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Sarcopenia, the age-related loss of skeletal muscle, is characterized by a deterioration of muscle quantity and quality leading to a
gradual slowing of movement, a decline in strength and power, and an increased risk of fall-related injuries. Since sarcopenia is
largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, numerous targets
exist for drug discovery. In this paper, we summarize the current understanding of the endocrine contribution to sarcopenia
and provide an update on hormonal intervention to try to improve endocrine defects. Myostatin inhibition seems to be the
most interesting strategy for attenuating sarcopenia other than resistance training with amino acid supplementation. Testosterone
supplementation in large amounts and at low frequency improves muscle defects with aging but has several side effects. Although
IGF-I is a potent regulator of muscle mass, its therapeutic use has not had a positive effect probably due to local IGF-I resistance.
Treatment with ghrelin may ameliorate the muscle atrophy elicited by age-dependent decreases in growth hormone. Ghrelin is an
interesting candidate because it is orally active, avoiding the need for injections. A more comprehensive knowledge of vitamin-D-
related mechanisms is needed to utilize this nutrient to prevent sarcopenia.

1. Introduction

Age-related declines in muscle mass and strength, known
as sarcopenia, are often an important antecedent of the
onset of disability in older adulthood. Although the term is
applied clinically to denote loss of muscle mass, sarcopenia
is often used to describe both a set of cellular processes
(denervation, mitochondrial dysfunction, and inflammatory
and hormonal changes) and a set of outcomes such as
decreased muscle strength, decreased mobility and function
[1], increased fatigue, a greater risk of falls [2], and reduced
energy needs. Lean muscle mass generally contributes up to
∼50% of total body weight in young adults but declines with
aging to be 25% at 75–80 years old [3, 4]. The loss of muscle
mass is typically offset by gains in fat mass. The loss is most
notable in the lower limb muscle groups, with the cross-
sectional area of the vastus lateralis being reduced by as much
as 40% between the ages of 20 and 80 yr [5].

Several possible mechanisms for age-related muscle atro-
phy have been described; however, the precise contribution
of each is unknown. Age-related muscle loss is a result of

reductions in the size and number of muscle fibers [6]
possibly due to a multifactorial process that involves physical
activity, nutritional intake, oxidative stress, and hormonal
changes [2, 7]. The specific contribution of each of these
factors is unknown, but there is emerging evidence that
the disruption of several positive regulators (Akt and serum
response factor) of muscle hypertrophy with age is an
important feature in the progression of sarcopenia [8–10].
In contrast, many investigators have failed to demonstrate
an age-related enhancement in levels of common negative
regulators (Atrogin-1, myostatin, and calpain) in senescent
mammalian muscles.

Several lines of evidence point to inflammation being
associated with loss of muscle strength and mass with aging
[11]. Animal studies have shown that the administration
of interleukin (IL)-6 or tumor necrosis factor (TNF)-α
increases skeletal muscle breakdown, decreases the rate of
protein synthesis, and reduces plasma concentrations of
insulin-like growth factor [12, 13]. In older men and women,
higher levels of IL-6 and C-reactive protein (CRP) were
associated with a two- to threefold greater risk of losing
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more than 40% of grip strength over 3 years [14]. On
the other hand, several studies have indicated age-related
endocrine defects such as decreases in anabolic hormones
(testosterone, estrogen, growth hormone (GH), and insulin-
like growth factor-I (IGF-I)) [15–18]. Although hormonal
supplementation for the elderly has been conducted on a
large scale, it was found not to be effective against sarcopenia
and to have minor side effects [9, 10, 15, 16, 19, 20]. In
this paper, we summarize the current understanding of the
endocrine contribution to sarcopenia and provide an update
on practical hormonal intervention for the elderly.

2. The Adaptative Changes in
Catabolic Mediators

2.1. TNF-α. Inflammation may negatively influence skeletal
muscle through direct catabolic effects or through indirect
mechanisms (i.e., decreases in GH and IGF-I concentrations,
induction of anorexia, etc.) [21]. There is growing evidence
that higher levels of inflammatory markers are associated
with physical decline in older individuals, possibly through
the catabolic effects of these markers on muscle. In an
observational study of more than 2000 men and women,
TNF-α showed a consistent association with declines in
muscle mass and strength [22]. The impact of inflammation
on the development of sarcopenia is further supported by a
recently published animal study showing that a reduction in
low-grade inflammation by ibuprofen in old (20 months)
rats resulted in a significant decrease in muscle mass loss
[23]. An age-related disruption of the intracellular redox
balance appears to be a primary causal factor for a chronic
state of low-grade inflammation. More recently, Chung et al.
[24] hypothesized that abundant nuclear factor-κB (NF-
κB) protein induced age-related increases in IL-6 and TNF-
α. Moreover, reactive oxygen species (ROS) also appear to
function as second messengers for TNF-α in skeletal muscle,
activating NF-κB either directly or indirectly [25]. Indeed,
marked production of ROS has been documented in muscle
of the elderly [26, 27]. However, it is not clear whether NF-
κB signaling is enhanced with age. Despite some evidence
supporting enhanced NF-κB signaling in type I fibers of aged
skeletal muscle, direct evidence for increased activation and
DNA binding of NF-κB is lacking [28, 29]. For example,
Phillips and Leeuwenburgh [29] found that neither p65
protein expression nor the binding activity of NF-κB was
significantly altered in the vastus lateralis muscles of 26-
month-old rats despite the marked upregulation of TNF-α
expression in both blood and muscle. Upregulated TNF-α
expression in serum and muscle seems to enhance apoptosis
through increased mitochondrial defects resulting in a loss of
muscle fibers [29–31]. It has been shown that TNF-α is one
of the primary signals inducing apoptosis in muscle.

2.2. Myostatin. Myostatin was first discovered during screen-
ing for new members of the transforming growth factor-
β (TGF-β) superfamily and shown to be a potent negative
regulator of muscle growth [32]. Like other family members,
myostatin is synthesized as a precursor protein that is cleaved

by furin proteases to generate the active C-terminal dimer.
Most, if not all, of the myostatin protein that circulates
in blood also appears to exist in an inactive complex
with a variety of proteins, including the propeptide [33].
The latent form of myostatin seems to be activated in
vitro by dissociation from the complex with either acid
or heat treatment [33, 34] or by proteolytic cleavage of
the propeptide with members of the bone morphogenetic
protein-1/tolloid family of metalloproteases [34].

Studies indicate that myostatin inhibits cell cycle pro-
gression and reduces levels of myogenic regulatory factors
(MRFs), thereby controlling myoblastic proliferation and
differentiation during developmental myogenesis [35–37].
Myostatin binds to and signals through a combination of
ActRIIA/B receptors on the cell membrane but has higher
affinity for ActRIIB. On binding to ActRIIB, myostatin
forms a complex with either activin receptor-like kinase
(ALK) 4 or ALK5 to activate (phosphorylate) the Smad2/3
transcription factors. Then Smad2/3 are translocated and
modulate the nuclear transcription of genes such as MyoD
[38] via a TGF-β-like mechanism. More recently, the IGF-
I-Akt-mTOR (mammalian target of rapamycin) pathway,
which mediates both differentiation in myoblasts and hyper-
trophy in myotubes, has been shown to inhibit myostatin-
dependent signaling. Blockade of the Akt-mTOR pathway,
using siRNA to RAPTOR, a component of TORC1 (TOR
signaling complex 1), facilitates myostatin’s inhibition of
muscle differentiation because of an increase in Smad2 phos-
phorylation [39]. In contrast, Smad2/3 inhibition promotes
muscle hypertrophy partially dependent on mTOR signaling
[40].

Several researchers have investigated the effect of inhibit-
ing myostatin to counteract sarcopenia using animals [41,
42]. Lebrasseur et al. [41] found that treatment with a mouse
chimera of antihuman myostatin antibody (24 mg/Kg, 4
weeks), a drug for inhibiting myostatin, elicited a significant
increase in muscle mass and in running performance prob-
ably due to decreased levels of phosphorylated Smad3 and
Muscle ring finger-1 (MuRF-1). More recently, Murphy et al.
[42] showed, by way of once weekly injections, that a lower
dose of this anti-human myostatin antibody (10 mg/Kg)
significantly increased the fiber cross-sectional area (by 12%)
and in situ muscle force (by 35%) of aged mice (21 mo
old). These findings highlight the therapeutic potential of
antibody-directed myostatin inhibition for sarcopenia by
inhibiting protein degradation. Although many researchers
expect myostatin levels to be increased not only in muscle but
also in serum, blood myostatin levels have not been shown to
increase with age [43].

2.3. Glucocorticoid. Glucocorticoid-associated atrophy ap-
pears to be specific to type II or phasic muscle fibers.
In a study of controlled hypercortisolaemia in healthy
men [44], experimental inactivity increased the catabolic
effect of glucocorticoids, suggesting that an absence of
mechanical signals potentiates the effect. The mechanism
of glucocorticoid-induced atrophy may involve upregulated
expression of myostatin and glutamine synthetase, the latter
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via the glucocorticoid receptor’s interaction with the glu-
tamine synthetase promoter [45]. Glucocorticoids inhibit the
physiological secretion of GH and appear to induce IGF-
I activity in target organs. Changes in steroid-induced glu-
tamine synthetase represent a potential mechanism of action,
and dose-dependent inhibition of glutamine synthetase by
IGF-I was observed in rat L6 cells [46].

The increased incidence of various diseased states during
aging is associated with the hypersecretion of glucocorti-
coids [47, 48]. In addition, when adult (7-month-old) and
aged (22-month-old) rats received dexamethasone (approxi-
mately 500 μg/Kg body weight/day) in their drinking water
for 5-6 days, muscle wasting was much more rapid in
aged animals [47]. Furthermore, glucocorticoids induced
prolonged leucine resistance to muscle protein synthesis in
old rats [49]. Still, it remains to be directly elucidated, using
pharmacological inhibitors for glucocorticoids, whether age-
related increases in serum glucocorticoid levels actually
inhibit protein synthesis and/or enhance protein degrada-
tion.

2.4. Interleukin-6 and CRP. IL-6 and CRP, known as “geri-
atric cytokines,” are multifunctional cytokine produced in
situations of trauma, stress, and infection. During the aging
process, levels of both IL-6 and CRP in plasma become
elevated. The natural production of cytokines is likely
beneficial during inflammation, but overproduction and the
maintaining of an inflammatory state for long periods of
time, as seen in elderly individuals, are detrimental [50, 51].
A number of authors have demonstrated that a rise in
plasma levels of proinflammatory cytokines, especially IL-
6, and proteins under acute conditions is associated with a
reduction in mobility as well as a reduced capacity to perform
daily activities, the development of fragility syndrome, and
increased mortality rates [50–52]. In older men and women,
higher levels of IL-6 and CRP were associated with a
two- to threefold greater risk of losing more than 40%
of grip strength over 3 years [14]. In contrast, there were
no longitudinal associations between inflammatory markers
and changes in grip strength among high functioning elderly
participants from the MacArthur Study of Successful Ageing
[53]. More recently, Hamer and Molloy [54] demonstrated,
in a large representative community-based cohort of older
adults (1,926 men and 2,260 women (aged 65.3±9.0 years)),
that CRP was associated with poorer hand grip strength
and chair stand performance in women but only chair
stand performance in men. In addition, Haddad et al. [55]
demonstrated atrophy in the tibialis anterior muscle of mice
following the injection of relatively low doses of IL-6.

In a recent randomized trial that employed aerobic
and strength training in a group of elderly participants,
significant reductions in various inflammatory markers (IL-
6, CRP, and IL-18) were observed for aerobic but not
strength training [56]. In contrast, combined resistance and
aerobic training that increased strength by 38% resulted in
significant reductions in CRP [57]. More descriptive data
appears to be needed whether IL-6 and CRP have an actual
catabolic effect in sarcopenic muscle.

3. Anabolic Hormones in Sarcopenic Muscle

3.1. Testosterone. In males, levels of testosterone decrease by
1% per year, and those of bioavailable testosterone by 2% per
year from age 30 [16, 58, 59]. In women, testosterone levels
drop rapidly from 20 to 45 years of age [60]. Testosterone
increases muscle protein synthesis [61], and its effects on
muscle are modulated by several factors including genetic
background, nutrition, and exercise [62].

Numerous studies of treatment with testosterone in the
elderly have been performed over the past few years [63–
66]. In 1999, Snyder et al. [66] suggested that increasing
the level of testosterone in old men to that seen in young
men increased muscle mass but did not result in functional
gains in strength. Systemic reviews of the literature [67]
have concluded that testosterone supplementation attenuates
several sarcopenic symptoms including decreases in muscle
mass [64–66] and grip strength [63]. For instance, a recent
study of 6 months of supraphysiological dosage of testos-
terone in a randomized placebo-controlled trial reported
increased leg lean body mass and leg and arm strength
[68]. Although there are significant increases in strength
among elderly males given high doses of testosterone, the
potential risks may outweigh the benefits. Risks associated
with testosterone therapy in older men include sleep apnea,
thrombotic complications, and the increased risk of prostate
cancer [69].

These side effects have driven the necessity for drugs
that demonstrate improved therapeutic profiles. Novel,
nonsteroidal compounds, called selective androgen recep-
tor modulators, have shown tissue-selective activity and
improved pharmacokinetic properties. Whether these drugs
are effective in treating sarcopenia has yet to be shown
[70]. Dehydroepiandrosterone (DHEA) is marketed as a
nutritional supplement in the USA and is available over
the counter. Unlike testosterone and estrogen, DHEA is a
hormone precursor which is converted into sex hormones
in specific target tissues [71]. However, supplementation of
DHEA in aged men and women resulted in an increase in
bone density and testosterone and estradiol levels, but no
changes in muscle size, strength, or function [72, 73].

3.2. Estrogen. It has been hypothesized that menopause
transition and the subsequent decline in estrogen may play
a role in muscle mass loss [7, 18]. Van Geel et al. [74]
reported a positive relationship between lean body mass
and estrogen levels. Similarly, Iannuzzi-Sucich et al. [75]
observed that muscle mass is correlated significantly with
plasma estrone and estradiol levels in women. However,
Baumgartner et al. [76] reported that estrogen levels were
not associated with muscle mass in women aged 65 years
and older. The mechanisms by which decrease in estrogen
levels may have a negative effect on muscle mass are not
well understood but may be associated with an increase
in proinflammatory cytokines, such as TNF-α and IL-6,
which might be implicated in the apparition of sarcopenia
[77]. Furthermore, estrogen could have a direct effect on
muscle mass since it has been shown that skeletal muscle
has estrogen beta-receptors on the cell membrane [78].
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Therefore, a direct potential mechanistic link could exist
between low estrogen levels and a decrease in protein
synthesis. Further studies are needed to investigate this
hypothesis. Nevertheless, before reaching a conclusion on the
contribution of estrogens to the onset of sarcopenia, it would
be important to measure urinary estrogen metabolites since
a relationship between breast cancer and urinary estrogen
metabolites has been shown [79].

3.3. GH. Growth hormone (GH) is a single-chain pep-
tide of 191 amino acids produced and secreted mainly
by the somatotrophs of the anterior pituitary gland. GH
coordinates the postnatal growth of multiple target tissues,
including skeletal muscle [80]. GH secretion occurs in a
pulsatile manner with a major surge at the onset of slow-
wave sleep and less conspicuous secretory episodes a few
hours after meals [81] and is controlled by the actions of
two hypothalamic factors, GH-releasing hormone (GHRH),
which stimulates GH secretion, and somatostatin, which
inhibits GH secretion [82]. The secretion of GH is maximal
at puberty accompanied by very high circulating IGF-I levels
[83], with a gradual decline during adulthood. Indeed,
circulating GH levels decline progressively after 30 years of
age at a rate of ∼1% per year [84]. In aged men, daily GH
secretion is 5- to 20-fold lower than that in young adults [85].
The age-dependent decline in GH secretion is secondary
to a decrease in GHRH and to an increase in somatostatin
secretion [86].

With respect to the somatomedin hypothesis, the
growth-promoting actions of GH are mediated by circulating
or locally produced IGF-I [87]. GH-induced muscle growth
may be mediated in an endocrine manner by circulating
IGF-I derived from liver and/or in an autocrine/paracrine
manner by direct expression of IGF-I from target muscle
via GH receptors on muscle membranes. The effects of
GH administration on muscle mass, strength and physical
performance are still under debate [19]. In animal models,
GH treatment is very effective at inhibiting sarcopenic
symptoms such as muscle atrophy and decreases in protein
synthesis particularly in combination with exercise training
[88]. The effect of GH treatment for elderly subjects is
controversial. Some groups demonstrated an improvement
in strength after long-term administration (3–11 months)
of GH [89]. In contrast, many researchers have found
that muscle strength or muscle mass did not improve
on supplementation with GH [19, 89]. One recent study
reported a positive effect for counteracting sarcopenia after
the administration of both GH and testosterone [90]. Several
reasons may underlie the ineffectiveness of GH treatment in
improving muscle mass and strength in the elderly, such as
a failure of exogeneous GH to mimic the pulsatile pattern
of natural GH secretion or the induction of GH-related
insulin resistance. In addition, reduced mRNA levels of the
GH receptor in skeletal muscle have been observed in older
versus younger healthy men, exhibiting a significant negative
relationship with myostatin levels [91]. It should also be
considered that the majority of the trials conducted on
GH supplementation have reported a high incidence of side

effects, including soft tissue edema, carpal tunnel syndrome,
arthralgias, and gynecomastica, which pose serious concerns
especially in older adults. Therefore, one should pay very
careful attention when administering GH to the elderly.

There is evidence that the age-associated decline in
GH levels in combination with lower IGF-I levels con-
tributes to the development of sarcopenia [92]. IGF-I is
perhaps the most important mediator of muscle growth
and repair [93] possibly by utilizing Akt-mTOR-p70S6K
(p70 ribosomal protein S6 kinase) signaling. Although
the transgenic approach of upregulating IGF-I expression
in skeletal muscle would be appropriate for inhibiting
sarcopenia, the administration of IGF-I to the elderly has
resulted in controversial findings on muscle strength and
function [94]. The ineffectiveness may be attributable to age-
related insulin resistance to amino acid transport and protein
synthesis [95] or a marked decrease in IGF-I receptors [96,
97] and receptor affinity for IGF-I [98] in muscle with age.
Wilkes et al. [99] demonstrated a reduced effect of insulin
on protein breakdown in the legs in older versus younger
subjects probably due to the blunted activation of Akt by
insulin. More comprehensive reviews on insulin resistance in
sarcopenia can be found elsewhere [95].

3.4. Ghrelin. Ghrelin is a 28-amino-acid peptide mainly pro-
duced by cells in the stomach, intestines, and hypothalamus
[100]. Ghrelin is a natural ligand for the GH-secretagogue
receptor (GHS-R), which possesses a unique fatty acid mod-
ification, an n-octanoylation, at Ser 3 [101]. Ghrelin plays a
critical role in a variety of physiological processes, including
the stimulation of GH secretion and regulation of energy
homeostasis by stimulating food intake and promoting adi-
posity via a GH-independent mechanism [100]. In contrast,
ghrelin inhibits the production of anorectic proinflamma-
tory cytokines, including IL-1β, IL-6, and TNF-α [102].
Because of their combined anabolic effects on skeletal muscle
and appetite, ghrelin and low-molecular-weight agonists of
the ghrelin receptor are considered attractive candidates for
the treatment of cachexia [103]. For example, Nagaya et al.
[104] gave human ghrelin (2 μg/Kg twice daily intravenously)
for 3 weeks to cachexic patients with chronic obstructive
pulmonary disease in an open-label study. After ghrelin
therapy, significant increases from baseline measurements
were observed for body weight, lean body mass, food intake,
hand grip strength, maximal inspiratory pressure, and
Karnofsky performance score [104]. In another unblinded
study, the same group demonstrated that treatment with
human ghrelin (2 μg/Kg twice daily intravenously, 3 weeks)
significantly improved several parameters (eg., lean body
mass measured by dual-energy X-ray absorption and left
ventricular ejection fraction) in 10 patients with chronic
heart failure [105]. In a 1-year placebo-controlled study
in healthy older adults over the age of 60 years given an
oral ghrelin-mimetic (MK-677), an increase in appetite was
observed [106]. The study did not show a significant increase
in strength or function in the ghrelin-mimetic treatment
group, when compared to the placebo group; however, a
tendency was observed [106]. As pointed out in a recent
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Figure 1: (a) In young muscle, abundant serum IGF-I can stimulate protein synthesis by activating Akt/mTOR/p70S6K pathway. Akt
blocks the nuclear translocation of FOXO to inhibit the expression of Atrogin-1 and MuRF and the consequent protein degradation.
Abundant serum GH, which is induced by ghrelin, activates JAK2-STAT5 signaling to promote muscle-specific gene transcription necessary
to hypertrophy. In young muscle, testosterone and estrogen bind these intramuscular receptors (androgen receptor and estrogen receptor (α
and β)), and activate mTOR and Akt, respectively. Lower serum amount of myostatin and TNF-α failed to activate signaling candidates (Smad
2/3, NF-κB, etc.) enhancing protein degradation. (b) In sarcopenic muscle, myostatin signals through the activin receptor IIB (ActRIIB),
ALK4/5 heterodimer seems to activate Smad2/3 and blocking of MyoD transactivation in an autoregulatory feedback loop. Abundant
activated Smad2/3 inhibit protein synthesis probably due to blocking the functional role of Akt. The increased blood TNF-α elevates the
protein degradation through IKK/NF-κB signaling and enhance an apoptosis. Lower serum amount of IGF-I, GH, and anabolic hormones
(testosterone and estrogen) failed to activate signaling candidates (Akt, mTOR, STAT5, etc.) enhancing protein synthesis. The impaired
regulation of FOXO by Akt results in abundant expression of Atrogin-1 and MuRF and the consequent protein degradation in sarcopenic
muscle.
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review by Nass et al. [20], the use of this compound
induces the potential deterioration of insulin sensitivity
and development of diabetes mellitus in older adults with
impaired glucose tolerance. Figure 1 provides an overview
of several regulators for muscle mass in both young and
sarcopenic mammalian muscles.

3.5. Vitamin D. Vitamin D has been traditionally considered
a key regulator of bone metabolism and calcium and
phosphorus homeostasis through negative feedback with the
parathyroid hormone [107, 108]. It is also well established
that vitamin D deficiency causes rickets in children and
osteomalacia and osteoporosis in adults. A large and growing
body of evidence suggests that vitamin D is not only
necessary for bone tissue and calcium metabolism but may
also represent a crucial determinant for the development
of major (sub)clinical conditions and health-related events
[107, 109].

Today, approximately 1 billion, mostly elderly people,
worldwide have vitamin D deficiency. The prevalence of low
vitamin D concentrations in subjects older than 65 years
of age has been estimated at approximately 50% [110–112],
but this figure is highly variable because it is influenced by
sociodemographic, clinical, therapeutic, and environmental
factors. Similarly there is an age-dependent reduction in
vitamin D receptor expression in skeletal muscle [113].
Prolonged vitamin D deficiency has been associated with
severe muscle weakness, which improves with vitamin D sup-
plementation [114]. The histological examination of muscle
tissue from subjects with osteomalacia is characterized by
increased interfibrillar space, intramuscular adipose tissue
infiltrates, and fibrosis [115]. Interestingly, muscle biopsies
performed before and after vitamin D supplementation have
documented an increased number and sectional area of type
II (or fast) muscle fibers [113, 116].

A large body of evidence currently demonstrates that
low vitamin D concentrations represent an independent risk
factor for falls in the elderly [117–119]. Supplementation
with vitamin D in double-blind randomized-controlled trials
has been shown to increase muscle strength and performance
and reduce the risk of falling in community-living elderly
and nursing home residents with low vitamin D levels
[120–124]. In contrast, several groups found no positive
effect of vitamin D supplementation on fall event outcomes
[125–127]. Cesari et al. [128] attributed these contradictory
findings to the selection criteria adopted to recruit study
populations, adherence to the intervention, or the extreme
heterogeneity of cut-points defining the status of deficiency.
A more comprehensive knowledge on vitamin-D-related
mechanisms may provide a very useful tool preventing
muscle atrophy for older persons (sarcopenia).

4. Conclusion

Given the current and future demographic age shift in the
world’s population, intense research in this area is impera-
tive. Decreases in muscle mass have been shown to be a key
element in the development of frailty. Currently, resistance

training combined with amino-acid-containing supplements
would be the best way to prevent age-related muscle wasting
and weakness. Comprehensive trials have demonstrated that
supplementation with GH, IGF-I, or estrogen has a minor
sarcopenia-inhibiting effect. Testosterone supplementation
in large amounts improves muscle defects with aging but has
several side effects. Ghrelin-mimetics which have the ability
to increase caloric intake as well as to increase lean body
mass in the older population could be potentially beneficial
and reverse the catabolic state associated with sarcopenia.
Myostatin inhibition seems to be an intriguing strategy for
attenuating sarcopenia as well as muscular dystrophy.
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