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Abstract: Treatment with valproic acid (VPA) deteriorates hippocampal neurogenesis, which leads
to memory impairment. Hesperidin (Hsd) is a plant-based bioflavonoid that can augment learning
and memory. This study aimed to understand the effect of Hsd on the impairment of hippocampal
neurogenesis and memory caused by VPA. The VPA (300 mg/kg) was administered by intraperi-
toneal injection twice daily for 14 days, and Hsd (100 mg/kg/day) was administered by oral gavage
once a day for 21 days. All rats underwent memory evaluation using the novel object location
(NOL) and novel object recognition (NOR) tests. Immunofluorescent staining of Ki-67, BrdU/NeuN,
and doublecortin (DCX) was applied to determine hippocampal neurogenesis in cell proliferation,
neuronal survival, and population of the immature neurons, respectively. VPA-treated rats showed
memory impairments in both memory tests. These impairments resulted from VPA-induced de-
creases in the number of Ki-67-, BrdU/NeuN-, and DCX-positive cells in the hippocampus, leading to
memory loss. Nevertheless, the behavioral expression in the co-administration group was improved.
After receiving co-administration with VPA and Hsd, the numbers of Ki-67-, BrdU/NeuN-, and
DCX-positive cells were improved to the normal levels. These findings suggest that Hsd can reduce
the VPA-induced hippocampal neurogenesis down-regulation that results in memory impairments.

Keywords: hesperidin; valproic acid; memory impairment; hippocampal neurogenesis

1. Introduction

Several bioactive compounds found in natural products have multiple therapeutic
benefits and biological activities. Flavonoids in natural, plant-based products have numer-
ous antioxidant activities that degrade reactive oxygen species and provide safeguarding
in age-related neurodegenerative disorders, such as dementia [1]. Citrus fruits are a great
resource of flavonoid compounds, including hesperidin. Hesperidin (Hsd) is an impor-
tant flavonoid that provides numerous biological and health-beneficial effects, including
anti-inflammatory properties, antioxidant protection against oxidative stress, radical scav-
enging, and cytoprotective potential [2–4]. The neuroprotective properties of Hsd have
been revealed in various neurodegenerative conditions, such as Alzheimer’s and Parkin-
son’s diseases [5,6]. A recent, interesting study demonstrated that the neuroprotective
effects of Hsd lowered the unwanted effect of methotrexate (MTX) chemotherapy-induced
memory impairment by attenuating hippocampal neurogenesis [7]. During adult neuroge-
nesis, neural precursor cells in the hippocampal dentate gyrus (DG) potentially participate
in the generation and maintenance of learning and memory [8,9]. Decreases in hippocam-
pal neurogenesis are related to impaired memory performance [10]. In addition to MTX
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chemotherapy, the anticonvulsant drug valproic acid (VPA) can act as an antimitotic agent,
ultimately diminishing hippocampal neural precursor cell function and causing memory
loss [11]. VPA is widely used to treat most epilepsy patients [12], anticipating that this drug
has very low cytotoxicity. However, side effects were reported in patients who suffered
from memory impairment after treatment with VPA [13,14]. A recent study found that
VPA induced memory impairment by negatively impacting the proliferation and survival
of neuronal cells in the hippocampus, thereby reducing hippocampal neurogenesis [15].

There exist studies about using natural products, including hesperidin, a natural
flavonoid, as alternative medicines [16–18]. The use of natural products may alleviate the
memory impairment arising from the adverse effects of VPA. The crucial properties of
hesperidin, including its antioxidant and anti-neuroinflammatory activities, may make this
compound an agent hopeful for use as a neurodegenerative disease regimen. Despite these
known properties, knowledge of the protective effects of Hsd against VPA-induced memory
impairment is limited. From this interesting point, therefore, our study aims to assess and
elucidate the protective effects of Hsd in the subgranular (SGZ) of the hippocampal DG in
VPA-induced memory-impaired rats.

2. Materials and Methods
2.1. Rat Model

Forty-eight adult male Sprague Dawley rats (age: 4–5 weeks, weight: 120–170 g,
Nomura Siam International Co., Ltd., Bangkok, Thailand) were used in all experiments,
the procedures of which were accepted by the Khon Kean University Ethics Committee
in Animal Research (permit number: ACUC-KKU-57/62). After arrival, the rats were
housed under standard laboratory conditions (12-h light/dark cycle) with food and water
spontaneously accessible. All rats were weighed daily and allowed to habituate to the
animal house for a week before the experiment. Each of the 48 rats was randomly allocated
to one of four groups (12 animals per group): (1) vehicle, (2) VPA, (3) Hsd, and (4) VPA
plus Hsd.

2.2. Drug Administration

Valproic acid (VPA: Sigma-Aldrich, Inc., St. Louis, MO, USA) and hesperidin (Hsd:
ChemFaces Biochemical, Wuhan, China) were freshly prepared daily before being adminis-
tered to the rats. VPA was dissolved in a 0.9% saline solution to make a dose of 300 mg/kg,
and Hsd was dissolved in propylene glycol to obtain a dose of 100 mg/kg. In the vehicle
group, the rats received 0.9% saline solution by intraperitoneal (i.p.) injection twice daily
for 14 days and propylene glycol by oral gavage daily for 21 days. In the VPA group, rats
were administered i.p. injections of VPA at 10 a.m. and 3 p.m. daily for 14 days [11]. In the
Hsd group, the rats were given Hsd solution orally for 21 days [7] and, in the VPA plus
Hsd group, the rats received VPA by i.p. injection for 14 days and Hsd orally for 21 days
at the same doses and times as performed in the VPA and Hsd groups, respectively. To
later assess cell survival, each rat received an i.p. injection of 5-bromo-2-deoxyuridine
(BrdU; 100 mg/kg, Sigma-Aldrich, Inc., St. Louis, MO, USA) for three days before drug
administration.

2.3. Behavioural Testing

Three days after drug administration, all rats were tested for memory function using
the novel object location (NOL) test, a spatial working task, and the novel object recognition
(NOR) test, a non-spatial recognition task. Both tests consisted of familiarization and choice
trials, and the objects used (plastic bottles and triangles) were identical across both tests.
Behavioral performance was recorded using EthoVision® XT (EthoVision®, XT version
12, Noldus, Wageningen, Netherlands). On the first test day, all rats were habituated to
the arena without objects for 30 min. Next began the NOL test familiarization trial. Two
identical objects were randomly placed into different locations (locations A and B) in the
arena, and each rat was allowed to explore the objects for 3 min. The rats were then placed
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back into their houses for 15 min (inter-trial interval time). Next, during the choice trial,
the rats were again returned to the arena and allowed to explore the objects for 3 min. This
time, one object was placed in one of the familiar locations (FL), and the other was placed
in a novel location (NL).

The NOR test was performed one day after the NOL test, starting with habituation
to the arena again for 30 min. Next, the familiarization trial was conducted. Two similar
objects (object A and B) were placed in different positions in the arena, and each rat was
allowed to explore them for 3 min before the rats were returned to the house for the 15-min
inter-trial interval. In the choice trial, next, one of the familiar objects (FO) and one novel
object [10] were placed in the same positions as in the familiarization trial, and the rats
were again put back into the arena and allowed to explore the objects for 3 min.

The exploration time that each rat spent exploring the familiar and novel locations in
the NOL test or the familiar and novel objects in the NOR test was defined as the time that
the rats directed their nose at one of the objects at a distance less than 2 cm [19] from that
object. Exploration times from both tests were calculated and converted into the preference
index (PI), defined as time spent exploring a novel object in the choice trial as a percentage
compared to 50% chance [11,15,19].

2.4. Immunohistochemistry for Hippocampal Neurogenesis Markers

After the behavioral testing, the rats were sacrificed and the rat brains were collected.
Each brain was separated into two hemispheres and immediately cryoprotected in 30%
sucrose solution for 3 h at 4 ◦C. Next, the brains were embedded in Optimal Cutting
Temperature (OCT) compound (Tissue-Tex®, Torrance, CA, USA), quickly frozen in liquid
nitrogen-cooled isopentane (Sigma-Aldrich, Inc., St. Louis, MO, USA), and then stored at
−80 ◦C for immunohistochemistry.

Hippocampal cell proliferation in the SGZ of the DG was examined using Ki-67
staining. Six randomly selected frozen hemispheres were serially cut along the coronal
plane at a 20 µm thickness from the Bregma point, −2.3 to −6.3 mm, using a cryostat and
then thaw-mounted on APES-coated slides. In brief, the sections were incubated with anti-
Ki-67 primary antibody (1:150, Novocastra™, NCL-L-Ki67-MM, Newcastle, UK) at room
temperature for 60 min and then incubated with Alexa fluor 488 conjugated rabbit anti-
mouse IgG (1:300, Invitrogen, USA), followed by 30 s of propidium iodide counterstaining
(1:6000, Sigma Aldrich, St. Louis, MO, USA).

Neuronal cell survival in the hippocampal DG was determined using BrdU and
NeuN double staining, and the investigation of the immature neurons was carried out
by doublecortin (DCX) staining. Shortly after that, the frozen hemispheres were serially
cut (40 µm) in the coronal plane using a cryostat to obtain free-floating sections. For DCX
immunostaining, the sections were then incubated with anti-DCX primary antibody (1:100,
Santa Cruz Biotechnology, USA) at 4 ◦C overnight. Next, the sections were incubated
with Alexa fluor 488 conjugated rabbit anti-mouse IgG (1:500, Invitrogen, Eugene, OR,
USA) for 1 h and counterstained with propidium iodide (1:6000, Sigma Aldrich, USA)
for 30 s. For the BrdU and NeuN double staining, the sections were firstly incubated
with anti-BrdU antibody (1: 200, Abcam, Cambridge, UK) at 4 ◦C overnight, followed
by incubation with Alexa fluor 568 goat anti-rabbit IgG for 120 min (1: 200, Invitrogen,
Carlsbad, CA, USA). Next, the sections were incubated with anti-NeuN antibody (1: 500,
Merck KGaA, Darmstadt, Germany) at 4 ◦C overnight and then finally incubated with
Alexa fluor 488 rabbit anti-mouse IgG for 120 min (1: 500, Invitrogen, Carlsbad, CA, USA).

All sections were observed and quantified using a Nikon ECLIPSE 80i fluorescence
microscope at 40×. Every 15th section along the entire length of the DG (nine sections per
DG) was chosen to estimate the total number of Ki-67-positive cells, whereas every eighth
section was used to estimate the total number of BrdU/NeuN- and DCX-positive cells. The
section collection was performed following an established systematic random sampling
method [20]. The positive cells of Ki-67, BrdU/NeuN, and DCX staining were considered
within the SGZ, defined as three cell breadths of the internal rim of both blades of the
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DG [21]. The number of positive cells in each section were summed, and then the total
number of Ki-67-positive cells was multiplied by 15, and the total number of BrdU/NeuN-
and DCX-positive cells was multiplied by 8 to achieve the total number of positive cells for
Ki-67, BrdU/NeuN, and DCX [7,15].

2.5. Statistical Analysis

All statistical parameters were expressed as mean ± standard error of the mean (SEM)
using GraphPad Prism (V. 5.0; GraphPad Software Inc., San Diego, CA, USA). The data
were analyzed by the Student’s t-test and one-way ANOVA where appropriate, and a
p-value < 0.05 was considered statistically significant.

3. Results
3.1. Effects of Valproic Acid (VPA) and Hesperidin (Hsd) on Memory Evaluated by Novel Object
Location (NOL) Test

The effects of VPA and Hsd on spatial memory were determined using the NOL test.
Locomotor activity was evaluated in an open-field arena using the distance moved and
velocity, recorded in the habituation trial on the first day of the NOL test. The distance
moved and velocity analysis results showed that, across all four groups, there was no
significant difference (distance moved: p = 0.0861, and velocity: p = 0.1059, one-way
ANOVA, Bonferroni’s post hoc test, Figure 1A,B), suggesting that the animals did not have
defective locomotor activity.
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Figure 1. Locomotor activity in the novel object location test determined by the distance moved (A) and velocity (B) were
significantly comparable among four groups (p > 0.05).

In the NOL test familiarization trial, none of the rats displayed a significant difference
in the exploration time between the two identical objects, placed in locations A and B
(p > 0.05, paired Student’s t-test, Figure 2A), which indicated that each of the rats had a
normal memory. After placing the objects in the familiar and novel locations, the rats in the
vehicle, Hsd, and VPA+Hsd groups explored the object in the novel location significantly
longer than the familiar location (mean ± SEM; familiar location, vehicle: 9.719 ± 1.749 s,
Hsd: 10.37 ± 1.674 s, VPA+Hsd: 7.135 ± 2.195 sec; novel location, vehicle: 15.14 ± 1.949 sec,
Hsd: 19.59 ± 2.576 s, VPA+Hsd: 12.62 ± 2.433 s, p < 0.05, paired Student’s t-test, Figure 2B),
which demonstrated that a normal spatial memory was found in these rats. By contrast,
the rats in the VPA-treated group explored the object in the familiar location significantly
longer than the novel location (mean ± SEM; familiar location, VPA: 13.43 ± 0.590 sec;
novel location, VPA: 7.278 ± 1.482 s, p < 0.05, Figure 2B), which indicated spatial memory
impairments. For the choice trial, the time the rats spent exploring an object in the novel
location was converted to the preference index (PI) in comparison to 50% chance. The
PIs of the vehicle, Hsd, and VPA+Hsd groups were significantly higher than 50% chance
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(mean ± SEM; vehicle: 65.43 ± 3.648, Hsd: 64.75 ± 4.259, VPA+Hsd: 69.76 ± 6.981, p < 0.05;
one-sample t-test, Figure 2C), indicating that the rats had a normal ability to recognize the
object locations, whereas the PI of the VPA-treated group was significantly lower than 50%
chance, revealing defective spatial memory (mean ± SEM; VPA: 32.80 ± 6.044, p < 0.05,
Figure 2C). These results show that VPA treatment leads to spatial memory impairment
that can be improved by Hsd co-administration.
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Figure 2. Hesperidin (Hsd) co-administration alleviated the valproic acid (VPA)-caused memory impairment shown in
the novel object location (NOL) test. The exploration times (mean ± SEM) of the rats of exploring the objects in the
familiarization locations during the familiarization trial (A). There was no significant difference in the time exploring the
objects placed in locations A and B among the groups (p > 0.05). In the choice trial (B), the rats from the VPA group explored
the objects in the familiar locations more than the novel locations (* p < 0.05). In contrast, the rats in the vehicle, Hsd, and
VPA+Hsd groups significantly explored the object in the novel location more than the familiar location. The PI revealed a
significant variation from 50% chance in the vehicle (** p < 0.01, (C), Hsd, and VPA+Hsd groups (* p < 0.05), whereas the
rats in the VPA group displayed significantly lower than 50% chance (* p < 0.05).

3.2. Effects of VPA and Hsd on Memory Evaluated by Novel Object Recognition (NOR) Test

For additional behavioral testing, the effects of VPA and Hsd on recognition memory
were evaluated using the NOR test. All animals were assessed for their motor activity
using the distance moved and velocity observed in the habituation trial. There was no
significant difference among all groups in the results of distance moved and velocity
(distance moved; p = 0.0662 and velocity; p = 0.1633, one-way ANOVA, Bonferroni’s post
hoc test, Figure 3A,B), postulating that VPA and Hsd did not harm the locomotor activity
of the animals.
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(B) was significantly similar among all four groups (p > 0.05).

The rats in all groups spent equal time exploring the identical objects A and B in
the familiarization trial (p > 0.05, paired Student’s t-test, Figure 4A), inferring that the
rats had a similar preference for either object according to their normal recognition mem-
ory. The choice trial, where one familiar object was replaced with a novel object, was
performed to evaluate the efficacy of the rats in discriminating between the two different
objects. The rats in the vehicle, Hsd, and VPA+Hsd groups spent significantly longer time
exploring the novel object than the familiar object (mean ± SEM; familiar object, vehicle:
13.40 ± 1.945 sec, Hsd: 6.573 ± 0.627 s, VPA+Hsd: 7.699 ± 2.089 sec; novel object, vehicle:
32.42 ± 4.592 sec, Hsd: 44.86 ± 2.862 s, VPA+Hsd: 20.73 ± 3.237 s, p < 0.05, p < 0.0001, and
p < 0.01, respectively; paired Student’s t-test, Figure 4B). These results clearly showed that
the rats exhibited normal recognition memory. Conversely, the exploration time of the rats
in the VPA-treated group was not significantly different between the two objects (mean ±
SEM; familiar object, VPA: 11.44 ± 2.395 sec; novel object, VPA: 18.69 ± 2.635, p > 0.05, Fig-
ure 4B), indicating that VPA-treated rats were unable to discriminate between the familiar
and novel objects. These findings demonstrated that VPA impaired the recognition memory
of the rats. For further analysis, the exploration time was transformed to the PI. The PIs of
the vehicle, Hsd, and VPA+Hsd groups were significantly higher than 50% chance (mean
± SEM; vehicle: 69.34 ± 5.061, Hsd: 87.01 ± 1.424, VPA+Hsd: 66.74 ± 4.166, p < 0.01, p
< 0.0001, and p < 0.05, respectively; one-sample t-test, Figure 4C), revealing that normal
recognition memory was found in these rats. However, the PI of the VPA-treated group
did not differ from 50% chance (mean ± SEM; VPA: 63.12 ± 6.618, p > 0.05, Figure 4C),
suggesting a recognition memory loss. These findings indicated that, in the rats, VPA
treatment induced recognition memory impairment, ameliorated by co-administration
with Hsd.
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3.3. Effects of VPA and Hsd on the Ki-67 Positive Cell Count in the Hippocampus

Immunofluorescent staining of Ki-67 to quantify the number of dividing cells in the
SGZ of the hippocampal DG was performed by counting the positive cells for the cell
proliferation marker Ki-67 (Figure 5). The number of Ki-67-positive cells in animals receiv-
ing VPA alone was significantly reduced compared to the vehicle group (mean ± SEM;
VPA: 1338 ± 34.95 cells, vehicle: 2435 ± 57.66 cells, p < 0.05, one-way ANOVA, Bonfer-
roni’s post hoc test, Figure 6). However, rats that received Hsd alone expressed signifi-
cantly increased Ki-67-positive cell numbers compared to the VPA group (mean ± SEM;
Hsd: 2268 ± 89.70 cells, VPA: 1338 ± 34.95 cells, p < 0.05). In addition, the number of
Ki-67-positive cells was significantly increased in the VPA+Hsd group compared with
the VPA-treated group (mean ± SEM; VPA+Hsd: 1958 ± 81.31 cells, VPA: 1338 ± 34.95
cells, p < 0.05). These results revealed that VPA decreased cell proliferation. However,
co-administration with Hsd could lessen the decrease of cell proliferation induced by VPA.
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3.4. Effects of VPA and Hsd on Neuronal Cell Survival

Double staining of BrdU and NeuN was carried out to examine neuronal cell survival.
BrdU-positive cells were counted in the granular cell layer (GCL), including the SGZ of the
DG (Figure 7). As a result, BrdU/NeuN-positive cell numbers in VPA-treated animals were
significantly lower compared to the vehicle group (mean ± SEM; VPA: 740 ± 61.41 cells,
vehicle: 1311 ± 45.93 cells, p< 0.05, one-way ANOVA, Bonferroni’s post hoc test, Figure 8).
However, there was a significant increase in BrdU/NeuN-positive cells in the Hsd and
VPA+Hsd groups compared with the VPA group (mean ± SEM; Hsd: 1305 ± 46.99 cells,
VPA+Hsd: 1237 ± 109.0 cells, VPA: 740 ± 61.41 cells, p < 0.05). These results demonstrated
that co-administration with Hsd could counteract VPA-induced neuronal cell survival
decreases in the SGZ.
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Figure 7. Illustrative images of the neuronal cell survival marker in the DG (A–D). For double staining of BrdU and NeuN,
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all nuclei (green). Arrowheads indicate BrdU-positive cells in the DG (scale bars: 100 µm). Inserted figures display high
magnification of BrdU/NeuN immunostaining (scale bar: 50 µm).
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Figure 8. The mean BrdU-positive cell count of the VPA-treated group was significantly reduced
compared to the vehicle (**** p < 0.0001), Hsd (#### p < 0.0001), and VPA+Hsd (### p < 0.001) groups.

3.5. Effects of VPA and Hsd on Immature Neuron

DCX immunofluorescence was performed to measure the number of DCX-positive
cells in the SGZ (Figure 9). The number of DCX-positive cells in the VPA group alone was
significantly reduced compared to the vehicle group (mean ± SEM; VPA: 929.3 ± 91.01 cells,
vehicle: 2209 ± 80.38 cells, p < 0.05, one-way ANOVA, Bonferroni’s post hoc test, Figure 10).
On the other hand, the total number of DCX-positive cells was significantly increased in
animals receiving Hsd alone and receiving VPA+Hsd compared to VPA treatment alone
(mean ± SEM; Hsd: 2129 ± 86.00 cells, VPA+Hsd: 1813 ± 54.60 cells, VPA: 929.3 ± 91.01
cells, p < 0.05). Thus, the results suggest that co-administration with Hsd could prevent
and alleviate the VPA-caused decrease in immature post-mitotic neurons.
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Arrowheads indicate DCX-positive cells in the DG (scale bars: 100 µm). Inserted figures show high magnification of DCX
immunostaining (scale bar: 50 µm).
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4. Discussion

The present study aimed to demonstrate the advantages of Hsd against VPA-induced
memory impairment and hippocampal neurogenesis deterioration in a rat model (Figure 11).
Flavonoids have been reported having beneficial effects in the prevention of neurodegen-
erative disorders like Alzheimer’s disease. The molecular investigation has shown that
the administration of quercetin significantly decreases extracellular b-amyloidosis in the
hippocampus by downregulating the β-site APP cleaving enzyme 1 (BACE1) [22]. The
oral consumption of rutin can combat oxidative stress and enhance antioxidant pathways
resulting in attenuation in cognitive impairments. In addition, rutin can promote the
expression of a brain-derived neurotrophic factor in the hippocampus, promising a po-
tent alternative therapeutic agent for Alzheimer’s disease [23,24]. Citrus plants have a
bioflavonoid compound, hesperidin that has various biological properties and may play an
effective role in the mediation for neurodegenerative diseases. We investigated the effect
of Hsd on VPA-induced memory impairment using the NOL and NOR tests. Both tests
rely on hippocampal function, which plays a crucial role in cognition and learning [25].
The NOL test is used to evaluate the ability of rats to discriminate objects in a novel and
a familiar location according to the hippocampal-dependent spatial memory involving
locations or routes in rodents [7,15,26]. In this study, the NOL test revealed that VPA caused
spatial memory impairment, which, in turn, caused VPA-treated rats to spend significantly
less time exploring an object placed in a novel location than a familiar location, showing a
preference for the familiar location. However, rodents with intact spatial memory naturally
tend to explore new things, according to their preference for the novel over the familiar [25].
The results are consistent with additional recent studies that demonstrated that, in an NOL
test, VPA treatment resulted in hippocampal neurogenesis and spatial working memory
impairment [11,15]. Many clinical studies showed that long-term VPA treatment causes di-
verse levels of memory loss and unusual emotional behavior that impacts patient quality of
life [27–29]. In this study, however, the rats receiving Hsd and VPA+Hsd co-administration
significantly preferred the objects in the novel locations more than those in the familiar lo-
cations, suggesting that VPA-induced spatial memory impairment was ameliorated by Hsd
co-administration. Similarly, co-administration with Hsd can improve learning and mem-
ory impairment in a mouse model of Alzheimer’s disease [30] and a model of chemotherapy
MTX-induced memory loss in rats [7]. Recognition memory, a form of declarative memory,
entails the ability to remember counting and relies on the integrity of the medial temporal
lobe, including the hippocampus [31]. Recognition memory also involves the recollection
of learning experiences and knowing those formerly presented [32]. We used the NOR test
to assess the hippocampal-dependent recognition memory in rats and analyze their ability
to discriminate the differences between familiar and novel objects [33]. Recent studies
have shown that animals that underwent treatment with VPA expressed poor cognition
performance in the NOR test [15,34], This finding is in line with the present study that
found that rats that received VPA expressed impaired recognition behavior as shown by
the observed insignificant preference to the novel object over the familiar object. However,
the rats that received VPA+Hsd co-administration naturally preferred the novel object
more than the familiar object [25]. Therefore, VPA-induced impairment in recognition
memory was counteracted and improved by Hsd co-administration. Our present results
are comparable with prior studies whereby Hsd improved recognition memory by helping
the formation of synapses in hippocampal animal models [35], improved learning ability,
and reduced memory deficits, as evaluated by the NOR test, through up-regulating nerve
growth factor levels [36].
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Figure 11. Diagram of the effects of Hsd on memory and hippocampal neurogenesis in VPA-treated rats.

Mammalian hippocampal neurogenesis appears to generate functional new neurons
and integrate them into neuronal circuits in the SGZ of the DG, associated with learn-
ing ability and memory performance [37–39]. A variety of evidence ascertains that VPA
treatment induces memory impairment resulting from the deterioration of hippocampal
neurogenesis [11,15,40]. For this reason, we examined the effect of VPA and Hsd on hip-
pocampal neurogenesis using three specific markers, including: (1) Ki-67 to investigate
cell proliferation, (2) BrdU/NeuN double staining to investigate neuronal cell survival,
and (3) DCX to investigate immature neurons. We expect that the results in this study
are further elucidating the neuroprotective effects of Hsd in the SGZ of the DG in the
hippocampus on encouraging the formation and survival of newly generated neurons. A
nuclear protein, Ki-67, is manifested in the active cell cycle [41], and several studies have
used Ki-67 to assess cell proliferation in the SGZ of the DG in the hippocampus [7,15,42].
Hence, the present study applied Ki-67 to detect cell proliferation in the SGZ. The results
postulate that VPA significantly reduced the number of Ki-67-positive cells, implying that
VPA suppresses cell proliferation in the SGZ of the hippocampal DG. These findings are
supported by previous studies showing decreased cell proliferation in the SGZ related to
memory impairment in VPA-treated rats [11,15,40]. VPA functions as an antimitotic agent,
which inhibits the activity of histone deacetylase (HDAC) enzymes and gene transcription,
leading to suppressed cell proliferation [43]. Evidence has shown cognitive impairment in
patients who received VPA treatment [44,45]. However, co-administration with Hsd signif-
icantly increased the population of Ki-67-positive cells, in line with the results of previous
studies [7,36]. This finding suggests that Hsd prevents the antimitotic effects of VPA that
decrease cell proliferation in the hippocampal DG SGZ related to memory impairment.

In this study, BrdU, a thymidine analog, was administered at the beginning of the
treatment to investigate cell survival in the hippocampal DG SGZ, similar to prior stud-
ies [7,15,42]. BrdU can incorporate into dividing cells during DNA synthesis in the cell
cycle S phase [46]. NeuN is a neuronal nuclear protein localized in the nuclei and perin-
uclear cytoplasm of neurons. The expression of NeuN is generally found in post-mitotic
neurons and frequently persists in mature neurons [47]. Immunofluorescent staining of
BrdU co-expressing with NeuN has been used to verify neuronal cell survival in the hip-
pocampus [48]. We used BrdU/NeuN double staining to determine neuronal survival. We
found that the rats that received VPA showed a significant decrease in BrdU/NeuN positive
cells, presenting a depletion of neuronal survival in the SGZ of the hippocampal DG. Cor-
respondingly, exposure to VPA reduced the number of BrdU/NeuN-positive cells [49,50].
Nevertheless, amelioration of BrdU/NeuN-positive cell loss was found in rats receiving
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co-administration of VPA and Hsd, consistent with previous studies [7,51], exhibiting the
proficiency of Hsd co-administration. These findings reveal that Hsd could prevent a
VPA-induced reduction in neuronal cell survival in the SGZ of the DG in the hippocampus.

The microtubule-associated protein DCX is expressed inside immature neurons during
neuronal development. This dynamic protein is a requisite in the process of neuronal differ-
entiation, movement, and migration [52]. In the first two weeks after neuronal proliferation,
DCX is ordinarily expressed and labeled in the dendritic cytoplasm [53]. Current studies
have identified the population of immature neurons in the SGZ using immunofluorescent
staining for DCX [7,15,42]. We presently found that the number of DCX-positive cells in
the VPA-treated rats was decreased. The results from the recent study likewise indicated
that VPA diminished DCX-labeled neuronal cells leading to memory impairment [15],
supporting the outcome of the present study. Nevertheless, co-administration with Hsd in
VPA-treated rats increased the number of immature neurons, inferring a potential effect of
Hsd to counter VPA-induced memory impairment. These results present a neuroprotective
effect of Hsd. This excellent bioactive compound could attenuate the insidious impact of
VPA by alleviating reductions in cell proliferation, neuronal cell survival, and the number
of immature neurons.

5. Conclusions

Our study demonstrated that VPA causes memory impairments associated with
deterioration in hippocampal neurogenesis processes, including cell proliferation, neuronal
cell survival, and the number of immature neurons. Co-administration with Hsd helps
alleviate those impairments. We postulate that Hsd has a neuroprotective effect against
VPA-induced memory impairment related to hippocampal neurogenesis. Therefore, this
study may contribute new information that can help to prevent memory deficits and reduce
neurogenesis in the SGZ in the hippocampus in VPA-treated patients.
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