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Abstract 

Background:  The trajectory of frailty in older adults is important to public health; therefore, markers that may help 
predict this and other important outcomes could be beneficial. Epigenetic clocks have been developed and are asso-
ciated with various health-related outcomes and sociodemographic factors, but associations with frailty are poorly 
described. Further, it is uncertain whether newer generations of epigenetic clocks, trained on variables other than 
chronological age, would be more strongly associated with frailty than earlier developed clocks. Using data from the 
Canadian Longitudinal Study on Aging (CLSA), we tested the hypothesis that clocks trained on phenotypic markers of 
health or mortality (i.e., Dunedin PoAm, GrimAge, PhenoAge and Zhang in Nat Commun 8:14617, 2017) would best 
predict changes in a 76-item frailty index (FI) over a 3-year interval, as compared to clocks trained on chronological 
age (i.e., Hannum in Mol Cell 49:359–367, 2013, Horvath in Genome Biol 14:R115, 2013, Lin in Aging 8:394–401, 2016, 
and Yang Genome Biol 17:205, 2016).

Results:  We show that in 1446 participants, phenotype/mortality-trained clocks outperformed age-trained clocks 
with regard to the association with baseline frailty (mean = 0.141, SD = 0.075), the greatest of which is GrimAge, 
where a 1-SD increase in ΔGrimAge (i.e., the difference from chronological age) was associated with a 0.020 increase 
in frailty (95% CI 0.016, 0.024), or ~ 27% relative to the SD in frailty. Only GrimAge and Hannum (Mol Cell 49:359–
367, 2013) were significantly associated with change in frailty over time, where a 1-SD increase in ΔGrimAge and 
ΔHannum 2013 was associated with a 0.0030 (95% CI 0.0007, 0.0050) and 0.0028 (95% CI 0.0007, 0.0050) increase over 
3 years, respectively, or ~ 7% relative to the SD in frailty change.

Conclusion:  Both prevalence and change in frailty are associated with increased epigenetic age. However, not all 
clocks are equally sensitive to these outcomes and depend on their underlying relationship with chronological age, 
healthspan and lifespan. Certain clocks were significantly associated with relatively short-term changes in frailty, 
thereby supporting their utility in initiatives and interventions to promote healthy aging.
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Background
Over the past 20  years, there has been a great intensity 
of research into tools and methods available to quantify 
the health trajectories of older adults and, more impor-
tantly, classify their vulnerability to adverse outcomes. 
The concept of “biological age,” which increases with 
accumulated damage (or wear and tear) caused by both 
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acute and chronic environmental and pathological stress-
ors, as opposed to “chronological age,” which is simply 
the passage of time, has become central to this paradigm 
[1, 2]. The frailty index, which attempts to operationalize 
this increasing state of vulnerability by adding up a vari-
ety of pathological “deficits” across multiple biological 
and physiological systems [3], has been shown not only 
to fulfill theoretical assumptions on how damage within 
a complex biological network might accumulate [4], but 
also to reliably predict numerous age-related outcomes 
such as cardiovascular disease risk [5], depression [6], 
post-operative recovery [7] and death [8, 9]. However, the 
frailty index has also been criticized with regard to the 
length of time required to implement, the vast number 
of deficits required to achieve a reliable score, the use of 
inherently biased self-reported data and how deficits are 
treated when deriving a score (i.e., unweighted and often 
dichotomously) [10].

Another approach, which has received much attention 
recently, is quantifying biological age using standardized 
laboratory or other routine clinical measures. Essen-
tially, an increased biological age results from exhibit-
ing levels that are commonly observed for individuals 
older than one’s self, as in the Klemera–Doubal approach 
[11], or from exhibiting levels that depart from popula-
tion averages or established clinical thresholds, as in the 
homeostatic dysregulation [12] or FI-lab [13] approaches, 
respectively. Similar to the former is the use of genome-
wide DNA (i.e., CpG) methylation data to train math-
ematical algorithms that attempt to accurately estimate 
one’s age, under the assumption that age-related changes 
in the proportion of methylation at a given locus are 
due to a natural chronological process (i.e., clock) and/
or the response to damage that accrues over time [14]. 
Two of the earliest and more popular examples of this 
include Horvath’s 353-CpG clock [15] and Hannum’s 
71-CpG clock [16], which have been shown to correlate 
with established health-related risk factors [17, 18] as 
well as predict all-cause and disease-specific mortality 
[19]. Newer “second-generation” clocks, such as the Dun-
edin Pace of Aging Methylation [20], PhenoAge [21] and 
GrimAge [22], which are trained using a combination of 
chronological age, health-related risk factors or mortal-
ity, have proven to be additionally sensitive to detecting 
adverse outcomes, namely cardiopulmonary and meta-
bolic disease [22, 23], cancer [24] and death [21, 22].

Surprisingly, only a handful of cross-sectional studies 
have investigated the association between epigenetically 
determined age and frailty, most of which only including 
clocks trained on age [25–29]. While the vast majority 
of these studies confirm that prevalent frailty is strongly 
associated with epigenetic age, important questions 
remain unanswered: First, given that frailty, by definition, 

is a syndrome encompassing age-related defects in mul-
tiple biological and physiological systems that indicate 
vulnerability to adverse outcomes, would it more strongly 
associate with clocks that are trained solely on chrono-
logical age or health-related risk factors and mortality or 
a combination of the two? Second, what is the capacity 
of these contextually different clocks in predicting the 
change in frailty over time? In the following study, we 
aimed to investigate the relationships of eight epigenetic 
clocks with frailty, both cross-sectionally and longitudi-
nally, using baseline and 3-year follow-up data from the 
Canadian Longitudinal Study on Aging. These clocks 
were divided into two groups, those trained solely on 
chronological age and those trained on combination of 
age, phenotypic markers of health and mortality. The for-
mer included clocks developed by Horvath [15], Hannum 
[16] and Lin [30] as well as a clock by Yang [31], devel-
oped to estimate cellular turnover. The latter included 
four: (1) the Dunedin Pace of Aging Methylation [20], 
trained on a longitudinal change score of phenotypic and 
biological measures in relatively young adults; (2) Grim-
Age [22], based on DNA methylation scores for plasma 
biomarkers and smoking pack-year exposure, and trained 
to predict time-to-death; (3) PhenoAge [21], trained on a 
phenotypic age score known to predict all-cause mortal-
ity; and (4) a clock developed by Zhang [32], trained to 
predict all-cause mortality. We hypothesized that clocks 
trained on phenotypic markers of health or mortality 
would best predict changes in the frailty index over time, 
as compared to clocks trained on chronological age.

Results
Summary of cohort sociodemographics and frailty
As summarized in Table 1, the average age of our cohort 
was 62 years, half were women, and most had post-sec-
ondary education, consumed two or more servings of 
fruits and vegetables per day or reported a total house-
hold income of $50,000 or more. Further, nearly half were 
never smokers and the average physical activity score 
was 139, which is similar to that previously reported for 
community-dwelling older adults [33]. At both base-
line and at 3-year follow-up, the distribution of the 
frailty index for the entire cohort was nearly identical: 
0.141 ± 0.075 (median [min/max] = 0.127 [0.0132, 0.548]) 
and 0.142 ± 0.077 (0.129 [0.004, 0.543]), respectively.

For those participants that provided data at both 
time points (n = 1264), an examination of the change in 
frailty over 3 years (i.e., frailty at follow-up minus base-
line) indicated that frailty both increased and decreased 
(Fig. 1). The average change in frailty was just above zero, 
0.006 ± 0.044, and roughly half (54%) of participants 
exhibited an increase over time; while the proportion was 
similar between women and men, the average change 
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was greater in women (0.008 ± 0.044 vs. 0.005 ± 0.044, 
respectively). In terms of a clinically meaningful differ-
ence (CMD) in frailty, previously denoted as a change of 
0.03 or greater [34, 35], 25% of participants exhibited at 
least a CMD increase at follow-up, 11% exhibited twice 
that, and 3.6% exhibited three times the CMD. Alter-
natively, 18% of participants exhibited at least a CMD 
decrease at follow-up, and 5% exhibited twice that.

Characterization of the epigenetic clock measures
Eight different epigenetic clocks were calculated for 
the present cohort, many of which differ substantially 

with regard to the units they are presented in and the 
variance that they exhibit (Fig.  2; Additional file  1: 
Table  S1). Nonetheless, each correlated significantly 
(nominal p < 0.001) with chronological age, the strong-
est of which is GrimAge (r = 0.90), followed by Hor-
vath [15] (0.87), Hannum [16] (0.86), Lin [30] (0.82), 
PhenoAge (0.82), Zhang [32] (0.34), Yang [31] (0.30) 
and Dunedin PoAm (0.21). As expected, delta age 
estimates for each clock tended to approximate zero 
and varied between 3 and 5 SDs on either side of the 
mean. Although the delta age estimate for all clocks 
was significantly correlated with one another (nomi-
nal p < 0.001), those clocks that incorporated chrono-
logical age during training (i.e., Hannum [16], Horvath 
[15], Lin [30] and PhenoAge) tended to correlate 
strongest, as did those clocks that specifically trained 
on mortality or pace of aging (i.e., Dunedin PoAm, 
GrimAge, PhenoAge and Zhang [32]); Hannum [16] 
was unique in that it correlated relatively well with all 
other clocks, and Dunedin PoAm and Yang [31] was 
the only pair to be inversely correlated (Additional 
file 1: Fig. S1).

Similarly shown in recent work by Crimmins and 
colleagues [36], phenotype- and/or mortality-trained 
clocks tended to exhibit the strongest associations 
with sociodemographic and lifestyle factors, the high-
est being GrimAge, followed by Dunedin PoAm, Zhang 
[32] and PhenoAge (Additional file 1: Fig. S2). All delta 
age measures were significantly lower in females as 
compared to males, with exception to Yang 2016.

Table 1  Descriptive summary of participants in the current 
study, stratified by change in frailty

Continuous data presented as the average (standard deviation) and categorical 
data as the count (frequency). * includes participants that did not provide any 
data at follow-up (n = 126), and those in which greater that 10% of frailty index 
items were missing (n = 53)

Total
(N = 1446)

Age 63 (10.3)

Sex

F 732 (50.6%)

M 714 (49.4%)

Education

Post-secondary 1224 (84.6%)

Secondary 141 (9.8%)

< Secondary 81 (5.6%)

Income

> 100 K 478 (33.1%)

50–100 K 445 (30.8%)

20–50 K 352 (24.3%)

< 20 K 93 (6.4%)

Missing 78 (5.4%)

Smoking status

Never 653 (45.2%)

Former 631 (43.6%)

Current 161 (11.1%)

Missing 1 (0.1%)

Fruit/veg. consumption

4+ 783 (54.1%)

2–3 436 (30.2%)

< 2 139 (9.6%)

Missing 88 (6.1%)

Physical activity score 139 (74.5)

 Missing 93 (6.4%)

Frailty index (baseline) 0.141 (0.0749)

 Missing 3 (0.2%)

Frailty index (3-year) 0.142 (0.0766)

 Missing* 179 (12.4%)

Fig. 1  Summary of the change in frailty from baseline to 3-year 
follow-up. The change in frailty was calculated as the follow-up value 
minus the baseline value for all participants who provided follow-up 
data (n = 1264). The mean and standard deviation, and minimum and 
maximum change are shown, along with the number and frequency 
of participants that exhibited greater than one, two or three times the 
clinically meaningful difference (CMD) in frailty (i.e., 0.03; also shown 
as vertical blue lines). The vertical red line shows no difference
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Associations between delta age estimates and frailty
We first measured the association of each epigenetic 
clock delta age estimate with frailty at baseline in sepa-
rate models, adjusting for age and sex (model 1), or age, 
sex and other sociodemographic factors (model 2), for 
all participants who provided baseline data (n = 1446) 
(Fig.  3a; Additional file  1: Table  S2). In age- and sex-
adjusted models, those clocks that were trained on 
mortality and pace of aging exhibited the strongest 
associations, led by GrimAge, where frailty increased 
0.020 (i.e., 27% of the SD in frailty at baseline for the 
entire sample) for each 1-SD change in ΔGrimAge (95% 
CI 0.015, 0.024); the estimates for ΔDunedin PoAm, 
ΔPhenoAge and ΔZhang 2017 were approximately 
half of that (standardized beta (95% CI): 0.013 [0.009, 
0.017], 0.011 [0.007, 0.015] and 0.010 [0.006, 0.014], 
respectively). The clocks trained on chronological age 
and the mitotic clock exhibited weaker associations, 
and only ΔHannum 2013 (0.0057 [0.0019, 0.0095]) and 
ΔHorvath 2013 (0.0055 [0.0017, 0.0094]) were signifi-
cant. When additionally adjusted for sociodemograph-
ics, the patterns of estimates remained the same, but 
were weaker in nearly every case. All mortality-trained 
clocks and Dunedin PoAm remained significantly 

associated with baseline frailty, while ΔHannum 2013 
and ΔHorvath 2013 failed to retain significance.

To measure the association between delta age estimates 
and frailty at 3-year follow-up, we used the aforemen-
tioned modeling strategy and additionally adjusted for 
frailty at baseline for all participants that provided data 
at both time points (n = 1246) (Fig. 3b; Additional file 1: 
Table  S2). As with the analysis of frailty at baseline, in 
age- and sex-adjusted models ΔGrimAge exhibited the 
strongest association with frailty at follow-up, where for 
every 1-SD change in ΔGrimAge frailty changed 0.003 
(95% CI 0.00068, 0.00541), or approximately 7% of the 
SD in change in frailty for the entire sample. However, 
associations with ΔHannum 2013 were nearly as strong 
(standardized beta (95% CI): 0.0028 [0.00075, 0.00476]) 
and remained significant in fully adjusted models (0.0022 
[0.00006, 0.00426]). We also tested whether the delta age 
estimates were associated with the likelihood of a CMD 
increase in frailty at follow-up, but only ΔGrimAge was 
statistically significant: in age- and sex-adjusted models, 
for every 1-SD increase, the odds increased by 1.22 times 
(95% CI 1.09, 1.37), and in models additionally adjusted 
for sociodemographics, the odds increased by 1.26 times 
(95% CI 1.09, 1.46) (Additional file 1: Table S2).

Fig. 2  Summary of epigenetic clock measures. In each plot, a respective epigenetic clock estimate (y-axis) relative to chronological age (x-axis) 
is presented, along with an inserted table describing the mean (standard deviation) and minimum/maximum for the corresponding delta age 
estimate. Also shown in each table is the correlation (r) between the epigenetic clock estimate and chronological age
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Discussion
The primary goal of the current study was to evaluate a 
series of conceptually diverse epigenetic clock measures 
with regard to their association to frailty and its change 
over 3 years. While the frailty index is an excellent pre-
dictor of adverse health outcomes in a variety of settings 
[5–9], it has also been criticized for being cumbersome 
and inherently biased [10]; hence, identifying standard-
ized molecular measures that are indicative of its change, 
especially over relatively short intervals, would be of 
certain value. In our sample of the CLSA, the change in 
frailty over 3 years was normally distributed, on average 
increasing about 20% (i.e., 0.006) of what has been previ-
ously described as a clinically meaningful difference (i.e., 
0.03) [34, 35]. After adjusting for the minimum age at 
recruitment, this is similar to what has previously been 
reported for community samples in the USA, Canada and 
Europe [37–40].

As hypothesized, clocks that trained on phenotypic 
markers and/or mortality (i.e., GrimAge, Dunedin PoAm, 
PhenoAge and Zhang [32]) were most strongly associ-
ated with prevalent frailty; this is supported by recently 
published work [41]. Of those, GrimAge exhibited the 
strongest association, which is not surprising, as it 
exhibits robust associations with healthspan and lifes-
pan [22] and specifically incorporates DNA methyla-
tion loci that correlate with a number of frailty-related 
plasma biomarkers, such as leptin [42], TIMP-1 [43], 
beta-2 microglobulin [44] and cystatin C [45]. Given this, 
it is also not surprising that GrimAge was significantly 

associated with the change in frailty over 3 years, which 
was not observed for the other mortality-trained clocks. 
It would appear that the unique combination of chron-
ological age and DNA methylation scores of relevant 
plasma proteins and smoking pack-years provides Grim-
Age additional sensitivity to detect changes in health 
that other phenotype or mortality-trained clocks are not 
afforded.

Among the clocks that were significantly associated 
with prevalent frailty, Dunedin PoAm was the second 
highest in magnitude. This is particularly interesting as it 
attempts to quantify the rate (or pace) at which physio-
logical and phenotypic health-related biomarkers change 
with age, instead of their levels relative to the population 
mean or risk of death. The relatively strong association is 
warranted, especially since our frailty index is predomi-
nantly composed of health-related conditions that influ-
ence the levels of many of the 18 biomarkers that are 
part of the Dunedin PoAm, and in a similar direction as 
chronological age; for example, FEV1 decreases with age 
and numerous cardiopulmonary disorders [46], while 
C-reactive protein (CRP) [47] and mean arterial pressure 
[48] both increase with age and depressive symptoms. 
Since many of these biomarkers have also been shown to 
be related to the incidence of frailty-related chronic con-
ditions, it is unclear why the Dunedin PoAm was not sig-
nificantly associated with the change in frailty. This may 
have to do with the fact that this clock was trained on 
the rate of biomarker change in relatively young adults, 
and may not reflect the “damage” that occurs later in life, 

Fig. 3  Associations between frailty and different epigenetic clock measures. Frailty at a baseline and b after 3-year follow-up was regressed on 
standardized delta age estimates using gamma regression, each of which is in separate models. For both panels, model 1 represents estimates 
adjusted for age and sex, while model 2 represents estimates adjusted for age, sex, education, income, smoking, diet and physical activity; for 
b, both models were also adjusted for frailty at baseline. Beta coefficients and 95% confidence intervals (CI) are shown, and the dotted red line 
indicates no association
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which influences the breakdown of biological networks 
and ultimately determines the trajectory of frailty [49]. 
Interestingly, the only other clock to be associated with 
change in frailty was Hannum [16], the coefficient for 
which was nearly as strong as GrimAge. Like GrimAge 
[23, 50], Hannum [16] has been shown to be correlated 
with levels of the chronic inflammatory marker CRP [51, 
52], which is significantly related to both prevalent [53] 
and incident [54, 55] frailty. Another age-trained clock 
we studied, Horvath [15], was not found to be signifi-
cantly related to CRP in the same studies as Hannum [16, 
51, 52] and was not associated with change in frailty in 
the current study.

Our study featured both strengths and limitations. 
Strengths included a relatively large sample of partici-
pants derived from the population-based Canadian Lon-
gitudinal Study on Aging, from which we derived eight 
conceptually diverse epigenetic clocks and a comprehen-
sive frailty index based on 76 deficits related to chronic 
conditions, well-being and physical/cognitive function-
ing. Furthermore, we were able to investigate frailty 
longitudinally, which is not common in the literature. 
Unfortunately, the time between frailty measures was 
only 3 years, which may not be as reliable a time point to 
accurately estimate the true trajectory of frailty.

Conclusions
In summary, we have shown that epigenetic clocks 
trained on phenotypic markers of health and aging and/
or mortality are most strongly associated with prevalent 
frailty. GrimAge and Hannum [16] were the only clocks 
to be associated with both baseline and change in frailty, 
suggesting that they may be most effective at predicting 
health trajectories of older adults and detecting beneficial 
effects of healthy aging interventions.

Methods
Cohort description
This study was an analysis of data from the Canadian 
Longitudinal Study on Aging (CLSA) baseline (2012–
2015) and first follow-up (2015–2018) collection; the 
CLSA study design and methods have been previously 
described [56]. Specifically, it was based on the CLSA 
comprehensive cohort (baseline dataset version 4.1; 
follow-up dataset version 3.0), which includes 30,097 
community-dwelling adults aged 45–86 years at recruit-
ment who provided questionnaire data through in-home 
interviews and provided additional physical and cog-
nitive assessment data at one of 11 data collection sites 
nationwide. Within this cohort, a random pool of 10,000 
participants was drawn and extensive laboratory meas-
ures, including clinical chemistry and genetics, were per-
formed on cryopreserved blood. From this pool, 1479 

participants were randomly selected for DNA methyla-
tion analysis on their baseline biospecimen. This study 
was approved by the Health Sciences North Research 
Ethics Board (#20-030).

DNA methylation analysis and description of the final 
sample
The proportion of methylation on cytosine–guanine 
(CpG) nucleotide pairs was measured using the Infinium 
MethylationEPIC BeadChip platform (Illumina, CA, 
USA) on DNA extracted from peripheral blood mono-
nuclear cells (PBMCs); a summary of this work and the 
preparation of DNA methylation data can be found 
at: https://​www.​clsa-​elcv.​ca/​doc/​3491. Briefly, blood 
was drawn into CPT vacutainers (BD Biosciences, NJ, 
USA), after which PBMCs were isolated, resuspended 
in PBS and cryopreserved in vapor-phase liquid nitro-
gen. From this, DNA was extracted by QIAsymphony 
nucleic acid extraction platform using DNA midi kits 
(Qiagen, Hilden, Germany) and bisulfite-treated using 
the EZ DNA methylation kit (Zymo, CA, USA). Meas-
urement of CpG methylation on converted DNA samples 
by MethylationEPIC array was performed according to 
manufacturer’s recommendations. At each step in this 
process (i.e., DNA extraction, bisulfite conversion and 
array hybridization and analysis), participant samples 
were batch-randomized. After the acquisition of raw 
data, probe-level QC was first performed using functions 
from the R package “minfi” [57]: The median log intensity 
of methylated and unmethylated channels was checked 
using “getQC” and exceeded the recommended thresh-
old of 10.5 for all arrays, while the average probe detec-
tion p-value (i.e., methylated and unmethylated signals 
tested against background) for each array, assessed using 
the “detectionP” function, was at least 0.005. Array-level 
QC found that of the 1479 samples initially included for 
DNA methylation analysis, 4 were removed due to poor 
bisulfite conversion (i.e.,  < 85%), while another 29 were 
flagged by built-in outlier detection functions in the R 
packages “wateRmelon” [58] and “lumi” [59]. Hence, the 
final sample included 1446 participants. Of those, 1320 
provided data at follow-up, while the remaining 126 par-
ticipants either withdrew from the study (n = 53) or died 
(n = 24) prior to providing data, or data were not avail-
able for another reason (n = 49).

Derivation of estimates from published epigenetic clocks
Eight epigenetic clocks were chosen based on the phe-
nomenon or outcome they were originally designed to 
estimate or predict; they are labeled using the name that 
they are commonly referred to or by the lead author and 
year of the study in which they were initially published. 
Horvath [15], Hannum [16] and Lin [30] were trained on 

https://www.clsa-elcv.ca/doc/3491
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chronological age, and therefore, use DNA methylation 
in order to estimate one’s age. Yang [31] (also known as 
epiTOC) was also trained on chronological age, but only 
at CpG sites associated with Polycomb group targets that 
were also constitutively unmethylated in fetal tissues; 
based on these criteria, the authors argued that this clock 
should be highly related to mitotic-like processes. Dun-
edin Pace of Aging Methylation (PoAm) [20] was trained 
on a longitudinal change score of 18 biomarkers in adults 
between the ages of 26 and 38 years. GrimAge [22] was 
developed using a two-stage process in which DNA 
methylation scores for 12 age-related plasma biomark-
ers and smoking pack-year exposure were first identified 
and then trained to predict time-to-death. PhenoAge 
[21] was trained on a phenotypic age score based on nine 
clinically relevant blood biomarkers and chronological 
age that predicted all-cause mortality, while Zhang [32] 
was trained on all-cause mortality. Each epigenetic clock 
was derived using either published software or weights 
and beta values normalized according to the method that 
would best recapitulate the authors’ original findings; 
this, along with the respective number of CpGs used 
in current study, is found in Table 2. The units for each 
clock are as follows: Yang 2016 estimates are presented as 
“pctgAge,” the average methylation level across the sites 
comprising epiTOC, Dunedin PoAm as years of physio-
logical decline occurring per 12 months of calendar time 
and Zhang [32] as arbitrary units; all remaining clocks 
are presented as years. For all clocks, delta age values 
represent the residual of each respective clock estimate 
regressed on chronological age.

Outcomes
Frailty at baseline and 3-year follow-up was estimated 
using the frailty index approach [3], specifically, 76 defi-
cits related to chronic conditions, activities of daily living, 
depression, perceptions of health, satisfaction with life, 
body mass and social participation, as per previous work 

[60, 61] (Additional file 1: Table S3). It is calculated as the 
proportion of deficits present relative to the total sum of 
deficits considered, ranging from 0 to 1, and is gamma 
distributed [3, 62]; hence, increasing values represent 
worse health and greater risk of adverse outcomes. As an 
example, a person reporting ten deficits would exhibit a 
frailty index of 0.131 (i.e., 10 divided by 76). Frailty was 
defined as missing for any participant missing more than 
seven deficit variables (~ 10%).

Covariates
The following variables were included in regression 
analysis given that we have previously demonstrated 
their association to frailty in older adults [60]: age, sex, 
education, income, smoking, physical activity and diet. 
Ethnicity was not considered given that only 6% of par-
ticipants reported being a racial group other than white 
and even so, only slight differences in the demographic 
makeup and distribution of epigenetic clock meas-
ures were observed between groups (Additional file  1: 
Table  S4). Education was categorized as less than, at 
least or greater than secondary education. Total house-
hold income was defined as annual earnings of less than 
$20,000, $20,000–50,000, $50,000–100,000 and more 
than $100,000. Smoking was defined as never (have not 
smoked 100 cigarettes in their lifetime), former (have 
smoked at least 100 cigarettes, but have not smoked in 
the past 30  days) or current (have smoked at least 100 
cigarettes and have smoked at least one cigarette in the 
past 30 days). Physical activity was operationalized using 
the Physical Activity Scale for the Elderly (PASE) [33], a 
continuous measure in which a greater score indicates an 
overall greater amount of time spent per week perform-
ing activities such as walking, housework, and sports and 
recreational activities. Diet was evaluated based on par-
ticipant fruit and vegetable consumption and defined as 
less than two servings daily, two–three servings and four 
or more servings; this information was captured within 

Table 2  A description of the methodology used to derive each epigenetic clock employed in the current study

* GrimAge CpGs have not been released, so the availability of sites for the current study is assumed given that the algorithm was designed to be compatible with the 
EPIC 850 K array [22]

Clock Classification Normalization approach CpG availability Derivation method

Hannum [16] Age-trained Noob [57] 65 of 71 R software: ENmix (methyAge function) [64]

Horvath [15] Age-trained Noob [57] 334 of 353 Online software: http://​dnama​ge.​genet​ics.​ucla.​edu/

Lin [30] Age-trained Preprocessillumina [57] 97 of 99 Used published weights [30]

Yang [31] Mitotic clock BMIQ [65] 354 of 385 R software [31]

Dunedin PoAm [20] Phenotype BMIQ [65] 46 of 46 R software: DunedinPoAm38 [20]

GrimAge [22] Phenotype/mortality Noob [57] 1030 of 1030* Online software: http://​dnama​ge.​genet​ics.​ucla.​edu/

PhenoAge [21] Phenotype/mortality Noob [57] 513 of 513 Online software: http://​dnama​ge.​genet​ics.​ucla.​edu/

Zhang [32] Mortality Preprocessillumina [57] 8 of 10 Used published weights [32]

http://dnamage.genetics.ucla.edu/
http://dnamage.genetics.ucla.edu/
http://dnamage.genetics.ucla.edu/
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the AB SCREEN™ II assessment tool (the AB SCREEN™ 
II assessment tool is owned by Dr. Heather Keller. Use 
of the AB SCREEN™ II assessment tool was made under 
license from the University of Guelph). Data for all fac-
tors were obtained by a self-reported questionnaire, and 
refusing or being unable to answer a given question was 
considered missing.

Statistical analysis
All continuous sociodemographic variables were sum-
marized as the mean and standard deviation (SD) and 
categorical variables as the count and percentage. For 
comparison between groups, either t-test or Fisher’s 
exact test was used, and nominal (unadjusted) p-values 
reported. The association of each epigenetic clock with 
chronological age (or among epigenetic clocks) was esti-
mated by Pearson’s correlation, while the distribution of 
each delta age estimate was summarized as the mean, SD, 
minimum and maximum.

Associations between delta age for each clock and soci-
odemographic and lifestyle factors were estimated by 
ordinary least squares regression using two models, the 
first adjusting for age and sex and the second addition-
ally adjusting for education, income, smoking, physical 
activity and diet. Given that the frailty index commonly 
follows a gamma distribution [62], the association 
between delta age estimates and frailty was estimated by 
gamma regression (identity link) using the two models as 
described above. In models with frailty as the dependent 
variable, all covariates were found to improve model fit 
statistics (i.e., residual deviance and Akaike’s information 
criterion) and diagnostic criteria (i.e., normality and het-
eroskedasticity of residuals). For frailty at 3-year follow-
up, both models were also adjusted for frailty at baseline 
in order to determine the association with change in 
frailty. In all models, delta age was standardized to have 
a mean of 0 and SD of 1 in order to facilitate cross-clock 
comparisons. Results are presented as the coefficient 
(i.e., beta) and 95% confidence interval, which was not 
adjusted for multiple testing, and any observation includ-
ing missing data was excluded from analysis; p-values 
were not reported as confidence intervals tend to provide 
greater information on the effect size(s) being presented 
[63]. To estimate the odds of a CMD increase in frailty 
at follow-up related to each delta age estimate, we used 
ordinal regression, where the change in frailty was cat-
egorized as no increase (i.e., ΔFI ≤ 0), up to 1× CMD (i.e., 
0 < ΔFI < 0.03), 1–2× CMD  (i.e., 0.03 ≤ ΔFI < 0.06) and 3 
or more than 3× CMD (i.e., ΔFI ≥ 0.06). These models 
were adjusted for age and sex and presented as the odds 
ratio (OR) and 95% confidence interval (as above, p-val-
ues are not provided). All analyses were performed in R 
version 3.6.
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The online version contains supplementary material available at https://​doi.​
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