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Abstract
This paper describes a new mathematical model that is based on centred loops to reconstruct the “Systematic Search” behav-
iour of Cataglyphis desert ants. The notable advantage of this model is the combination of simplicity, efficiency and perfor-
mance. All model input is kept to a minimum, using only parameters that previous research has shown to be available to the 
animals at all times: distance from the origin, direction of the last step and home vector. Outbound and inbound search paths 
are being combined into loops that return to the origin, sampling this area more intensely. A stochastic element is added by 
random perturbations during the next step, mimicking unsystematic errors during the process of path integration and yielding 
the typical search patterns observed in Cataglyphis desert ants. The model output is compared to runs observed in the field.
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Introduction

In animal navigation, the process of path integration or dead-
reckoning describes continuously measuring and summing 
up the details of every movement, thereby keeping a run-
ning total of distance to and direction of the starting point, 
known as the home vector (Mittelstaedt and Mittelstaedt 
1973, 1980, 1982). Among numerous other species that have 
been studied extensively, desert ants have emerged as par-
ticularly astonishing navigators during their foraging trips 
(e.g. Wehner and Wehner 1986; Wehner et al. 1996; Wehner 
2003, 2009).

While it only takes a simple mathematical model to recre-
ate this particular ant behaviour (for reviews, see Benhamou 
and Séguinot 1995; Merkle et al. 2006b; Vickerstaff and 

Cheung 2010), these living “travelling integrators” are not as 
perfect as any model but much more flexible and adaptable. 
Their path integration is error-prone (Wehner and Wehner 
1986; Müller and Wehner 1988; Merkle et al. 2006a) and 
errors have been shown to increase with increased dura-
tion of the foraging excursion (Merkle et al. 2006a; Merkle 
and Wehner 2010). Navigation by path integration alone 
might, therefore, not take an ant back to the nest entrance, 
which is often just a tiny hole in the desert ground. Hence, 
it seems imperative for them to have at least one backup 
system to avoid falling victim to heat, predation or desicca-
tion. Desert ants of the genus Cataglyphis use, for instance, 
landmark-based orientation whenever available to improve 
their bearings (e.g. Collett et al. 1998; Wehner and Wehner 
1986; Wehner 2003; see also Mangan and Webb 2012 for 
C. velox). Other cues that help them navigate are olfactory 
stimuli (Steck et al. 2009), surface structure (Merkle 2009), 
or tactile (Seidl and Wehner 2006) and magnetic cues (Fleis-
chmann et al. 2018). These various systems are not thought 
to be switched on or off sequentially, but to operate in paral-
lel at all times (Wehner et al. 2016). In the featureless desert 
terrain that many Cataglyphis species inhabit, with minimal 
visual landmarks and high volatility of odours, the so-called 
“Systematic Search” often represents the last resort to accu-
rately locate the nest (Wehner and Srinivasan 1981; Müller 
and Wehner 1994; Merkle et al. 2006a).
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The “Systematic Search” consists of patterns that have 
been described in great detail for desert ants of the genus 
Cataglyphis (e.g. Wehner and Srinivasan 1981; Müller and 
Wehner 1994; Merkle et al. 2006a; Merkle and Wehner 
2009a, 2010) and the genus Melophorus (e.g. Schultheiss 
and Cheng 2011; Schultheiss et al. 2015), as well as other 
arthropods such as desert isopods Hemilepistus (e.g. Hoff-
man 1983a, b). The basic underlying routine of the search is 
as follows: the animal performs loops in different directions, 
always returning to the starting point before commencing a 
new loop, and expands the loops over time. This search pat-
tern ensures that the area of the likeliest nest location (the 
starting point) is sampled most extensively while the overall 
search area gradually grows at the same time (Wehner and 
Srinivasan 1981). There is some flexibility in the routine, 
and studies have shown how the Catalgyphis search pattern 
is influenced, for instance by the length of the preceding 
foraging excursion: a longer foraging excursion inevitably 
causes larger errors in the path integrator, resulting in larger 
search patterns (Merkle et al. 2006a). Other influencing fac-
tors are the proximity to the nest entrance and familiarity of 
territory (Merkle and Wehner 2009a).

Ant navigation is clearly not all that straight-forward after 
all, and accurately representing the systematic search behav-
iour through mathematical modelling has been attempted 
for several decades now. Wehner and Srinivasan (1981) 
compared several Cataglyphis species and showed that the 
search function can be described as a radially symmetrical 
Gaussian curve, and they introduced simulations based on 
a probability density function (PDF). Mittelstaedt (1985) 
used loops without noise that were described by equations 
for the home vector. Müller and Wehner (1994) could repro-
duce the search patterns seen in Cataglyphis fortis by using 
a simple model where spirals regularly get intercepted by 
straight runs back to the starting point. Vickerstaff and Mer-
kle (2012) incorporated integration errors in their Bayesian 
Model and also tested random search, spiral search and Lévy 
loop search, based on and compared against real search pat-
terns of C. fortis.

In this paper, we present a simple “Systematic Search” 
model that uses centred loops, based on the home vector 
that can reproduce a number of observed search patterns in 
C. fortis desert ants. The model simulates the underlying 
biology and those unsystematic errors that add up in the 
animals’ path integration by introducing random noise to a 
rigid routine. We find that this technique can convincingly 
reconstruct the observed search loops.

Materials and methods

Why simulations?

The observation of animal behaviour presents us with the 
opportunity to reconstruct this behaviour using mathemati-
cal modelling. Each new model tests a specific idea about 
how the observed behaviour is being produced—or, more 
broadly, how the animal’s nervous system processes infor-
mation and generates movement. This idea determines the 
underlying algorithm for the mathematical model with the 
aim to ultimately compare the model output to the observed 
behaviour and assess its performance and biological 
plausibility.

How to develop equations that describe 
movements?

In a first step, the thorough analysis of the observed search 
patterns forms the basis of the model. Considering an other-
wise featureless terrain, the only cues available to this model 
are the angle of the sun and the “odometer” (step counter), 
together computing the home vector. Every movement—
along long and straight or rather short and more tortuous 
sections of the path or during the looping search pattern—
has to be accounted for. A mathematical problem in this 
regard is the direction of the next step relative to the previ-
ous step, especially in loops that curve, during which the 
direction of every step likely deviates from the previous step.

Which coordinate system?

A two-dimensional position can be described by two values 
(x,y), that is, by the x-coordinate and the y-coordinate in 
Cartesian space with fixed orthogonal directions x and y. 
The same position can also be described by the distance r 
from the origin and an angle φ relative to a reference direc-
tion fixed in space, known as azimuth in a polar coordinate 
system. In general, the home vector provided by the path 
integrator is described by the distance to and the direction 
of the origin. In contrast to the Cartesian system, the polar 
system has three peculiarities. First, to describe a movement 
from a (r, φ) position, two orthogonal directions are needed: 
parallel to the r-direction and parallel to the φ-direction, as 
well as orthogonal to the r-direction. As these directions are 
connected to each position, they are not fixed in space, but 
rather move with the position. Second, the units along the 
φ-direction are degrees of angles, different to the units of the 
distance; so the system has to deal with two unequal metrics. 
Third, the point of origin (0,0) cannot be used for computing 
the first movement since the φ-direction is not defined; an 
additional finite position (r0, φ0) is, therefore, needed.
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How to calculate the new position for an integration 
step?

Let us assume an ant is at position (r,φ) at time t, described 
by home vector u(t) from the origin. During time interval 
∆t, the ant then moves a small integration step of length s 
in an arbitrary direction along the vector s, with s = │s│. 
Note that an integration step is not identical to a step of 
the ant. The new vector u(t + ∆t) is the vector sum u(t) + s. 
However, the new distance r and the new angle φ have to be 
evaluated by projecting the vector s onto the r-direction with 
component sr and orthogonal with component sφ along the 
φ-direction. These two components together with s form a 
triangle with a right angle, thus sr

2 + sφ2 = s2, but this result 
does not provide the respective lengths of the different com-
ponents. To obtain those, knowledge of an angle of the tri-
angle is essential. Let us now assume γ is the angle between 
the r-direction and the direction of the path vector s. The 
projected change of distance ∆d║ parallel to the r-direction 
is ∆d║ = ∆r = sr = s cos(γ), the change of distance ∆d┴ in the 
orthogonal φ-direction is ∆d┴ =s φ = s sin(γ). Note that both 
values are in the units of distance. To transform to the units 
of angle, ∆d┴ has to be divided by r, thus ∆φ = ∆d┴/r = sφ/r, 
since ∆d┴ = ∆φ r, the distance ∆d┴ for a fixed angle ∆ϕ 
increases linearly with the radius r. These changes are added 
algebraically, including their sign, to the previous compo-
nents r(t) and φ(t), thus increasing or decreasing the distance 
and increasing or decreasing the angle φ of the direction to 
the origin depending on whether the turning movement is 
clockwise or counter-clockwise.

How to compare the directions of successive 
integration steps?

For the equations of movement, the change of angle between 
successive integration steps is needed. As the search patterns 
mainly consist of loops, a statistical analysis of the turn-
ing angle between the previous and the actual integration 
steps would result in a non-symmetric scatter. Disregarding 
the random deviations for now, the angle of two successive 
steps points to the same side. For simplicity, we assume 
that there is a constant increase by an incremental angle 
β. Hence, for the evaluation of the projections the angle 
γ increases by β at every following integration step with 
∆γ = γ(t + ∆t) − γ(t) = β. Note that the reference r-direction 
of γ is also changing; therefore, the actual turning is a com-
bination of these two changing angles.

What do the equations of movement look 
like in detail?

The angle γ between the actual r-direction and the integra-
tion step vector s is changing according to:

with constant incremental angle β. Note that smaller angles 
β give larger loops similar to larger length s of integration 
steps.

In polar coordinates, the r-direction for ∆t = 1 yields

and the φ-direction, orthogonal to the r-direction, writes

The multiplication by r compensates for the unequal met-
ric of polar coordinates. The turning angle ∆φ = ∆d┴/r is 
lager for small values of r (for equal ∆d┴). Hence close to 
the origin the turning is more rapid, as the length of integra-
tion step s is kept constant.

The above routine (using MATLAB version 4.2b) results 
in centred loops spreading in different directions. How-
ever, over time the loops start to drift away from the centre. 
Therefore, an additional factor that reduces the turning angle 
when approaching the centre needs to be introduced. This 
is achieved by changing the length of the integration steps 
when approaching the centre: the term of │cos(γ)│ b gets 
subtracted (b < 1), resulting in straighter paths. Hence,

When approaching, a negative cos(γ) = − a results in 
− a(1 + b), thus leading to a larger reduction of the distance r 
and a smaller turning angle. Instead, when leaving, a positive 
cos(γ) = + a results in + a(1–b); the increase of r is, there-
fore, smaller and the turning angle larger. Note that only 
paths are calculated, not speeds.

How do the equations transform into Cartesian (x,y) 
coordinates?

The angular variation remains the same in this frame:

with incremental angle β.
The polar directions are transformed into a vector u, with 

components (x,y) with absolute value u = │u│ =  √(x2 + y2).
The unit vector er is along the r-direction, thus parallel to 

the direction of u, with components:

The unit vector eφ is along the φ-direction, orthogonal to 
the direction of u, with components:

The equations of motions in the Cartesian frame read:

(1)Δ� = �(t + Δt) − �(t) = �,

(2)sr = Δd|| = Δr = r(t + Δt) − r(t) = s cos(�),

(3)s𝜑 = Δd⊥ = Δ𝜑r = {𝜑(t + Δt) − 𝜑(t)} r = s sin(𝛾).

(4)sr = Δr = r(t + Δt) − r(t) = s{cos(�) − |cos(�)|b}.

(5)Δ� = �(t + Δt) − �(t) = �,

(6)e
r
(x) = x∕u and e

r
(y) = y∕u.

(7)e
�
(x) = − y∕u and e

�
(y) = x∕u.

(8)s
r
(x) = s{cos(�) − |cos(�)|b}(x∕u),

(9)s
r
(y) = s{cos(�) − |cos(�)|b}(y∕u),
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for the r-direction and

for the φ-direction.
Finally, the new vector u(t + ∆t) after time ∆t consists of 

the two components:

Even in the (x,y) frame, starting at (0,0) is not possible; 
hence, a small finite vector (x0,y0) replaces the initial polar 
vector (r0, φ0). Further, the initial angle γ0 is set to α, hence 
γ0 = α. After setting the initial angle, the incremental angle 
β and the parameters s (size) and b (backward), as well as 
setting the initial conditions (x0,y0) for u(t = 0), it is straight-
forward to evaluate the noiseless structure by programming 
a mathematical loop with the above Eqs. (5–13) and plotting 
the resulting patterns.

How to introduce random perturbations?

To reconstruct the observed search patterns, random pertur-
bations are introduced. They are defined by two parameters: 
a random perturbation factor f and a random number ψ. Since 
the observed patterns rarely feature sharp turns, instead their 
curvature is fairly smooth, the random perturbation fψ is 
not applied at every integration step. During n integration 
steps, only two normalised random numbers fψ are gener-
ated. These random numbers have a normal distribution 
with mean 0 and variance 1. Each command rand(‘normal’) 
generates a positive or negative random number ψk of which 
the first is used for the x-component, multiplied by the factor 
f. At the same integration step, the second rand(‘normal’) 
creates a new independent number ψk+1, again multiplied by 
f, for the y-component. Hence, a random vector p is formed 
with components (fψk, fψk+1). During n integration steps, 
the same random vector p is added to the vector u, first with 
increasing, then with decreasing magnitude, to create vec-
tors u′:

with

with integer i ranging from 1 to n.
This random vector p might point in a very different 

direction relative to the noiseless position vector u. There-
fore, the new path u′ could turn less, leading to a larger loop, 

(10)s
�
(x) = s sin(�)(− y∕u),

(11)s
�
(y) = s sin(�)(x∕u),

(12)u
x
(t + Δt) = u

x
(t) + s

r
(x) + s

�
(x),

(13)u
y
(t + Δt) = u

y
(t) + s

r
(y) + s

�
(y).

(14)u�
x
= u

x
+ sin(�i)f�k,

(15)u�
y
= uy + sin(�i)f�k+1,

(16)� = i�∕(n + 1),

or turn more, giving a smaller loop. Hence, even with noise-
less loops u of equal size, randomness produces different 
magnitudes of loops, without the need to vary the parameters 
s or β during one run.

In order to reduce sharp turns caused by the finite integra-
tion steps, the simulated patterns are averages of five succes-
sive steps. The runs are now repeated including randomness 
(Eqs. 14–16), and plotted together with the distance of the 
positions relative to the origin. Each run produces a unique 
pattern, since the sequence of random numbers is highly 
unlikely ever the same.

How do errors affect integration?

Finally, the ants have to cope with errors during their integra-
tion of the search path. It is not clear how the ants’ integration 
system responds to individual unsystematic errors (random 
perturbation) or if only a “critical mass” of errors triggers a 
response. On average, random deviations to the left and to 
the right cancel each other out, although never fully, given 
the limited number of random numbers per loop. Further, 
the average of absolute random deviations increases with the 
square root of time (Einstein 1905), resulting in larger loops.

Which parameters make up the model?

The model is governed by eight parameters: initial angle 
α, incremental angle β, backward factor b, integration step 
length s, random perturbation factor f, number n of steps to 
activate random perturbation, and finite initial conditions 
(x0,y0) in x- and y-direction. However, most of these values 
stay the same for each run, and n is only changed for fine-
tuning. Further, both increasing the integration step size s 
and decreasing the incremental angle β result in an increased 
loop size. Hence, the parameters that define the shape of the 
search loops most are b, s, and f.

First, the influence of parameters b, s, f, is discussed and 
then tested under various assumptions. Then, the model is 
used to simulate search patterns of C. fortis.

For simplicity, the chosen parameters are constant for 
each run. However, we acknowledge that increasing the step 
length or decreasing the incremental angle for longer trips 
might be plausible to account for the growing area covered 
by the search patterns.

After setting all values, the algorithm continuously cre-
ates search patterns.

How do results compare to observed search 
patterns?

The nine search patterns of C. fortis desert ants used for 
comparison with the present model were reproduced from 
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Vickerstaff and Merkle (2012) and had originally been 
recorded by T. Merkle and published by Merkle and Weh-
ner (2008). They were selected for modelling after rigor-
ous analysis and scrutiny of suitability (see Vickerstaff and 
Merkle 2012 for details). All search runs were recorded for 
300 s. For each search run, the distance to the origin over 
time is presented as well.

Results

Variation of parameters

We first varied the three main model parameters “back-
ward factor b”, “random perturbation f” and “step length 
s”—presented in rows in Figs. 1, 2 and 3, respectively.

In all three figures,

•	 The first row is identical in that the model used the fol-
lowing parameters: initial angle α = 10, incremental angle 

Fig. 1   Set of simulations with no random perturbation f = 0 in one 
model run (left column) and random perturbation factor f = 0.1 in 
two model runs (centre and right columns). Other model parameters: 
initial angle α = 10, incremental angle β = 3, integration step length 

s = 0.12, number of steps to activate random perturbation n = 3. The 
variable component is backward factor b, set to: b = 0.2 (top row), 
b = 0.02 (centre row), and b = 0 (bottom row). Paths do not lead back 
to the origin if backward parameter is absent or weak
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β = 3, integration step length s = 0.12 and backward factor 
b = 0.2.

•	 The left column presents the model output in the absence 
of random perturbation (f = 0), while the centre and left 
columns depict the model output with the effect of ran-
dom perturbation f. These two runs had perturbation fac-
tor f = 0.1 and identical parameter settings, except that 
the specific random numbers ψk (within fψk) are truly 
random, i.e. most likely different for each run.

The perturbation factor f is set to f = 0.1 in all rows of 
Figs. 1 and 3, but is different in every row in Fig. 2.

Figure 1: effect of backward factor b.
The backward factor b was decreased from b = 0.2 to 

b = 0.02 and to b = 0 (rows, respectively). Without any ran-
dom perturbation (left column), a larger b produces a search 
pattern that approaches the origin recurrently, whereas a 
smaller b causes the path to stay clear of the origin. This 
is also true for searches with random perturbation (f = 0.1, 
centre and right columns); the difference being that unper-
turbed runs are much smoother. For backward action b = 0, 
the model does not reproduce the typical “clover leaf” pat-
tern anymore; rather a “spinning top” pattern in that the 

Fig. 2   As Fig. 1 but the variable component is the random perturbation factor f (centre and right columns; left column: no random perturbation). 
Top row: f = 0.1, centre row: f = 0.04, bottom row f = 0.02. Only the strongest perturbation f = 0.1 causes the loops to break



991Journal of Comparative Physiology A (2018) 204:985–998	

1 3

search path stays far away from the origin, indicating the 
role of factor b in leading the ants home.

Figure 2: effect of random perturbation factor f.
The random perturbation factor f was decreased from 

f = 0.1 to f = 0.04 and to f = 0.02 (rows, respectively; also 
centre and right columns). A small f (bottom row) results in a 
slight scatter of the loops. An increase in f (centre) improves 
the patterns, although the shape of the loops remains very 
similar. Only a substantially larger f (top row) is able to pro-
duce larger and smaller loops although the noiseless loops 
have all the same size.

Figure 3: effect of step length s.

The integration step length s was decreased from s = 0.12 
to s = 0.07 and to s = 0.04 (rows, respectively). The size of 
the search loops shrinks or grows with smaller or larger inte-
gration steps, respectively, while the overall pattern stays the 
same. Paths return to the origin in both unperturbed (left 
column) and perturbed scenarios (centre and right columns).

Simulated and observed search patterns

The performance of the model is assessed by its ability to 
reproduce the characteristics of typical search patterns. In 
programming this model, parameters were adjusted after 
initial runs to minimise discrepancies between model out-
put and observed search patterns. Keeping in mind that 

Fig. 3   As Fig. 1 but the variable component is integration step length s, set to: s = 0.12 (top row), s = 0.07 (centre row), and s = 0.04 (bottom 
row). Search patterns are confined to much smaller areas when steps are shorter
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Fig. 4   Three observed search patterns of Cataglyphis fortis (top row), 
compared to simulated search patterns (second row), and measured 
distances to the origin over the duration of the recorded and simulated 

trips (third and fourth row). The recorded patterns and the measured 
distances of the recorded trips were reproduced and adapted with per-
mission from Vickerstaff and Merkle (2012)
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any individual ant would exhibit different search patterns 
every single time as well, the two identical model runs 
(centre and right columns in Figs. 1, 2, 3) illustrate how 
the stochastic effect can produce qualitatively equivalent 
paths that differ in their detail. The best fit for each run is 
shown in Figs. 4, 5 and 6 for nine recorded search runs of 
C. fortis: recorded search patterns of C. fortis (Vickerstaff 
and Merkle 2012) are compared to simulated search pat-
terns (see Table 1 for parameters), and measured distance 
to the origin over the duration of the recorded and simu-
lated trips are presented.

Overall, our simple model is capable of reproducing the 
search paths of Cataglyphis desert ants and, in particular, 
the crucial “Systematic Search” component of recurrently 
returning to the origin.

Discussion

Required input information

The model presented here is based on the animal’s home 
vector. Animals that navigate by path integration have the 
home vector available at all times during foraging; that is, 
it gets updated continuously. A second requirement for the 
plausibility of our model is that the animal has an efference 
copy, the direction of the preceding integration step. This 
direction, defined as angle γ relative to the home vector, is 
essential to keep the home vector up to date. During its next 
integration step, the animal will head in a different direc-
tion while still turning to the same side (again, relative to 
the home vector) within one particular loop, but with an (by 
angle β) increased γ. Search patterns will frequently be influ-
enced by random deviations, but nonetheless is the animal 
still capable of maintaining the main structure of its loops 
simply by turning to one side more often or more strongly, 
while of course still integrating the direction and distance to 
the centre. Hence, one of the main advantages of our model 
is its simplicity: all information that the animal needed in 
order to perform this kind of search behaviour are length and 
angle of the home vector, plus the direction of the last step. 
Our model does not require the animal to have a memory of 
previous paths but solely draws on information to success-
fully perform path integration in the first place. Simply put, 
the direction of the last step updates the path integrator and 
also flows into determining the next step.

Admittedly, simplicity alone does not necessarily favour 
a particular theoretical approach, and simple mathemati-
cal formulae might not per se lead to biologically plausible 
representations (Maurer and Séguinot 1995). However, it 
is certainly undisputed that desert ants can only make use 
of limited memory capacities (Bélisle and Cresswell 1997; 
Dukas 1999), even if this means sacrificing a potentially 

improved performance. For instance, they only remember 
the distance of the most recent outbound run (Cheng et al. 
2006) and do not improve the accuracy of their path inte-
grator after repeated, identical trips (Merkle and Wehner 
2009b). Also, they only use the distance available through 
the path integrator, rather than the overall length of the pre-
ceding foraging excursion for adjustments in the extension 
of their search patterns (Merkle and Wehner 2010). In the 
light of these examples, noting how efficiently Cataglyphis 
ants appear to use their memory capacities, a “Systematic 
Search” routine that only requires two readily available val-
ues has obvious merits.

Comparisons with previous simulations

In their comprehensive study of search behaviour in Catagly-
phis ants, Wehner and Srinivasan (1981) showed recorded 
search pattern and presented the distance r to the origin as a 
function of the overall path length for four individual ants. 
These patterns differ in their frequency and magnitude of 
oscillation. The result of their simulations were loops that 
regularly return to the origin but spread out into different 
directions and increase their distance to the origin over 
time. In general, their simulations resembled the recorded 
patterns fairly well. Lacking the rapid random deviations 
of real foraging excursions though, their simulated paths 
appeared much smoother. The r/t diagrams all had very simi-
lar shapes, the simulated paths always returned exactly to the 
origin and continuously increased over time. This resulted 
from the implementation of the idea of a posterior probabil-
ity distribution function PDF for the variation of r, based 
on the memory of all the past performances, and lacking 
randomness.

Our present model applies rapid random deviations. More 
importantly, the r/t function shows a structure that is more 
similar to the recorded search paths, except that they return 
to the origin more often and the loops grow less over time. 
Both discrepancies can easily be minimised by reducing the 
incremental angle β (higher maxima) and the backward fac-
tor b (higher minima) in the later stages of the search. The 
effects of these modifications are shown in Fig. 7.

In the model by Müller and Wehner (1994), the simulated 
animal commenced a spiral to which jitter was added. The 
spiral search was reset whenever the home vector reached a 
critical length as a function of path length. Then, the angle 
between the animal’s walking direction and the home vector 
was reduced, causing the animal to walk back towards the 
origin before spiralling out again. The simulated patterns 
resembled the recorded paths to a degree but had distinct 
sharp corners.

Our present model shares similarities with Müller and 
Wehner (1994), with the exception that we do not model the 
spiralling out and returning home as two separate phases, but 
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Fig. 5   As Fig. 4 but for another three C. fortis search patterns
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Fig. 6   As Fig. 4 but for another three C. fortis search patterns
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rather we combine them into a loop. This loop is defined and 
executed by continuously varying the vector between walk-
ing direction and direction of the home vector and by adding 
a simple term to approach the origin.

Vickerstaff and Merkle (2012) showed that a heuristic 
Bayesian search with the aim to maximise the probabil-
ity of finding the nest resembles the search patterns of C. 
fortis very well. Their model outperformed three simpler 
approaches but the authors admitted that their model was 
using a fairly costly, high-resolution spatial PDF and might, 
therefore, not necessarily be representative of a miniature 

insect brain. As discussed above, our present model is more 
economic.

Conclusions

Centred loops, at the core of our model, combine mathemati-
cal simplicity and performance.

The model creates first loops that return back to the 
starting point, resulting in a higher search density around 
the point of origin. Random perturbations are being 
applied successively, producing search patterns that match 

Table 1   Parameters of the 
simulations used for Figs. 4, 
5 and 6: initial angle α, 
incremental angle β, integration 
step length s, backward factor 
b, random perturbation factor 
f, number of steps to activate 
random perturbation n 

Number
C. fortis

(2) (3) (4) (5) (6) (7) (8) (9) (10)

α 10 10 10 10 10 10 10 10 10
β 3 3 3 3.5 3.5 3 3 3 3
s 0.08 0.08 0.1 0.15 0.15 0.018 0.003 0.08 0.08
b 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3
f 0.2 0.2 0.2 0.6 0.4 0.1 0.1 0.2 0.2
n 3 3 3 2 2 3 3 3 3

Fig. 7   Continuous variation of 
selected parameters during a 
simulation. Initial angle α = 10 
and integration step length 
s = 0.12 are constant and no 
perturbation was implemented 
(f = 0). Left and right col-
umns: the incremental angle β 
decreases continuously from 
β = 3 to β = 1.8. Right col-
umn: backward factor b also 
decreases from b = 0.08 to 
b = − 0.03
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those of desert ants C. fortis. Search paths are curved to 
form loops, both on their way out and as they return back 
to the origin, improving the search in efficiency and lead-
ing the animals back to the nest as quickly as possible. 
Here, we used search paths of ants that were not biased 
towards any particular direction i.e. the path integrator 
had been reset to zero and errors had been nulled before 
starting their searches (see Vickerstaff and Merkle 2012). 
The next step would be to apply this model to ants that 
have not reset their path integrator and to test for an effect 
of preceding foraging excursions.
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