are largely increased (up to 30) with rescoring, the target
names are labelled.

Table 3. The screening performance of Vina, Gnina as well as OnionNet-SFCT model

Enrichment
factor (1%)

ROC-AUC

docking Origin∗ Rescore1∗∗ Rescore2# Origin∗ Rescore1∗∗ Rescore2#

DUD-AD Vina 1.9029 5.2231 11.0166 0.4727 0.5491 0.6840
DUD-AD Gnina 2.3322 8.5021 9.9505 0.5394 0.6415 0.6781
DUD-E Vina 8.8246 15.5443 12.4287 0.6966 0.7242 0.6548
DUD-E Gnina 7.9315 18.6873 13.9259 0.6799 0.7449 0.6765

∗Original: the docking poses are selected and ranked by the original scores provided by the docking application (Vina or Gnina). ∗∗Rescore1: the docking poses
are selected and ranked by the hybrid scoring strategy OnionNet-SFCT+Vina or OnionNet-SFCT+Gnina. #Rescore2: the docking poses are selected and ranked
by the OnionNet-SFCT score function only.
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Figure 6. Comparison of binding modes in crystal structure (gray) and
predicted by OnionNet-SFCT (green). The native protein structure is gray
and binding site residue Phe65 is indicated by red sticks. The predicted
protein structure is colored by the atom-level pocket probability scores
(ranging from 0.0 to 1.0) where blue indicates low probability score and
red indicates high probability score.

compared with the native pose solved in crystal structure
(PDB entry 3OQU [48]) with RMSD = 1.9 Å (Figure 6). In
comparison, among the 10 or 100 top-ranked proteins
scoring by Vina score, none or 1 (PYL6) of the known ABA
targets were identified, indicating that Vina score has
high false positive rate for ABA target identification. The
full list of the top-ranked 100 proteins as well as their
binding scores calculated by Vina score or OnionNet-
SFCT+Vina could be found in Supplementary Table.

To summarize, our scoring strategy significantly out-
performs Vina score itself in the ABA reverse screening
task. Although this is a demo example, it provides not
only the ranking order but also the binding pattern pre-
dictions, indicating the potential usage of the OnionNet-
SFCT+Vina score scheme for potential accurate target
fishing application.

Comparison with other models
The idea of modifying classical scoring functions by
machine learning algorithms has been welcomed by
other researchers. The �VinaRF20 [40] model, which
employed 20 descriptors, in addition to the AutoDock
Vina scoring functions trained with random forest
greatly improved scoring, ranking, docking and screening
powers. Such strategy can be considered as machine
learning-optimized empirical scoring functions. Recently,
the energy components from classical scoring functions
(such as Glide, GOLD and MOE) have been extracted
and used as inputs to build new machine learning-
optimized scoring functions and demonstrated large
improvement in the screening power [33]. However, in
our approach, rather than modifying the existing scoring
functions terms, a new different score correction term,
OnionNet-SFCT, is added. Different from our previous
models (OnionNet and OnionNet2), which only fitted the
binding affinities of crystal structures, the OnionNet-
SFCT model is based on residue-atom contacts similar to
OnionNet2 and it is trained on the artificial generated
docking poses datasets (as did in �VinaXGB [39]) and
learns the docking pose qualities (RMSD values), it could
be directly combined with various docking applications

as a rescoring tool. Thus, the OnionNet-SFCT+Vina
scoring strategy is designed to improve docking and
screening powers. However, we also calculate the scoring
and ranking power based on CASF-2016 benchmark
[6]. The scoring power (Pearson R 0.428) and ranking
power (Spearman R 0.393) of OnionNet-SFCT+Vina is
significantly lower than those of �VinaRF20 (0.816 and
0.75, respectively; Supplementary Table), indicating that
a scoring function good at docking and screening may
not necessarily also be good at native pose scoring and
ranking. The same goes for Gnina [36], whose docking
power is quite high, but screening power is relatively
lower than Vina score. After detailed examination of the
OnionNet-SFCT+Vina scoring and ranking results, we
notice that the predicted RMSD values of many crystal
poses are quite large, resulting in quite low scoring and
ranking power. The main reason could be the pair-wise
features used in this study may not fully capture the
complete interactions between proteins and ligands.
More well-balanced models for both scoring, ranking,
docking and screening powers are still in need.

To check the overfitting and to validate the gener-
alization capability of our model we have tested addi-
tional models trained on different nonoverlapping train-
ing sets with various similarity cutoff to the testing set
(CASF-2016 core set) following Su’s work [60]. The out-
comes have been added to the Support Information.
We do observe some training set effects, e.g. the accu-
racy of the model on the test sets decreases with more
dissimilar training sets (Table S2); similar as the dock-
ing power (Table S4). The scoring and ranking power
(Table S3), however, increase with more diverse training
sets. The reported screening power of our final model,
in term of the enrichment factor, is found having no
inflation effects with the training set.

Moreover, the OnionNet-SFCT model is an intrinsic
data-driven scoring function, learnt from known and
artificial protein–ligand residue–atom pairs distance dis-
tributions [19, 43]. From the feature importance analysis
(Figure 7), clearly OnionNet-SFCT could capture some
short-range and-long range interactions between ligand
atoms and protein residues. For example, the close con-
tacts (around 3.0–4.5 Å) between nitrogen atoms in ligand
molecules and the two acidic residues (aspartic acid and
glutamic acid) tend to the most important interactions.
Similarly, the contacts between oxygen atoms in the lig-
and molecules and the positively charged residues (lysine
and arginine) are also identified as the most impor-
tance interaction patterns. These results suggest that
the OnionNet-SFCT model could capture polar contacts
or hydrogen bonds between the ligand and the recep-
tor, and it learns the physical interaction rules itself
but provides further complexity. Overall, it is speculated
the combination of classical empirical scoring functions
with machine learning-optimized knowledge-based scor-
ing functions may have complementary nature and cover
the additional aspects of the complicated protein–ligand
binding processes in vivo.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac051#supplementary-data
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Figure 7. The feature importance of the OnionNet-SFCT model. The x-axis represents the contact distance cutoff, whereas the y-axis represents the
element types of the ligand molecules. Each panel displays the importance of the interactions between different ligand atoms with a specific residue
type. The color scales indicate the feature importance, with yellow color suggests the highest importance whereas the blue color indicates the lowest
importance.

Conclusion
Scoring function is an important component in molec-
ular docking. We designed a machine learning-based
scoring function correction term for enhancing the
prediction accuracies of traditional scoring functions
such as Vina score. The OnionNet-SFCT model was
trained using large-scale docking decoys generated by
docking simulations based on experimental determined
protein–ligand complexes; it borrowed the residue-
atom multiple layer contacts from our previous work
and adopted the AdaBoost random forests model to
estimate the docking decoy RMSD values (with respect
to their native poses). When working with Vina score for

rescoring, the model is confirmed to be more accurate in
redocking and cross-docking tasks; moreover, it largely
improves the docking power and screening power on
the CASF2016 benchmark. Next, on larger benchmarks
(DUD-E and DUD-AD), the OnionNet-SFCT model is
extremely accurate for screening. Furthermore, we
incorporate the model into other docking applications
(iDock, LeDock and Gnina) and find it can increase
the redocking and cross-docking abilities for iDokc and
LeDock to a large amount, as well as slightly increase
the performance of Gnina, which already implemented
a CNN-based scoring function trained on large-scale
docking poses datasets. Lastly, using a reverse docking
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task, we prove the accuracy of OnionNet-SFCT+Vina
score strategy by successfully identifying ligand’s natural
receptors. To summarize, the OnionNet-SFCT model is a
useful tool for structure-based drug discoveries.

Key Points

• A machine-learning model (OnionNet-SFCT) is come up
to correct the scoring by physical or empirical scoring
function (Vina score).

• The model shows good performance on docking related
tasks (redocking and cross-docking).

• The screening accuracies are almost doubled when Vina
score is equipped with OnionNet-SFCT.

• The combination of Vina score and OnionNet-SFCT could
be applied for reverse screening.

• OnionNet-SFCT captures certain short-range polar inter-
actions between the protein and the ligand.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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