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Abstract
Metastability is currently considered a fundamental property of the functional configuration of brain networks. The present 
study sought to generate a normative reference framework for the metastability of the major resting-state networks (RSNs) 
(resting-state metastability dataset) and discover their association with demographic, behavioral, physical and cognitive 
features (non-imaging dataset) from 818 participants of the Human Connectome Project. Using sparse canonical correlation 
analysis, we found that the metastability and non-imaging datasets showed significant but modest interdependency. Notable 
associations between the metastability variate and the non-imaging features were observed for higher-order cognitive ability 
and indicators of physical well-being. The intra-class correlation coefficient between the sibling pairs in the sample was very 
low which argues against a significant familial influence on RSN metastability.
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Introduction

Recent conceptual and methodological advances have 
shifted the focus of research to the dynamic properties of 
brain networks (Deco et al. 2015; Kelso 2012) that reflect 
the coupling and de-coupling of brain regions over time. The 
central assumption is that mental operations are the emerg-
ing properties of neural communication, which is predicated 
on the coherent and flexible oscillatory activity between neu-
ral ensembles (Harris and Gordon 2015; Tognoli and Kelso 
2014). The concept of metastability has been introduced to 
describe the repertoire of functional configurations arising 

from temporal variations in this oscillatory activity of a net-
work’s constituent regions (Deco and Kringelbach 2016). It 
is though that optimal brain function occurs within a range 
of metastability that reflects the balance between synchro-
nization and adaptive reconfiguration of the functional con-
nections between a network’s constituent regions (Cabral 
et al. 2011; Deco and Kringelbach 2016; Hellyer et al. 2014; 
Senden et al. 2017). Thus, examination of metastability may 
provide novel insights into the pathophysiology of neuro-
logical (Alstott et al. 2009; Hellyer et al. 2015; Honey and 
Sporns 2008) and psychiatric disorders (Cabral et al. 2013; 
Cordova-Palomera et al. 2017).

A range of computational models has been used to cap-
ture the metastability of human brain networks (Cabral et al. 
2011, 2017; Deco et al. 2017; Lee and Frangou 2017). Here, 
we used functional magnetic resonance imaging (fMRI) 
blood-oxygen-level dependent (BOLD) signal from a net-
work’s constituent regions to compute the metastability of 
that network as the temporal variation of phase synchroni-
zation based on the Kuramoto order parameter (Wildie and 
Shanahan 2012). We were particularly interested in the met-
astability of the resting-state networks (RSNs) that define the 
intrinsic functional architecture of the brain (Biswal et al. 
1995). Specifically, we focused on the default mode (DMN), 
the central executive (CEN), the salience (SAL), the dorsal 
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attention (DAN), the language (LAN), the auditory (AN), 
the visual (VN), and the sensorimotor (SMN) networks 
(Damoiseaux et al. 2006; Power et al. 2011; Smith et al. 
2009). The spatial patterns of RSNs are generally consistent 
across healthy individuals (Damoiseaux et al. 2006; Shehzad 
et al. 2009) and are under partial genetic control (Fornito 
et al. 2011; Glahn et al. 2010). RSNs are aligned with func-
tional networks derived from task-based fMRI studies; spe-
cifically lower-order networks (e.g., AN, VN) are primarily 
involved in circumscribed and specialized functions while 
higher-order networks (e.g., CEN, DMN) are involved in 
diverse and complex mental operations (Smith et al. 2009). 
Further, Smith and colleagues (Smith et al. 2015) have 
demonstrated that resting-state brain connectivity has wide 
functional implications as it is linked to human traits along 
a positive–negative axis: features or attributes (e.g., IQ, 
physical endurance) considered correlated positively with 
resting-state connectivity while the reverse was the case for 
“negative” characteristics (e.g., substance use).

We are not aware of previous studies to have examined 
the normative range of RSN metastability and to have sought 
to integrate these measures with human physical and behav-
ioral characteristics. Normative data are typically obtained 
from a representative sample from the wider population 
and can be used to establish the baseline distribution for a 
measurement. To address the knowledge gap, we used the 
rich dataset of the Human Connectome Project (HCP; http://
www.human​conne​ctome​.org). We analyzed resting-state 
fMRI data from 818 HCP participants to define the norma-
tive range of metastability of the DMN, CEN, SAL, DAN, 
LAN, AN, VN and SMN, and we used sparse canonical cor-
relation analyses to discover patterns of association between 
the metastability of different RSNs and demographic, behav-
ioral, physical and cognitive features.

Materials and Methods

Participants

The study sample consisted of 818 healthy HCP partici-
pants (459 women) with a mean age of 29 years (range 
22–37 years). The majority of the HCP participants were 
siblings while 370 individuals were unrelated.

HCP Neuroimaging Data Acquisition and Quality 
Assurance

We used publicly available resting-state fMRI data acquired 
on a Siemens Skyra 3 T scanner as part of the HCP (Glasser 
et al. 2013). All data were de-identified prior to release as 
described by Van Essen and Barch (Van Essen and Barch 
2015). Data preprocessing and quality control (including 

head motion) were implemented through the HCP pipeline, 
as detailed by Glasser et al. (2013), using tools from FSL 
(Jenkinson et al. 2012), FreeSurfer (Fischl et al. 1999) and 
the HCP workbench (Marcus et al. 2013). An additional 
preprocessing step was applied to minimize head motion by 
removing structured artifacts using an automatic denoising 
approach based on independent component analysis (ICA) 
followed by FMRIB’s ICA-based X-noiseifier (Griffanti 
et al. 2014; Salimi-Khorshidi et al. 2014).

Computation of Metastability of RSNs

To enhance reproducibility, RSNs were defined in each par-
ticipant using the functional templates available through the 
Functional Imaging in Neuropsychiatric Disorders Lab at 
Stanford University, USA (https​://findl​ab.stanf​ord.edu/funct​
ional​_ROIs.html) (Supplementary Figure S1 and Table S1) 
(Shirer et al. 2012). We specifically examined the dorsal 
attention network (DAN), the central executive network 
(CEN), the salience network (SAL), the somatosensory net-
work (SMN), the visual network (VN), the auditory network 
(AN), and the language network (LAN). We considered the 
default mode network (DMN) in terms of its sub-divisions 
into the dorsal DMN (dDMN), the ventral DMN (vDMN) 
and the precuneus network (PN) because prior evidence 
indicates that each DMN sub-division may support dif-
ferent cognitive processes (Andrews-Hanna et al. 2010) 
and may have a different functional impact on whole brain 
organization (Doucet et al. 2011). In each participant, we 
calculated the average time-series of all the voxels in each 
region of each RSN, and then applied the bandpass filtering 
(0.01–0.1 Hz) to isolate low-frequency resting-state blood 
oxygen-level dependent (BOLD) signal fluctuations (Cordes 
et al. 2001). The Hilbert transform was applied to the band-
pass-filtered fMRI signals to compute the associated ana-
lytical signals. The analytic signal represents a narrowband 
signal, s(t) , in the time domain as a rotating vector with an 
instantaneous phase, �(t) , and an instantaneous amplitude, 
A(t) , i.e., s(t) = A(t)cos(�(t)) . The phase and the amplitude 
are given by the argument and the modulus, respectively, 
of the complex signal z(t) , given by z(t) = s(t) + i.H[s(t)] , 
where i is the imaginary unit and H[s(t)] is the Hilbert trans-
form of s(t) (Glerean et al. 2012). To evaluate the dynamic 
properties of each RSN, we computed the Kuramoto order 
parameter R(t) , defined as

where N is the total number of regions within each RSN and 
�n(t) is the instantaneous phase of the BOLD signal at region 
n of each RSN. For each RSN, metastability was defined 

R(t) =
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as the standard deviation of the Kuramoto order parameter 
R(t) over time (Cabral et al. 2011; Lee et al. 2017; Lee and 
Frangou 2017; Shanahan 2010).

Datasets Entered in Sparse Canonical Correlation 
Analyses

We considered the covariation patterns between two data-
sets: the resting-state metastability dataset and the non-
imaging dataset. The former comprised the metastability 
measures of the RSNs defined in the previous sections. The 
non-imaging dataset comprised 112 variables corresponding 
to demographic characteristics, cognitive task performance, 
mental health and personality, physical health and lifestyle 
choices detailed in Supplementary Table S2. These are a 
subset of the phenotypic variables provided by the HCP 
Dataset. In constructing the non-imaging dataset used here, 
(a) we selected age-adjusted cognitive test scores; (b) we 
excluded co-linear continuous variables (r > 0.9) variables; 
(d) for psychometric tests with multiple correlated outcome 
variables, we selected those most commonly reported in the 
literature; (d) we excluded categorical variables for which 
more than 90% of the sample endorsed the same outcome.

Sparse Canonical Correlation Analyses (sCCA)

We used sparse Canonical Correlation Analysis (sCCA) to 
test the association between the resting-state metastability 
and the non-imaging datasets. We chose a sparse multivari-
ate approach because it does not require data reduction, 
regardless of the number of subjects and variables. sCCA 
can be used in smaller samples (that are more typical of neu-
roimaging studies) and is less susceptible to overfitting than 
classical CCA. For the sCCA, (a) we computed the sparse 
parameters for a range of candidate values from 0.1 × √p 
(high sparsity) to 1 × √p (low sparsity) at increments of 0.1, 
where p is the number of features in each data set, and fitted 
the resulting models; (b) we selected the optimal sparse cri-
teria combination based on the parameters that corresponded 
to the values that maximized the sCCA correlation value. 
These optimal criteria were 0.4 × √p for the non-imaging 
dataset and 0.8 × √p for the imaging dataset; (c) we deter-
mined the optimal sCCA model and established its signifi-
cance at p value < 0.05 using permutations (n = 10,000). 
The p value was defined as the number of permutations that 
resulted in a higher correlation than the original data divided 
by the total number of permutations. Thus, the p value was 
explicitly corrected for multiple testing as it was compared 
against the null distribution of maximal correlation values 
across sCCAs estimated for each combination of sparsity 
parameters. When the overall sCCA was significant, we 
calculated the correlations between the individual variables 
and the variate of the opposite dataset (i.e. the output of the 

sCCA for that dataset). We also extracted the weights that 
each variable contributed towards the canonical correlation 
with the opposite variate.

Reliability and Robustness of the sCCA analyses

We considered sex, age, education, date of the acquisition 
and mean head motion as potential a priori confounders. 
Prior to the sCCA, we performed univariate tests between 
each confounder and the metastability of the resting state 
networks. Potential confounding variables that showed at 
least one significant univariate association at p < 0.05 uncor-
rected were included in the non-imaging dataset. On this 
basis, education, head motion, age and date of acquisition 
were retained for sCCA analyses.

To confirm the robustness of the sCCA results we cre-
ated training datasets by randomly resampling half of the 
sample 10,000 times and repeating the sCCAs on these sets. 
These sCCAs yielded similar results as those obtained from 
the original full dataset: the mean correlation of the sCCA 
models resulting from the 10,000 random resampled datasets 
was r = 0.28 (standard deviation = 0.03) which indicated that 
the size of the sCCA correlation between the metastabil-
ity and non-imaging variates was stable and that overfitting 
was minimal. We also performed the leave-one-out analy-
ses that reinforced the stability of the sCCA results because 
the weights of each leave-one-out test correlated above 0.98 
with the sCCA weights in the full dataset.

Intraclass Correlation Coefficient Analyses

We assessed familial similarity in metastability in sibling 
pairs using the intraclass correlation coefficient (ICC) 
(McGraw and Wong 1996; Shrout and Fleiss 1979). No fur-
ther heritability analyses were performed due to the lack of 
familial associations.

Supplemental Analyses

We conducted the following supplemental analyses: (i) we 
provided the centile values of the metastability of each RSN 
as shown in Supplementary Table S3 and Supplementary 
Figure S2; (ii) we further characterized the correlation 
matrix of our datasets by computing the univariate Pearson’s 
correlation between each of the non-imaging variables and 
each of the resting-state metastability variables as shown 
in Supplementary Figure S4; (iii) although our focus is on 
metastability, we examined resting-state network synchrony 
using the same approach and we present the results in the 
Supplementary Material; (iv) we conducted a further sCCA 
analysis following the same procedures described above; this 
supplemental sCCA involved the non-imaging dataset and a 
new dataset that comprised the pairwise differences in RSN 



83Brain Topography (2019) 32:80–86	

1 3

metastability. These results of the supplemental analyses are 
presented in the Supplementary Material.

Results

Metastability of the Major RSNs

Figure 1 shows violin plots of the distribution of metasta-
bility measures across participants for each RSN. Analy-
sis of variance (F9 = 1727.13, p < 10−15) and Bonferroni 
corrected post-hoc pairwise comparisons (n = 45) showed 
that metastability differed significantly between networks 
(details in Supplementary Table  S4). The Bonferroni 
adjusted p value was set at 0.001.

Covariation Patterns Between the Metastability 
and Non‑imaging Datasets

For the first mode, the sCCA between the two datasets 
was modest but significant (r = 0.23, p = 0.03, Fig. 2a) and 
robust (Supplementary Figure S5). We report on the first 
mode only which explained most of covariation between 
datasets since all other modes were not significant (second: 
r = 0.19, p = 0.27; third: r = 0.21, p = 0.30).

The non-imaging variables which had the highest 
covariation with the metastability variate were fluid intel-
ligence (weight = 0.39), reading skills (weight = 0.33), 
emotion recognition (weight = 0.24), physical endurance 
(weight = 0.28), body mass index (BMI, weight = − 0.28) 
and amount of sleep (weight = 0.11) as shown in Fig. 2b 
and Supplementary Table S5. Metastability variables that 
showed the highest covariation with the non-imaging 
variate involved the three DMN sub-divisions (vDMN: 
weight = 0.58, dDMN: weight = 0.37, PN: weight = 0.28), 

the CEN (weight = 0.47) and the DAN (weight = 0.37) as 
shown in Fig. 2c, Supplementary Table S6 and Supple-
mentary Figure S6. None of the potential confounding var-
iables (which included head motion) correlated with the 
metastability variate (Supplementary Tables S7 and S8).

Intraclass Correlation Coefficient Analyses

Across all RSNs, the ICC of metastability between pairs of 
siblings was small (ICC < 0.11) and not statistically signifi-
cant following correction for multiple testing. Therefore, no 
further analyses of heritability were performed.

Discussion

We used data from 818 HCP participants to estimate meta-
stability measures of the major RSNs and determined their 
association with demographic, behavioral, physical and cog-
nitive features. This study benefits from the unique dataset of 
the HCP which is substantial in terms of its size and richness 
of the phenotypic measures. The metastability of the RSNs 
presented can be considered representative for samples of 
young adults and can be used to assess the generalizability 
of future studies.

In general, higher metastability was noted in lower-order 
RSNs, such as the AN and VN, that are involved in spe-
cialized and mostly externally-driven functions. The higher 
levels of metastability of these networks may reflect greater 
capacity in altering their functional configuration in order 
to respond to diverse and rapidly changing external inputs 
(Power et al. 2011; Smith et al. 2009). On the other hand, 
higher-order networks such as the DMN and CEN, impli-
cated mostly in internal and goal-directed processing (Gre-
icius et al. 2003; Raichle et al. 2001), had lower metastabil-
ity. These results indicate that higher-order networks tend 

Fig. 1   Violin plots of the meta-
stability distribution for each 
resting-state network (RSN) 
across the 818 participants of 
the Human Connectome Pro-
ject. The solid black lines depict 
mean values across participants. 
AN auditory network, PN 
precuneus network, VN visual 
network, SMN sensorimotor net-
work, SAL salience network, LN 
language network, dDMN dorsal 
default mode network, vDMN 
ventral default mode network, 
CEN central executive network, 
DAN dorsal attention network



84	 Brain Topography (2019) 32:80–86

1 3

to maintain their functional configurations over longer time 
scale consistent with their primary function in supporting 
sustained mental operations. Interestingly, the SAL network 
exhibited intermediate levels of metastability, aligned with 
its proposed central role in switching between higher and 
lower-order networks (Menon and Uddin 2010; Seeley et al. 
2007).

We found that the association between RSN metastabil-
ity and human traits was robust but modest. This modest 
degree of covariation may be characteristic of the dynamic 
architecture of the brain at rest. It is likely to reflect what 
Deco et al. (2011) described as “a constant inner state of 
exploration,” in which the brain at rest remains in a state of 
predictive readiness but does not commit to specific network 
configurations until required. The small ICC of metastability 
between pairs of siblings for all RSNs suggests that famil-
ial influences on metastability are minimal. This contrasts 
with the significant genetic influence on conventional rest-
ing-state functional connectivity, particularly of the DMN 
(Glahn et al. 2010). This finding further supports the notion 
that dynamic brain states at rest are less constrained by either 
genetic or other non-imaging factors and are more likely to 
be influenced by the immediate demands on brain function.

Non-imaging variables that positively associated with 
the metastability variate corresponded to positive cogni-
tive attributes (Fig. 2b). This pattern is consistent with 
previous reports using the HCP dataset where positive 
cognitive attributes showed the highest covariation with 
the functional connectome (Moser et al. 2017; Smith et al. 
2015). These findings underscore the relevance of both 
functional and dynamic connectivity for higher-order 
cognitive abilities. In parallel, emerging evidence from 
clinical populations, such as patients with Alzheimer’s 
disease (Cordova-Palomera et  al. 2017) and traumatic 
brain injury (Hellyer et al. 2015), shows that decline in 
cognitive capacity is associated with reduction in resting-
state metastability. It would therefore appear that diverse 
pathogenetic mechanisms that affect the brain may also 
act to reduce the dynamic repertoire of its resting-state 
networks. Physical endurance and amount of sleep were 
positively associated with the metastability variate while 
the opposite was the case for BMI. These findings link 
the dynamic properties of resting-state networks to indica-
tors of physical well-being. Similar associations have been 
reported in terms of conventional resting-state connectiv-
ity (Miller et al. 2016; Smith et al. 2015) and emphasize 

Fig. 2   a Association between resting-state network (RSN) metastabil-
ity and non-imaging variates following sparse canonical correlation 
analysis (r = 0.23, p = 0.03). b Non-imaging variables with the high-
est weights of association with the RSN-metastability variate (details 

in Supplementary Table  S5). c RSNs with the highest weights of 
association with the non-imaging variate (details in Supplementary 
Table S6 and Supplemental Figure S6)
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the importance of considering physical traits when inter-
preting variation in brain metrics.

This study has several limitations. This work focused 
solely on the RSN metastability, leaving aside other proper-
ties of the RSNs or computational modeling. We chose to 
focus on metastability given the wide use of this measure in 
neuropsychiatric research while future studies could widen 
the scope of examination of the dynamic properties of the 
RSNs beyond that considered here. Similarly, the non-imag-
ing dataset did not include all theoretically possible features; 
it does encompass however multiple human traits that are 
most likely to be relevant to resting-state brain organiza-
tion. We used templates to define the RSNs to enhance the 
reproducibility of the study findings in preference to other 
methods for partitioning the resting-state connectome. The 
most widely used alternative is to use independent compo-
nent analyses to identify RSN. This approach may be more 
sensitive to individual-level variability while functionally 
defined templates such as the one employed here have the 
advantage of greater cogency (Laird et al. 2011; Power et al. 
2011; Smith et al. 2009).

Conclusions

This is the first study to provide a normative framework for 
resting-state network metastability, and demonstrate modest 
but meaningful associations of this property to higher-order 
cognitive abilities and physical indicators of well-being.
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