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Abstract

We provide a comprehensive classification of the proteoglycan gene families and respective 

protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular 

location, overall gene/protein homology, and the utilization of specific protein modules within 

their respective protein cores. These three signatures were utilized to design four major classes of 

proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and 

extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct 

proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of 

these four proteoglycan families are critically assessed in development, cancer and angiogenesis, 

and in various acquired and genetic diseases where their expression is aberrant.
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Introduction

It has been nearly 20 years since the original publication of a comprehensive classification 

of proteoglycan gene families [1]. For the most part, these classes have been widely 

accepted. However, a broad and current taxonomy of the various proteoglycan gene families 

and their products is not available. In contrast to the classification of glycosaminoglycans 

(GAGs), primarily based on the chemical structure of their repeating disaccharide units, 

classifying proteoglycans is a much more complex task [2]. We propose a comprehensive 

and simplified nomenclature of proteoglycans based on three criteria including: Cellular and 

subcellular location, overall gene/protein homology, and the presence of specific protein 

modules within their respective protein cores. Whereas the first two attributes have been 

utilized in the past for various nomenclatures, the third attribute is of more recent 
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development and represents a sort of “intrinsic signature” for various protein cores. Indeed, 

modular design is based on the simple concept that protein cores are made up of finite units, 

like pieces of Lego. The units represent a minimum level of organization and a module can 

be thought of as a functional domain that affects cell–matrix dynamics. Another key feature 

is that each module/functional unit can be stable and can fold on its own, without being part 

of the large precursor protein. Thus, a module is a self-contained component. An example of 

this is the LG3 domain of endorepellin, the C-terminal globular-like domain of perlecan, 

which has recently been crystallized [3]. Below, we will critically assess the field of 

proteoglycans which now encompass forty three distinct genes and a much higher number of 

proteoglycans due to alternative splicing, thereby providing a very rich and biologically-

active group of molecules. As hyaluronan and the enzymes involved in the synthesis and 

degradation of various GAGs are not covered in this review, readers are referred to recent 

reviews covering these closely-related subjects [4–18].

General features

Four major proteoglycan classes encompass nearly all the known proteoglycans of the 

mammalian genome (Fig. 1). Observing the types of proteoglycans based on cellular and 

subcellular localization, we can see that there is only one intracellular proteoglycan, 

serglycin. This unique proteoglycan forms a class on its own as it is the only proteoglycan 

that carries heparin side chains. Serglycin is packaged in the granules of mast cells and 

serves as biological glue for most of the intracellular proteases stored within the granules 

[19]. Another general observation is that heparan sulfate proteoglycans (HSPGs) are 

prevalently associated with the cell surface or the pericellular matrix. The HSPGs are 

intimately associated with the plasma membranes of cells, either directly via an intercalated 

protein core or via a glycosyl-phosphatidyl-inositol (GPI) anchor, and function as major 

biological modifiers of growth factors such as FGF, VEGF and PDGF among others. Similar 

functions are also performed by the HSPGs located in the basement membrane zone, in 

addition to their ability to interact with each other and with key constituents of the basement 

membrane, including various laminins, collagen type IV, and nidogen. Presentation of 

growth factors to their cognate receptors in a biologically-favorable form is a major function 

of cell surface and pericellular HSPGs. Another key role is participating in the generation 

and long range maintenance of gradients for morphogens during embryogenesis and 

regenerative processes.

As we move away from the cells in a centrifugal manner, chondroitin- and dermatan sulfate-

containing proteoglycans (CSPGs and DSPGs, respectively) predominate. These 

proteoglycans function as structural constituents of complex matrices such as cartilage, 

brain, intervertebral discs, tendons and corneas. Thus, among other functions, they provide 

viscoelastic properties, retain water and keep osmotic pressure, dictate proper collagen 

organization and are the main molecules responsible for corneal transparency. The 

extracellular matrix also contains the largest class of proteoglycans, the so-called small 

leucine-rich proteoglycans (SLRPs) which are the most abundant products in terms of gene 

number. These SLRPs can function both as structural constituent and as signaling molecules, 

especially when tissues are remodeled during cancer, diabetes, inflammation and 

atherosclerosis. SLRPs interact with several receptor tyrosine kinases (RTKs) and Toll-like 
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receptors, thereby regulating fundamental processes including migration, proliferation, 

innate immunity, apoptosis, autophagy and angiogenesis. Below we will discuss the 

rationale for grouping certain proteoglycans in the same class and their overall biological 

function.

Intracellular proteoglycans

It is quite amazing that since the original cloning of serglycin, the first proteoglycan-

encoding gene to be sequenced, no other true intracellular proteoglycan has been discovered. 

Serglycin occupies a class of its own insofar as it is the only proteoglycan that is covalently 

substituted with heparin due to its consecutive (and quite unique) Ser-Gly repeats, 

essentially a silk-like sequence. Serglycin has been utilized primarily by mast cells for the 

proper assembly and packaging of the numerous proteases that are released upon 

inflammation [19]. The defects in the formation of mast cell granules observed in Srgn−/− 

mice are remarkably similar to those observed in mast cells derived from mice lacking N-

deacetylase/N-sulfotransferase 2, a key enzyme involved in the sulfation of heparin [19]. 

Thus, serglycin promotes granular storage via electrostatic interaction between its highly-

anionic heparin chains and basic residues within the various proteases of the secretory 

granules. It is becoming evident, however, that all inflammatory cells express serglycin and 

store it within intracytoplasmic granules where, in addition to proteases, serglycin binds and 

modulates the bioactivity of several inflammatory mediators, chemokines, cytokines and 

growth factors [20].

More recently, serglycin has been found in a wide variety of non-immune cells such as 

endothelial cells, chondrocytes and smooth muscle cells [21]. Cell-surface serglycin 

promotes adhesion of myeloma cells to collagen I and affects the expression of MMPs [22]. 

These findings have been corroborated by in vivo studies where serglycin knockdown 

attenuates the multiple myeloma growth in immunocompromised mice [23]. It has been 

proposed that some of these effects are mediated by a specific interaction between serglycin 

and cell-surface CD44 [23], a known receptor for hyaluronan [24,25]. It has been recently 

shown that serglycin is a key component of the cell inflammatory response in activated 

primary human endothelial cells as both LPS and IL-1β increase its synthesis and secretion 

[26]. Notably, serglycin can be substituted with chondroitin sulfate (CS), and in several 

circulating cells serglycin contains lower sulfated CS-4 chains [21]. In contrast, several 

hematopoietic cells (mucosal mast cells, macrophages etc.) express serglycin with highly 

sulfated CS-E. Although the significance of this phenomenon is not fully appreciated, it is 

likely that these isoforms of serglycin might have different functions in a cell-context 

specific manner. Serglycin is a marker of immature myeloid cells and interacts with many 

bioactive components including histamine, TNF-α and proteases [27]. In general, serglycin 

expression correlates with a more aggressive malignant phenotype and it has been recently 

proposed that serglycin protects breast cancer cells from complement attack, thereby 

supporting cancer cell survival and progression [28].
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Cell surface proteoglycans

In this class, there are thirteen genes, seven encoding transmembrane proteoglycans and six 

encoding GPI-anchored proteoglycans. With the exception of two gene products, NG2 and 

phosphacan, all contain heparan sulfate side chains.

Syndecans

The eponym syndecan was coined by the late Merton Bernfield [29] to define a class of 

transmembrane proteoglycans that would connect (from the Greek syndein, “bind together”) 

the surface of the cells to the underlying extracellular matrix. The syndecan family now 

comprises four distinct genes encoding single-pass transmembrane protein cores which 

include an ectodomain, a transmembrane region and an intracellular domain [4,30] (Fig. 2). 

The ectodomains exhibit the lowest amount of amino acid sequence conservation, no more 

than 10–20%, in contrast to the transmembrane and cytoplasmic domains which are 60–70% 

identical. A recent study has shown that the ectodomain of syndecans is natively disordered 

and this characteristic allows syndecans to interact with a variety of proteins and ligands, 

thereby providing enrichment in their biological function [31]. The ectodomain contains the 

GAG attachment sites, which are often covalently-linked to HS and sometimes to CS, 

making syndecans hybrid proteoglycans. Several cell types shed syndecan into the 

pericellular environment through the action of MMPs. For example, it has recently been 

shown that shed syndecan-2 retards angiogenesis by inhibiting endothelial cell migration 

[32], a key step in neovascularization [33]. The transmembrane domain contains a 

dimerization motif (GxxxG) that mediates both homo-dimerization and hetero-dimerization 

[30]. The intracellular domain is composed of two regions of conserved amino acid 

sequence (C1 and C2), separated by a central variable sequence of amino acids that is 

distinct for each family member (V) [34]. Notably, the C-terminus of all the four syndecans 

harbors a unique signature (EFYA) that binds PDZ-containing proteins. Generally, PDZ-

containing proteins contribute to a proper anchor of transmembrane proteins to the 

cytoskeleton, thereby holding together large signaling complexes.

Syndecans are involved in a wide variety of biological functions, too vast to be reviewed 

here, but reviewed recently [5,30,34]. Briefly, syndecans bind numerous growth factors, 

especially through their HS chains, and dictate morphogen gradients during development. In 

concert with other cell-surface HSPGs, syndecans can act as endocytosis receptors and are 

also involved in the uptake of exosomes [35]. Syndecans play key roles as co-receptors for 

many RTKs and can also function as receptors for atherogenic lipoproteins [36]. Indeed, 

there is strong genetic evidence that syndecan-1 is the main HSPG mediating clearance of 

triglyceride-rich lipoproteins derived from either the liver or from intestinal absorption [37].

Many, if not all the syndecans, can also act as soluble HSPGs via partial proteolysis of their 

juxtamembrane region releasing their whole ectodomains. This shedding is considered a 

powerful post-translational modification that can regulate the amount of HSPG linked to the 

cell surface and that present in the pericellular microenvironment [30]. Several inflammatory 

cytokines can induce syndecan shedding by triggering outside-in signaling and by activating 

several metalloproteinases. In the case of hepatocytes, shedding of syndecan-1 occurs via 

PKC-dependent activation of ADAM17, and this impairs VLDL catabolism and promotes 
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hypertriglyceridemia [38]. Importantly, soluble syndecan-1 promotes the growth of 

myeloma tumors in vivo [39], and this process, i.e. the shedding of syndecan-1, is enhanced 

by heparanase [40], thereby offering a novel mechanism for promoting cancer growth and 

metastasis [41,42]. Notably, chemotherapy stimulates syndecan-1 shedding, a potential 

drawback of the treatment that could potentially favor tumor progression [43]. The 

biological interplay between heparanase-evoked shedding of syndecan-1 and myeloma cells 

leads to enhanced angiogenesis [44], further supporting cancer growth. As mentioned above, 

however, shed syndecan-2 inhibits angiogenesis via a paracrine interaction with the protein 

tyrosine phosphatase receptor CD148, which in turn deactivates β1-containing integrins [32], 

presumably α1β1 and α2β1, two main angiogenesis receptors. In contrast, the ortholog 

syndecan-2 is required for angiogenic sprouting during zebrafish development [45].

An emerging new role for syndecan-1 is linked to its ability to reach the nuclei in a variety 

of cells. Initial observations showed that myeloma and mesothelioma cells contain 

syndecan-1 in their nuclei [46,47] and this nuclear translocation is also regulated by 

heparanase [46], indicating that there must be a cellular receptor for shed syndecan-1 that 

could mediate its nuclear targeting and transport. In support of these studies are previous 

observations that exogenous HS can translocate to the nuclei and modulate the activity of 

DNA Topoisomerase I [48] and histone acetyl transferase (HAT) [49]. N-terminal 

acetylation of histones by HAT is linked to transcriptional activation, and this process is 

finely tuned by its counteracting enzyme, histone deacetylase (HDAC). Heparanase-evoked 

loss of nuclear syndecan-1 causes an increase in HAT enzymatic activity and enhances 

transcription of pro-tumorigenic genes [50]. Syndecan-1 that is shed from myeloma tumor 

cells is uptaken by bone marrow stromal cells and is transported to the nuclei by a 

mechanism that requires its HS chains, as this process is inhibited by heparin and chlorate 

[51]. Once nuclear, soluble syndecan-1 binds to HAT p300 and inhibits its activity, thereby 

providing a new mechanism for tumor–host cell interaction and cross-talk [52].

CSPG4/NG2

The melanoma-associated chondroitin sulfate proteoglycan (MCSP) was discovered over 30 

years ago as a transmembrane proteoglycan and a highly immunogenic tumor antigen of 

melanoma tumor cells. This proteoglycan has been subsequently detected in various species, 

with many names designating the same gene product. The rat ortholog of MCSP is called 

nerve/glial antigen 2 (NG2) [53], while the term CSPG4 designates the human gene. We will 

use CSPG4/NG2 terminology with the idea that some of the functional properties have not 

been fully described in the human and rat species [54]. CSPG4/NG2 is a single-pass, type I 

transmembrane proteoglycan carrying one chondroitin sulfate chain, and harboring a large 

ectodomain composed of three subdomains (Fig. 2). The N-terminal domain (D1 

subdomain) contains two laminin-like globular (LG) repeats. It is likely that the LG domains 

as in other proteoglycans (i.e. perlecan and agrin, see below) mediate ligand binding, cell–

matrix and cell–cell interactions, as well as interaction with integrins and receptor tyrosine 

kinase (RTK). The central subdomain D2 contains 15 tandem repeats of a new module 

called CSPG [54]. The CSPG repeat is a cadherin-like and tumor-relevant module which is 

predicted to be involved in cell–matrix interaction, further modulated by the CS chain 

covalently attached to this module. Indeed, CSPG modules bind to collagens V and VI, FGF 
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and PDGF. The juxtamembrane subdomain D3 contains a carbohydrate modification able to 

bind integrins and galectin, as well as numerous protease cleavage sites. Accordingly, the 

intact ectodomain and fragments thereof can be detected in sera from normal and melanoma-

carrying patients [54]. The transmembrane domain of CSPG4/NG2 is quite interesting 

insofar as it has a unique Cys residue, generally not found in transmembrane regions. The 

intracellular domain harbors a proximal region with numerous Thr phospho-acceptor sites 

for PKCα and ERK1/2, and a distal region encompassing a PDZ-binding module similar to 

the syndecan family. The latter can bind to the PDZ domain of several scaffold proteins 

involved in intracellular signaling, including syntenin, MUPP1 and GRIP1.

Functionally, CSPG4/NG2 proteoglycan promotes tumor vascularization [55] and because of 

its predominant perivascular localization, CSPG4/NG2 may modulate the availability of 

FGF at the cell surface as well as the bioactivity and signal transduction of FGF receptors 

[56]. This CSPG binds to collagen VI in the tumor microenvironment and promotes cell 

survival and adhesion via the PI3K pathway [57]. Indeed, targeting CSPG4/NG2 in two 

animal models of highly-malignant brain tumors reduces tumor growth and angiogenesis 

[58]. Moreover, a combinatorial treatment using activated natural killer cells and a 

monoclonal antibody toward CSPG4/NG2 is capable of eradicating glioblastoma xenografts 

more efficiently than single therapies [59].

It has recently been discovered that NG2 controls the directional migration of 

oligodendrocyte precursor cells by constitutively stimulating RhoA GTPases [60]. Based on 

NG2 ability to regulate adhesion, RhoA GTPase and growth factor activities, it is likely that 

this transmembrane proteoglycan might play a key role in regulating cell polarity in 

response to extracellular cues [61].

Perdido/Kon-tiki, the Drosophila ortholog of mammalian CSPG4, genetically interacts with 

integrins during Drosophila embryogenesis, and its loss is embryonic lethal [62]. RNAi-

mediated suppression of Perdido/Kon-tiki in the muscles, just before adult myogenesis 

starts, induces misorientation and detachment of Drosophila adult abdominal muscle, 

generating a phenotype similar to the embryonic lethal ones [63]. Thus, it is possible that, 

based on its high conservation through species, mammalian CSPG4 could also play a role in 

myogenesis and function as well.

A recent study has added another function to CSPG4 by involving this cell surface 

proteoglycan in the pathogenesis of severe pseudomembranous colitis. CSPG4 acts as a 

receptor for the Clostridium difficile toxin B, one of the key toxins secreted by this gram-

positive and spore-forming anaerobic bacillus [64]. The interaction occurs between the N-

terminus of CSPG4 and the C-terminus of toxin B. This discovery, if confirmed in future 

studies, opens new therapeutic targets for the treatment of this severe and often lethal form 

of enterocolitis.

Betaglycan/TGFβ type III receptor

In 1991, two back-to-back papers reported on the isolation and cloning of a membrane-

anchored proteoglycan with high affinity for TGFβ, and thus named betaglycan [65,66]. 

Betaglycan, also known as TGFβ type III receptor (TGFB3), is a single-pass transmembrane 
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proteoglycan that belongs to the TGFβ superfamily of co-receptors (Fig. 2). The 

extracellular domain contains several potential GAG attachment sites and protease-sensitive 

sequences near the plasma membrane. The short intracellular domain is highly enriched in 

Ser/Thr (>40%) and some of these residues are candidate sites for PKC-mediated 

phosphorylation [65]. Betaglycan amino acid sequence is highly similar to that of endoglin, 

a close member of the same superfamily.

The membrane-proximal ectodomain of betaglycan contains a unique module called zona 

pellucida (ZP)-C [67]. The ZP module is a structural element typically found in the 

ectodomain of eukaryotic proteins composed of a Cys-rich bipartite structure joined by a 

linker. Generally, proteins harboring ZP modules tend to polymerize and assemble into long 

fibrils of specialized extracellular matrices [67]. In the case of betaglycan and endoglin these 

ZP modules are not utilized for polymerization, rather they function as membrane co-

receptors for the TGFβ superfamily members [68]. The intracellular domain contains a PDZ-

binding element similar to that observed in the syndecan family of proteoglycans (Fig. 1).

Betaglycan is a ubiquitously-expressed cell surface proteoglycan that acts as a co-receptor 

for members of the TGFβ superfamily of Cys knot growth factors which also include 

activins, inhibins, GDFs and BMPs [69,70]. For example, betaglycan enhances the binding 

of all the TGFβ isoforms to the signaling TGFβ complex [71] and is needed for TGFβ2 high-

affinity interaction with the receptor complex. Betaglycan also blocks the aggressiveness of 

ovarian granulosa cell tumors by suppressing NF-κB-evoked MMP2 expression [72]. 

Betaglycan, together with other TGFβ-binding SLRPs, i.e. decorin and biglycan (see below), 

can be cleaved by granzyme B, thereby releasing an active form of TGFβ [73]. Ectodomain 

shedding of betaglycan is indeed necessary for betaglycan-mediated suppression of TGFβ 

signaling and breast cancer migration and invasion [74]. The ability of betaglycan to affect 

epithelial mesenchymal transformation [70], together with genetic evidence of embryonic 

lethality in Tgfbr3−/− mice, suggests that betaglycan may play a unique and non-redundant 

function during development.

Another important feature of betaglycan is its ability to modulate the subcellular topology of 

the signaling receptor complex via its PDZ-binding domain, which interacts with PDZ-

containing proteins such as β-arrestin [75]. This interaction, as well as that between 

betaglycan intracellular domain and GIPC, would stabilize betaglycan at the cell surface and 

potentiate its bioactivity. Finally, betaglycan is involved in regulating many functions 

including reproduction and fetal growth [75], and is a putative tumor suppressor in many 

forms of cancer [76]. Several additional betaglycan-evoked activities have been recently 

reviewed elsewhere [75].

Phosphacan/receptor-type protein tyrosine phosphatase β

Phosphacan, originally isolated from rat brain, is a CSPG that interacts with neurons and 

neural cell-adhesion molecules (N-CAM) and corresponds to the soluble ectodomain of a 

Receptor-type protein tyrosine phosphatase β (RPTPβ) [77]. The phosphacan gene 

(PTPRZ1) encodes a single-pass type I membrane protein with a relatively large ectodomain 

harboring an N-terminal module homologous to the alpha-carbonic anhydrase (Fig. 2). 

Distal to this, there is a fibronectin type III domain. The ectodomain contains six Ser-Gly 
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repeats, at least four of which are flanked by acidic residues suggesting potential glycanation 

sites. Sporadically, phosphacan can also be substituted with keratan sulfate chains. Notably, 

alternative splice variants encoding different protein isoforms have been described but their 

full-length nature has not yet been established.

Functionally, the ectodomain of phosphacan mediates cell–cell adhesion by hemophilic 

binding. In addition, phosphacan's ability to bind N-CAM and tenascin in a calcium-

dependent manner suggests that RPTPs may also modulate cellular interactions via 

heterophilic mechanisms [77]. Indeed, phosphacan blocks the growth-promoting ability of 

N-CAM, axonin-1 TAG-1 and tenascin, and is crucial in the oriented movement of post-

mitotic cells during cortical development of the brain [78]. Moreover, phosphacan binds 

contactin, another member of the Ig superfamily like N-CAM, and the extracellular portion 

of the voltage-gated sodium channel [79]. The latter interaction appears to be mediated by 

the carbonic anhydrase-like module of phosphacan's ectodomain. It has been proposed that 

phosphacan, as an integral extracellular matrix constituent of the neural stem cell 

compartment, would contribute to the privileged microenvironment that supports self-

renewal and maintenance of the neural stem cell niche [80].

Glypicans/GPI-anchored proteoglycans

Glypicans (GPC) are HSPGs that are bound to the plasma membrane via a C-terminal lipid 

moiety known as GPI, for glycosylphosphatidylinositol, linkage or anchor (Fig. 2). There are 

six independent genes in the mammalian genome which can be subdivided into two broad 

classes: GPC1/2/3/6 and GPC3/5 with orthologs present across Metazoan including Dally and 

Dlp in Drosophila melanogaster [81]. Although most of the protein core is unique to this 

family, there is a stretch of amino acid in the ectodomain of the protein core with similarity 

to the Cys-rich domain of Frizzled proteins. There are two unique features in the structural 

organization of all glypicans, with potentially important functional implications.

First and in contrast to syndecans, the attachment of the GAG chains – mostly HS chains – is 

located near the juxtamembrane region. This allows the three linear HS chains to span a 

great deal of plasma membrane surface, thereby presenting various morphogens and growth 

factors in an active configuration to their cognate receptors. Indeed, glypicans bind to and 

modulate the activity of Hedgehog (Hh), Wnt, and FGFs [82–84]. More recently, it has been 

shown that glypican-3 binds to Frizzled thereby acting directly in the modulation of 

canonical Wnt signaling [85].

Second, glypicans are dually processed via partial proteases and lipases. In the former case, 

the ectodomain of glypicans is processed via endoproteolytic cleavage by a furin-like 

convertase. This processing generates two subunits that are then bound via disulfide bonds, 

in a way similar to the Met receptor. In the latter case, the entire glypican proteoglycan is 

released from the plasma membrane via an extracellular lipase (Notum) that cleaves the GPI 

anchor. Drosophila studies have shown that the Notum-mediated release of glypican can 

regulate morphogen gradients including Wnt, BMP and Hh gradients [84].

Notably, the anchorless GPC-1, devoid of the GPI anchor, is a stable α-helical protein that 

rests high concentrations of urea and guanidine HCL [86]. Unfolding data are consistent 
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with a two-state model, suggesting that GPC-1 protein core is a densely-packed globular 

protein. In agreement with these data, the crystal structure of the Drosophila glypican Dally-
like protein has revealed an extended α-helical fold [87]. The crystal structure of human 

GPC-1 is very similar to Drosophila Dally-like, and consists of a stable α-helical domain 

with 14 conserved Cys residues, followed by a GAG attachment site that is exclusively 

substituted with HS chains [88]. Of interest, removal of the α-helical domain leads to 

substitution with CS chains instead of HS chains, indicating that there is a “message” 

embedded in the α-helical domain that drives a different posttranslational modification [88].

Functionally, glypicans have been involved in the control of tumor growth and angiogenesis. 

For example, glypican-3 has been implicated in cancer and growth control. Human 

mutations of GPC3 cause the rare X-linked Sympson–Golabi–Behmel (SGB) syndrome, 

characterized by both pre- and post-natal overgrowth, abnormal craniofacial features, 

cardiovascular anomalies, renal dysplasia and urinary tract malformations [84]. Originally, it 

was hypothesized that GPC3 was an inhibitor of IGF-II, given the prominent function of 

IGF-II in developmental growth. However, it was later found that the levels of IGF-II do not 

change in Gpc3−/− mice nor does GPC3 interacts with IGF-II. It appears that GPC3 is an 

inhibitor of the Hh signaling, insofar as the Hh-dependent signaling activity is elevated in 

Gpc3−/− mice. Moreover, purified glypican-3 binds with high affinity to Indian and Sonic Hh 
as well as it competes with Patched for Hh binding [83,89]. A recent study has shown that 

processing by convertases is required for GPC3-evoked suppression of Hh signaling, and 

this process is dependent on the HS chains and their degree of sulfation [90]. Thus, the 

glypican family is not only complex in nature, but is also the control of various modifying 

enzymes (proteases and lipases) that modulate its biological activity. We are positive than 

many “surprises” will happen in the future regarding unsuspected biological functions of 

various glypicans.

Pericellular and basement membrane zone proteoglycans

This group of four proteoglycans is closely associated with the surface of many cell types 

anchored via integrins or other receptors, but they can also be a part of most basement 

membranes. Pericellular proteoglycans are mostly HSPGs and include perlecan and agrin, 

which share homology especially at their C-termini, and collagens XVIII and XV, which 

share homology at their N- and C-terminal noncollagenous domains (Fig. 1).

Perlecan

Perlecan is a modular HSPG encoded by a large gene [91,92] with a complex promoter [93–

95]. The ~500-kDa protein core is composed of 5 domains with homology to SEA, N-CAM, 

IgG, LDL receptor and laminin [96,97] (Fig. 3). The terminal LG3 domain has been 

crystallized and reveals a jellyroll fold characteristic of other LG modules [3]. Perlecan is 

expressed by both vascular and avascular tissues [97–101], and is ubiquitously located at the 

apical cell surface [102,103] and basement membranes [98,104–106]. Perlecan regulates 

various biological processes primarily because of its widespread distribution [101,105] and 

its ability to interact with various ligands and RTKs [107], and more recently the potential 

utilization of perlecan splice variants in mast cells [108]. Perlecan is an early responsive 
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gene and is induced by TGFβ [109] and repressed by interferon γ [95]. The heparan sulfate 

chains of perlecan and the protein core can be cleaved by heparanase and various proteases 

[110–112], respectively, releasing various pro-angiogenic factors [113].

Perlecan is involved in modulating cell adhesion [114,115], lipid metabolism [116], 

thrombosis and cell death [117,118], biomechanics of blood vessels and cartilage [119–121], 

skin and endochondral bone formation [122,123], and osteophyte formation [124]. Perlecan 

binds and modulates the activity of several growth factors and morphogens [106,125–129] 

and its expression is often deregulated in several types of cancer [130–134]. In Drosophila, 

perlecan, known as Trol (for terribly reduced optical lobe) regulates Fgf and Hh signaling to 

activate neural stem signaling [135,136]. In addition, Trol is essential for the architecture 

and maintenance of the lymph gland and for the proliferation of blood progenitor cells [137]. 

Loss of Trol is associated with premature differentiation of hemocytes and this phenotype 

can be rescued by ectopic expression of Hh [137]. In mice, Hspg2 controls neurogenesis in 

the developing telencephalon [138]. Moreover, perlecan can act as a lipoprotein receptor and 

mediate its endocytosis and catabolism [116]. Specifically, domain II of perlecan has been 

shown to bind low density lipoproteins and this interaction is mediated by the O-linked 

oligosaccharides [139], suggesting an important role for perlecan in atherogenesis and lipid 

retention.

Perlecan is a complex regulator of vascular biology and tumor angiogenesis [33,140,141] by 

performing a dual function: via the N-terminal HS chains, perlecan is pro-angiogenic [96] 

by binding and presenting VEGFA and various FGFs to their cognate receptors [33,141–

152]. Moreover, heparanase-mediated cleavage of basement membrane perlecan releases 

FGF10 and enhances salivary gland branching morphogenesis [153]. Indeed, ablating Hspg2 
or preventing Hspg2 expression in early embryogenesis causes severe cardiovascular defects 

[154–157]. The critical role for the N-terminal HS chains of perlecan has been elegantly 

demonstrated by the generation of mice harboring a genomic deletion of exon 3, designated 

Hspg2Δ3/Δ3 mice, which encodes the SGDs responsible for the covalent attachment of HS 

chains [158]. These mutant mice have impaired angiogenesis, delayed healing after 

experimental wounding and suppression of tumor growth [159]. When challenged with flow 

cessation of the carotid artery, the Hspg2Δ3/Δ3 mice show an enhanced intimal hyperplasia 

and smooth muscle cell proliferation [160,161]. Moreover, during mouse hind-limb 

ischemia, the HS chains of perlecan are key regulators of the angiogenic response 

[162].Collectively, these studies reaffirm the role of HS perlecan in modulating pro-

angiogenic factors such as FGF2, VEGFA and PDGF.

More recently other functions of perlecan have been discovered. Using a lethality-rescued 

Hspg2−/− where perlecan was reintroduced into the cartilage, it was found that perlecan 

deficiency leads to significant depression of endothelial nitric oxide synthase [163]. This 

leads to endothelial cell dysfunction, as shown by attenuated endothelial relaxation, likely as 

a consequence of endothelial nitric oxide synthase expression. This is another example of 

how a secreted HSPG affects the biology of vascular endothelial cells likely through a 

receptor-mediated signaling pathway. Another recently unveiled function of perlecan is its 

ability to bind the clustering molecule gliomedin [164]. In this case, perlecan binds 

dystroglycan at nodes of Ranvier which are required for fast conduction and accumulation of 
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Na+ channels. Perlecan seems to enhance clustering of nodes of Ranvier components via a 

specific interaction with gliomedin. Thus, perlecan may have specific roles in the biology 

and pathophysiology of peripheral nodes [164].

In contrast to the pro-angiogenic N-terminal domain I, the C-terminal processed form of 

perlecan domain V, named endorepellin [165], has a nearly opposite function: it inhibits 

endothelial cell migration, capillary morphogenesis, and in vivo angiogenesis [166–169]. A 

global proteomic analysis of human serum has identified endorepellin as a major circulating 

protein [170]. Moreover, endorepellin has been detected in extracts of fetal cartilage, 

exclusively in the hypertrophic zone, and it was speculated that processing of perlecan 

protein core in the growth plate could play a role in inhibiting blood vessel invasion or 

formation in cartilage [171]. Elevated endorepellin/LG3 peptides were found in the plasma 

proteome of patients with refractory cytopenia with multilineage dysplasia [172], and in the 

urine of end-stage renal failure patients [173]. These LG3 fragments had N-terminal residues 

(i.e., cleaved by BMP-1) identical to those reported by us [174]. Similar LG3 fragments are 

elevated in the urine of patients with chronic allograft nephropathy [175,176], in the 

amniotic fluid of pregnant women [177] with a marked increase in women with premature 

rupture of fetal membranes [178,179] and those carrying trisomy 21 fetuses [180]. Recently, 

LG3 peptides have been proposed to represent a potential marker of physical activity [181]. 

Endorepellin fragments have also been detected in the urine of children with sleep apnea 

[182], in the media conditioned by apoptotic endothelial cells [118,183,184], and in the 

secretome of pancreatic and colon carcinoma cells [174,185–188]. Endorepellin can be pro-

angiogenic in brain infarcts due to the lack of anti-angiogenic α2β1 integrin and the presence 

of the pro-angiogenic α5β1 integrin receptor for endorepellin in brain microvascular 

endothelial cells [189]. In this context, LG3 can be released by oxygen-glucose deprivation 

and can be neuroprotective [190,191]. Finally, circulating LG3 levels are reduced in patients 

with breast cancer, suggesting that reduced LG3 titers might be a useful biomarker for 

cancer progression and invasion [192].

Mast cells produce shorter forms of perlecan including functional endorepellin, suggesting a 

potential role of endorepellin in inflammation and tissue repair [193]. Moreover, MMP-7 

processing of perlecan in the prostate cancer stroma acts as a molecular switch to favor 

cancer invasion [112]. Thus, processed forms of perlecan protein core harboring domains III 

and IV can function as protumorigenic factors.

Endorepellin binds to the α2β1 integrin receptor [140,166,194], and tumor xenografts 

generated in α2β1−/− mice are insensitive to systemic delivery of endorepellin [168]. 

Endorepellin triggers the activation of the tyrosine phosphatase SHP-1 which, in turn, 

dephosphorylates and inactivates various RTKs including VEGFR2 [195]. Soluble 

endorepellin alters the proteomic profile of human endothelial cells [196], and exerts a dual 

receptor antagonism by concurrently targeting VEGFR2 and the α2β1 integrin [197]. 

Notably, the proximal LG1/2 domains bind the Ig3–5 domain of VEGFR2 while the 

terminal LG3 domain, release by BMP-1/Tolloid-like metalloproteinases [174], binds the 

α2β1 integrin [198]. This dual signaling causes: (a) Disassembly of actin filaments and focal 

adhesions, via the α2β1 integrin, leading to suppression of endothelial cell migration 
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[198,199], and (b) Activation of SHP-1 dephosphorylates Tyr1175, a key residue in the 

cytoplasmic tail of VEGFR2, and consequent transcriptional inhibition of VEGFA [200].

More recently, we have discovered that endorepellin induces autophagy in endothelial cells 

via VEGFR2 signaling [201], similar to decorin (see below). This novel function could 

contribute to the angiostatic properties of this interesting fragment of perlecan protein core.

Agrin

The second pericellular/basement membrane HSPG is agrin. A C-terminal portion of agrin 

lacking HS chains was first isolated from the Torpedo electric organ as an agent responsible 

for acetylcholine receptor (AChR) clustering, thereby the eponym agrin, from the Greek 

ageirein, meaning “to assemble” [202]. The majority of the research on agrin in mammalians 

has focused on agrin's contribution to the control of the postsynaptic apparatus in the 

neuromuscular junction. However, after many years of research, it was serendipitously 

discovered that agrin was indeed an HSPG interacting with N-CAM in the avian brain [203]. 

Subsequently, orthologs of agrin have been cloned from multiple species and are all highly 

homologous.

Agrin has a multimodular structural organization that is homologous to that of perlecan with 

potential generation of several splice isoforms. The N-terminal region can be spliced to 

generate either a Type II transmembrane form (TM) of agrin, highly expressed in nervous 

tissue, or an isoform associated with most basement membranes that contains the N-

terminal-agrin (NtA) domain (Fig. 3). In the central nervous system, TM agrin is highly 

expressed by axons and dendrites; thus, neurite-associated TM agrin could potentially 

function as receptor or co-receptor for neurite function. The NtA domain has high affinity 

for the laminin γ1 chain's coiled-coil domain, thereby functioning as a link between the cell 

surface and the basement membrane. Following the N-terminal domain is a stretch of nine 

follistatin-like (FS) repeats, also known as Kazal-type protein inhibitor domains [204]. The 

last two repeats are separated by an insertion of two laminin EGF-like (LE) domains. 

Notably, overexpression of TM agrin in non-neuronal cells induces filipodia-like processes 

similar to those induced in CNS neurites, and this bioactivity was localized to FS repeat 

seven [205]. Thus FS modules can modulate an important biological activity of neurons by 

affecting the reorganization of the actin cytoskeleton during active neurite growth.

Following the FS repeats, there are two Ser/Thr (S/T)-rich domains which can be 

alternatively spliced (especially the second ST module) to generate an X+/− form [204]. The 

two S/T modules are separated by a SEA module, similar to that of perlecan (see above), 

known to be involved in regulating O-glycosylation of mucins and glycoproteins. The N-

terminal and central regions of agrin protein core contain the attachment sites for HS chains, 

and rotary shadowing electron microscopy has revealed three attachment sites for HS chains 

[206]. However, agrin can be a hybrid HS/CSPG with two clusters of Ser-Gly sequences, 

one primarily carrying HS chains located between FS repeats 7 and 8, and one carrying 

mostly CS chains, located in the first S/T module [207]. An agrin fragment harboring all 

protein modules described so far inhibits neuronal outgrowth independently of HS or CS 

[208]. The HS chains of agrin, however, bind FGF2, thrombospondin, β-amyloid peptide, N-

CAM, and the protein tyrosine phosphatase δ [209].
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The C-terminus of agrin is structurally organized as perlecan domain V/endorepellin, with 

three LG domains separated by EGF-like modules (Fig. 3). The only difference is the 

position of the EGF repeats vis-à-vis the LG domains. The LG domains of agrin bind α-

dystroglycan in skeletal muscle and low-density lipoprotein-like receptor 4 (LRP4) [210]. 

The latter interaction activates the RTK MuSK which initiates a signaling cascade that leads 

to the formation of pre- and post-synaptic specializations. The terminal LG3 domain of agrin 

can be alternatively spliced with inserts of 8,11 and 19 residues and their bioactivity is 

influenced by Ca2+ binding [211]. Moreover, the overall function of agrin is regulated by 

site-specific processing via MMPs [212]. Agrin is a good example, together with perlecan, 

of the evolved mechanisms in molecular recognition and function achieved through 

utilization of common protein folds, such as LG modules [211].

Thus, both agrin and perlecan bind, via their LG-rich C-termini, multiple cell surface 

receptors including RTKs, and can potently modulate cardiovascular and musculoskeletal 

systems. Importantly, conjugation of LG modules of agrin and perlecan to polymerizing 

laminin-2 evokes clustering of acetylcholine receptors [213]. These data provide strong 

support for a cooperative function of basement membrane HSPGs in AChR assembly and 

function.

Of interest, recessive missense mutations in the AGRN genes cause congenital myasthenic 

syndromes characterized by defective neuromuscular transmission [214]. More recently, 

AGRN recessive missense mutations have been identified as causative factor for a congenital 

myasthenic syndrome with distal muscle weakness and atrophy, resembling distal myopathy 

[215]. Given the large number and heterogeneous groups of neuromuscular disorders it is 

likely that in the future new syndromes will be identified that are linked to genetic 

abnormalities of the AGRN gene.

Collagens XVIII and XV

Collagens XVIII and XV, two members of the “multiplexin” gene family [216–220], harbor 

structural features of collagens and proteoglycans, being substituted with HS and CS, 

respectively [221]. Like agrin, collagen XVIII was serendipitously discovered to be an 

HSPG when monoclonal antibodies were used against an unidentified avian HSPG [222]. 

Subsequent cloning and sequencing of the cDNA showed that this avian HSPG protein core 

shows high homology to the mammalian collagen XVIII. Collagen XVIII is a homotrimer 

comprised of three identical α1 chains and consists of ten interrupted collagenous domains, 

flanked by eleven noncollagenous domains at their respective N- and C-termini. Collagen 

XVIII also harbors three Ser-Gly consensus binding sites for the attachment of HS chains 

[223] (Fig. 3). The human COL18A1 gene can generate three protein variants derived from 

alternative promoter usage and splicing events [221]. Specifically, COL18A1 can produce a 

short variant, a middle variant containing a TSP-1 module, and a long variant containing an 

additional Frizzled repeat. The latter is missing in collagen XV. Both collagens XVIII and 

XV contain a C-terminal noncollagenous domain harboring the antiangiogenic endostatin 

and endostatin-like modules. Specifically, the NC1 domain consists of an N-terminal 

trimerization region, a central hinge region sensitive to proteolytic activity and the C-

terminal endostatin domain (Fig. 3). Endostatin interacts with numerous receptors including 
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integrins α5β1, αvβ3 and αvβ5 [224,225] and VEGFR2 [226]. Interestingly, endostatin, in 

analogy to endorepellin, is capable of inducing autophagy in endothelial cells by modulating 

Beclin 1 and β-catenin levels [227]. These findings suggest that C-terminal anti-angiogenic 

fragments of pericellular HSPGs may evoke endothelial cell autophagy which could 

contribute to their angiostatic properties.

The signaling network evoked by soluble endostatin leads to a downregulation of several key 

components of the VEGF signaling cascade and, concurrently, to a stimulation of the 

synthesis of thrombospondin [228], a powerful angiostatic protein [229,230].

Both collagens XVIII and XV are ubiquitously expressed in all vascular and epithelial 

basement membranes of human and mouse tissues, with an overall topography reminiscent 

of that of perlecan and agrin. Notably, Col18a1−/− mice show multiple ocular abnormalities, 

especially affecting the anterior portion of the eyes [231,232]. In humans, mutations in the 

COL18A1 gene cause Knobloch syndrome, a rare autosomal recessive disease characterized 

by high myopia, vitreoretinal degeneration and retinal detachment [233,234].

Col18a1−/− mice show enhanced neovascularization and vascular permeability during 

atherosclerotic disease progression [235], and loss of this gene in both mice and humans 

leads to hypertriglyceridemia [236]. Moreover, Col18a1−/− mice display enhanced 

angiogenesis during wound healing [237]. In contrast to Col18a1−/, Col15a1−/− show normal 

vascular formation but primarily develop a skeletal myopathy [238]. However, microscopic 

changes in the small arterioles with collapsed capillaries and endothelial cell degeneration in 

heart and skeletal muscles are also noted [238]. Collectively, these findings implicate 

collagen XVIII as a negative regulator of angiogenesis and as an anti-atherosclerotic factor. 

Collagen XV may function as a key structural constituent required for the stabilization of 

skeletal muscle cells and microvessels [238], and recently both collagens XV and XVIII 

have been involved in mediating the influx of leukocytes in renal ischemia/reperfusion 

[239]. Of interest, mice lacking the long form of collagen XVIII (i.e. the N-terminal 

frizzled-like sequence) but producing the short form, exhibit a decreased number of pre-

adipocytes, hepatic steatosis and elevated VLDL and triglyceride levels [240]. Thus collagen 

XVIII is directly implicated in the generation of adipose tissue and in hyperlipidemia 

associated with visceral obesity and fatty liver.

Extracellular proteoglycans

This is the largest class encompassing 25 distinct genes. Four genes encode the hyalectans, 

key structural components of cartilage, blood vessels and central nervous systems. They all 

bind hyaluronan and form supramolecular complexes of high viscosity. The second class 

encompasses 18 SLRPs, which have a multitude of functions and often signal through 

various receptors as many members are now found in the circulation and in various body 

fluids. The third class, SPOCK family, encompasses 3 testicans which are calcium-binding 

HSPGs.
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Hyaluronan- and lectin-binding proteoglycans (hyalectans)

Hyalectans comprise a distinct family of proteoglycans with structural similarities at both 

the genomic and protein levels. This family contains four distinct genes, namely aggrecan, 

versican, neurocan, and brevican (Figs. 1 and 4). A shared feature of these proteoglycans is 

their tridomain structure: an N-terminal domain that binds hyaluronan, a central domain 

harboring the GAG side chains, and a C-terminal region that binds lectins [2]. Based on this 

dual activity at the N- and C-termini, the term hyalectans, an acronym for hyaluronan- and 

lectin-binding proteoglycans, has been proposed [1]. Alternate exon usage and variability in 

the degree of glycanation and glycosylation provide diverse functional attributes for these 

proteoglycans which often act as molecular bridges between cell surfaces and extracellular 

matrices.

Aggrecan

Aggrecan, as its eponym indicates, has the propensity to aggregate into large supramolecular 

complexes > 200 MDa together with hyaluronan and link protein, and is the principal load-

bearing proteoglycan of cartilage [241]. These large aggregates generate a densely-packed, 

hydrated gel enmeshed in a network of reinforcing collagen fibrils and other proteoglycans 

and glycoproteins [242]. The N-terminal domain contains four link protein-like modules or 

proteoglycan tandem repeats in addition to the Ig-like repeat (Fig. 4). The entire link module 

is ~100 amino acids in length and has a characteristic consensus sequence with four 

disulfide-bonded Cys residues. These modules form two globular domains known as G1 and 

G2 [243]. The G1 domain is related to link protein and to the other G1 domains of the 

hyalectans, both in terms of structural domains and subdomains [243]. The G1/hyaluronan/

link protein ternary complex is very stable thereby immobilizing the aggrecan into enormous 

complexes that maintain a stable network and provide mechanical properties to cartilage. An 

interglobular region, between G1 and G2, has a rod-like structure and harbors several 

protease-sensitive sites involved in the partial degradation of aggrecan in arthritis and other 

inflammatory diseases.

Following the G2 domain is a relatively small region containing numerous KS chains. This 

domain is not well conserved and its size significantly varies among species. Next, is the 

largest domain of aggrecan which contains the GAG-binding region. This protein domain is 

encoded by a single, very large (~4 kb) exon with ~120 Ser-Gly dipeptide repeats, which can 

generate >100 covalently-linked CS chains. The concentration of negatively-charged forces 

within aggrecan accounts for its ability to hold large amount of water, not only in cartilage, 

but also in the intervertebral disc and brain. Moreover, electrostatic repulsion forces 

generated by the numerous negatively- charged CS and KS chains of aggrecan provide the 

equilibrium compressive modulus (a measure of stiffness) of cartilage. In humans, variable 

number of tandem repeats can generate different alleles in the general population, ranging 

between 13 and 33 repeats, causing a great variability in the aggrecan degree of glycanation 

and negative charge (due to sulfation) within cartilage.

The G3 module of aggrecan contains 2 EGF-like repeats, a C-type lectin domain and a 

complement regulatory protein (CRP) domain. Notably, the EGF repeats can be alternatively 

spliced in part because in rodents exon 13 is a pseudoexon. Moreover, in rodent brain, the 
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most common aggrecan species lacks both EGF repeats [244]. As in the case of other 

hyalectans, the C-type lectin domain of aggrecan binds simple sugars, such as fucose and 

galactose, in a Ca2+-dependent manner. Thus, aggrecan G3 may serve as a binding domain 

for the galactose present on collagen type II or other extracellular matrix or cell surface 

constituents. Moreover, the G3 domain of aggrecan interacts with tenascins, fibulins and 

sulfated glycolipids [245]. Thus, aggrecan could bridge and interconnect various 

constituents of the cell surface and extracellular matrix via its C-terminal G3 domain, 

thereby providing a mechanosensitive feedback to the chondrocytes. Indeed, epiphyseal 

chondrocytes grown on hydrogel substrata can maintain their phenotype for up to six months 

with proper secretion of cartilage-specific constituents, such as aggrecan, and collagens type 

II and IX, but without expressing collagen type I [246].

The essential role of aggrecan in cartilage is underscored by several genetic defects 

including two autosomal recessive chondrodystrophies, nanomelia in chickens and cartilage 

matrix deficiency (cmd) in mice [247]. In nanomelia, the defect leads to the formation of a 

C-terminal truncated aggrecan, while in cmd mice there is an even larger C-terminal 

truncation. In both mutant animals, there is little or no aggrecan in cartilage leading to 

shortened long bones and lethality, most likely due to respiratory failure arising from 

tracheal collapse [247]. Aggrecan is also involved in the morphogenesis of limb synovial 

joints and articular cartilage [248], and fragments of aggrecan represent biomarkers for 

osteoarthritis [249].

Aggrecan is also expressed in the brain, and unlike other hyalectans, is expressed primarily 

in the perineuronal nets [79]. A relatively small number of cortical neurons express 

aggrecan, especially the cortical interneurons [244]. One of the hypothesized functions of 

brain aggrecan is its potential regulation of neural maturation, in addition to its physical 

ability to adduct cations and regulate osmotic imbalances. Thus, aggrecan could affect high-

rate synaptic transmission, mechanical stabilization of synaptic contacts and neuroprotection 

by counteracting oxidative stress via scavenging redox-active cations [244].

Versican

Versican, an eponym that signifies its highly versatile function [250], is the largest member 

of the hyalectan family when expressed as a whole molecule, designated V0 (Fig. 4). 

Versican is the mammalian counterpart of the so-called PG-M, a large chondroitin sulfate 

proteoglycan expressed during chondrogenesis in chick limb buds [251,252]. The VCAN 
gene, originally called CSPG2 [253–255], encompasses 15 exons encoding a full-length (V0 

variant) protein core of ~400 kDa, with 3396 amino acid residues. The overall structural 

organization of versican is similar to that of aggrecan, with a few exceptions. At the N-

terminus there is only one globular domain instead of two. Specifically, the N-terminal 

domain of versican contains one IgG fold followed by two consecutive link protein modules 

similar to G1, which are involved in mediating the binding of proteins to hyaluronan. 

Recombinant versican and a truncated form of versican containing the N-terminal domain 

bind to hyaluronan with high affinity, KD ~ 4 nM, in the same range as the other major 

aggregating CSPG, aggrecan [256]. The central domain of versican comprises two relatively 

large subdomains, designated GAGα (encoded by exon 7) and GAGβ (encoded by exon 8), 
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which can be alternatively spliced to generate the three main variants V1, V2 and V3 [255], 

with significant CS polymorphism in the different versican isoforms. These large regions 

lack Cys residues and contain ~30 potential consensus sequences for GAG attachment as 

well as several binding sites for N- and O-linked oligosaccharides. There is also variability 

in tissue expression of the isoforms, with V0 and V1 representing the most ubiquitous 

isoforms, expressed in the developing heart and limbs, vascular smooth muscle cells and 

several nonneuronal tissues, whereas the V2 isoform is mainly present in the brain [79]. 

Expression of the V3 isoform in arterial smooth muscle cells regulates multiple signaling 

pathways, including TGFβ, EGF and NF-κB pathways, thereby creating a microenvironment 

resistant to monocyte adhesion [257]. Recently, a new splice variant of Versican, V4, has 

been identified in human breast cancer, which contains up to five CS chains [258]. This 

isoform comprises only the first 1194 bp of exon 8 (encoding the GAGβ) sandwiched 

between exon 6 and 9, and is highly expressed in breast cancer in contrast to normal breast 

tissue where it is undetectable [258]. Notably, the avian versican ortholog harbors an 

additional exon, known as PLUS, in the N-terminal region that is developmentally regulated 

[259]. This exon can be alternatively spliced giving rise to two additional isoforms. 

Although no similar region is present in the mammalian genome, sequence homology 

suggests that the PLUS domain of avian versican may correspond to the KS attachment 

region in aggrecan.

The C-terminal domain of versican is also very similar to that of aggrecan and other 

hyalectans in that it harbors similar structural motifs, including two EGF-like repeats, a C-

type lectin domain, and a complement regulatory protein-like module (Fig. 4). These motifs 

are generally found in the selectin family of glycoproteins, which include several adhesion 

receptors regulating leukocyte homing and extravasation during inflammation. Given the 

fact that the various C-type lectin modules may have different saccharide-binding specificity, 

the presence of these domains at the C-terminal ends of hyalectans could provide specialized 

and refined functions for these CSPGs. Moreover, these findings suggest that versican may 

form a molecular link between lectin-containing glycoproteins at the cell surface and 

extracellular hyaluronan. Because hyaluronan is bound to the cell surface via its CD44 

receptor [241,260], versican may also stabilize a large supramolecular complex at the 

plasma membrane zone [2].

The functional roles of versican are multiple and complex. Versican is involved in the 

regulation of cell adhesion, migration and inflammation [260–262]. During an inflammatory 

response, leukocytes need to emigrate from the inner blood vessels into the damaged 

surrounding tissues. During this process, leukocytes encounter a provisional matrix highly 

enriched in versican, which in turn is capable of interacting with many receptors on the 

surface of immune cells including CD44, P-selectin glycoprotein-1, and Toll-like receptors 

[261]. Another important role of versican derives from the multiple processing of its protein 

core. Versican is degraded and partially processed by several MMPs, plasmin and members 

of the ADAMTS family [263,264].Versican is also involved in the biology of 

leiomyosarcomas insofar as its levels are markedly increased vis-à-vis benign leiomyomas, 

and suppression of versican expression attenuates malignant growth and tumor progression 

[265].
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Two autosomal dominant eye disorders, Wagner syndrome and erosive vitreo-retinopathy, 

which both show optically empty vitreous cavities, are caused by mutations in the VCAN 
gene [266]. Interestingly, the mutant alleles contain mutations around the splice sites 

flanking exon 8, which encodes the GAGβ domain, likely producing exon skipping. The 

ultimate consequence of exon skipping is that most tissues, and especially the eye, would 

have a lack of the GAGβ domain with much fewer CS chains, and thus a less charged 

environment.

Neurocan and brevican

The third member of the hyalectans is neurocan, a developmentally regulated CSPG 

originally cloned from rat brain, and thus its eponym to signify neuronal origin [267]. 

Rotary shadowing electron microscopy of neurocan has revealed two globular domains 

interconnected by a 60–90 nm rod [268], similar to the predicted organization of other 

hyalectans derived from biochemical and genomic analyses. As other hyalectans, neurocan 

has an N-terminal domain with structural homology to the typical arrangements found in 

link protein, harboring a G1 domain and an Ig repeat (Fig. 4). Functionally, recombinant N-

terminal module of neurocan interacts with hyaluronan in solution, and isolated complexes 

comprise gel permeation assays, and hyaluronan and globular profiles [268]. Therefore, it is 

highly likely that all the N-terminal domains of the hyalectans bind and interact with 

hyaluronan and link protein in vivo, forming gigantic supramolecular aggregates. The next 

interglobular region of neurocan, with little homology to other proteins, contains ~seven 

potential CS binding sites. The C-terminal module of neurocan shares significant homology 

to the G3 domain of aggrecan and versican, with ~60% identity between the rat neurocan 

and human versican/aggrecan. By analogy to the other hyalectan members, this domain 

could bind several brain glycoproteins including Ng-CAM, N-CAM, and tenascin. Neurocan 

is known to inhibit neurite outgrowth in vitro and, in keeping with this function, the 

expression of neurocan is increased at the site of mechanical and ischemic injury in the adult 

central nervous system [78,269]. Neurocan has been implicated in path finding during 

development. However, Ncan−/− mice develop normally with only mild deficiency in long-

term potentiation, suggesting that neurocan might only have a redundant role during 

development.

Brevican is one of the most important hyalectans of the central nervous system. It takes its 

eponym from the Latin word brevis (for short) as it harbors a typical hyalectan configuration 

with N- and C-terminal homologous domains, but with the shorter GAG-binding domain 

(Fig. 4) [270,271]. Brevican was simultaneously discovered by three laboratories searching 

for hyaluronan-binding proteoglycans in the brain [271,272] and for synapse associated 

proteins [273]. The eponym BEHAB, which is sometimes used for brevican as they are the 

same gene products, refers to brain-enriched hyaluronan binding protein [272]. Although 

sequence homology with the other hyalectan members is quite uniform (~60% overall), the 

GAG-binding domain is poorly conserved and contains a high content of acidic amino acid 

residues (mainly glutamic acid). This structural feature, shared with the link protein-like 

module of versican, could mediate binding to cationic proteins and minerals. In analogy to 

neurocan, brevican can exist as either a full-length CSPG or as a partially cleaved product 

without the GAG-binding module and the N-terminal domain. Similar to neurocan, brevican 
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exists in vivo either as a full-length proteoglycan or as a proteolytically-processed form 

lacking the GAG-binding region and the N-terminal domain. The C-terminal G3-like 

domain is structurally organized like the other hyalectans, although it harbors only one EGF-

like repeat instead of two as in all the other members (Fig. 4).

In addition to secreted full-length brevican, an isoform of brevican encoded by a shorter 3.3 

kb mRNA and highly expressed during post-natal development, is linked to the plasma 

membrane via a GPI anchor [273]. Notably, the GPI-anchored brevican lacks EGF, C-type 

lectin and CRP modules but contains a stretch of hydrophobic amino acids resembling the 

GPI-anchor. Brevican is located at the outer surface of neurons and is enriched at 

perisynaptic sites. Brevican interacts with tenascin-R and fibulin-2 via its G3-like domain 

[274].

Functionally, brevican has been implicated in glioma tumorigenesis, nervous tissue injury 

and repair, and in Alzheimer's disease [274]. However, many more studies need to be 

performed before a clear picture of brevican's biology can be clearly drawn.

Small leucine-rich proteoglycans/SLRPs

General considerations

This is the largest family of proteoglycans encompassing 18 distinct gene products and 

numerous splice variants and processed forms. The eponym SLRP, for small leucine-rich 

proteoglycans [1], is now a widely-used abbreviation. SLRPs designate a class of 

proteoglycans characterized by a relatively small protein core (as compared to the larger 

aggregating proteoglycans) of 36–42 kDa and encompassing a central region constituted by 

leucine-rich repeats (LRRs) (Fig. 5) [275]. The SLRPs are ubiquitously expressed in most 

extracellular matrices and are highly expressed during development in the thin membranes 

enveloping all the major organs such as meninges, pericardium, pleura, periosteum, 

perichondrium, perimesium and endomesium [276–278] This strategic topology suggests 

that SLRPs would be directly involved in regulating organ size and shape during embryonic 

development and homeostasis [279,280].

The 18 SLRP members are grouped into five classes: Classes I–III are canonical genes, 

whereas Classes IV and V are non-canonical (Fig. 1). Although eight non-canonical 

members do not carry glycosaminoglycan side chains, they have been included because they 

share close structural homology and several functional properties with the full-time 

proteoglycans. This classification is based on several considerations, including evolutionary 

conservation, homology at both the protein and genomic level, and chromosomal 

organization (Fig. 5A) [281]. It is important to note that SLRPs share many biological 

functions in terms of binding to various collagens [282–286], RTKs [287–290], innate 

immune receptors [291,292] and in terms of modulating the bioactivity of various signaling 

pathways when in soluble form [293–295]. Moreover, several SLRPs bind TGFβ and bone 

morphogenetic protein (BMP), and several members of this family inhibit cell growth 

[296,297].
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The crystal structure of bovine decorin [298] shows a solenoid fold structure typical of 

LRRs (Fig. 5B). Each LRR unit is composed of ~24 amino acids, characterized by a 

conserved pattern of hydrophobic residues, with short parallel β-sheet on the concave face 

interwoven with loops containing short β-strands, 310 helices and polyproline II helices on 

the convex (outer) side of the protein core (Fig. 5B). The LRRs form a curved, solenoid 

structure where protein/protein interactions occur primarily via the side chains of variable 

residues protruding from the short parallel β-strands that form the inner (concave) face of the 

solenoid. The LRRs are flanked at the N- and C-termini by disulfide-bonded caps which 

define the various classes [277]. At the N-terminus, there are four Cys residues with a 

variable number of intervening amino acids, whereas the C-terminal capping motif 

encompasses two LRRs and includes the so-called ear repeat (Fig. 5B). This Cys-capping 

motif, designated LRRCE, is present in the canonical SLRPs (Classes I–III) but absent in the 

other two non-canonical classes [299]. Likely, both capping motifs at either end of SLRPs 

Class I–III would function to stabilize the LRR central domain as in the case of other LRR 

protein and receptors.

Another characteristic feature of Class I–III SLRPs is the presence of a long penultimate 

LRR (LRR XI in decorin), that has been called the “ear” repeat [300]. Typically, the ear 

repeats contain 30 or more amino acid residues including an atypical sequence harboring a 

Cys located at about 10 residues after the asparagine residue in the consensus LRR [300]. 

Genetic mutations in the decorin gene leading to a terminal truncation of the decorin protein 

core, lacking the ear repeat, cause congenital stromal corneal dystrophy [301]. This 

syndrome has been faithfully reproduced in mice where this truncated decorin was 

specifically expressed into the cornea [302,303].

Although bovine decorin has been crystallized as an anti-parallel dimer [298] and reported 

to be a dimer in solution [304], there is strong evidence that decorin acts as a monomer in 

solution [293], especially when interacting with the small binding site on the EGFR 

ectodomain in vivo where a dimer could not fit the cavity [305]. Also supportive of a 

concave face binding is the identification of the sequence (SYIRIADTNIT) in LRR VII 

(highlighted in yellow in Fig. 5B) of the decorin protein core that is directly involved in 

binding to collagen type I [306,307]. A recent study utilizing mutant forms of mouse 

decorin, where engineered glycosylated sites in the concave face prevent dimerization, has 

shown that the monomeric mutants are as stable as the wild-type in solution [308]. The 

concave face mutants fail to bind collagen, regardless of the dimerization state, thus 

providing robust biological evidence for a concave face-mediated binding (i.e., monomeric 

decorin) to collagen [308].

A hallmark shared by nearly all SLRPs, and by most LRR-containing proteins, is their 

propensity to interact with other proteins and to regulate collagen fibrillogenesis 

[282,283,309,310]. For example, several SLRPs interact with fibrils of collagen types I, II, 

III, V, VI and XI. Indeed, the eponym “decorin” derives from its ability to decorate fibrillar 

(banded) collagen in a periodic fashion, that is, decorin protein core non-covalently binds, 

about every 67 nm, to an intraperiod site on the surface of collagen fibrils, every D period 

[311,312]. In highly purified α1(I) procollagen molecules, decorin protein core binds close 

to an intermolecular cross-linking site near the C terminus [313]. SLRP coating of various 

Iozzo and Schaefer Page 20

Matrix Biol. Author manuscript; available in PMC 2016 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



types of collagen serves a dual function: it regulates the lateral association of collagen 

molecules into proper fibrils, and protects collagen fibrils from proteolysis by sterically 

limiting the access of collagenases to their cleavage sites. It is important that, during 

evolution, these dual functional properties of SLRPs are shared by both their sulfated GAGs 

and protein cores. Notably, few SLRP members contain stretches of amino acids that can be 

sulfated, such as the poly-Tyr sulfate in fibromodulin or the poly-Asp region in asporin. 

Often, the GAGs are located in the N-terminus, in a location that is similar to that of these 

poly-sulfated amino acid stretches, and can be directly involved in collagen interaction 

[314,315]. An additional degree of complexity is provided by the heterogeneous structure of 

the GAG chains. For instance, Class I SLRPs contain CS or DS chains, with the exception of 

asporin, ECM2, and ECMX. In contrast, Class II members contain poly-lactosamine or KS 

chains in their LRRs and sulfated Tyr residues at their N-termini. Class III members contain 

CS/DS (epiphycan), KS (osteoglycin), or no GAG (opticin). Finally, the non-canonical Class 

IV and V members lack GAG chains with the exception of chondroadherin, which is 

substituted with KS.

The biological functions of SLRPs are very vast and there are over 3000 published papers on 

decorin alone, the archetypal and most studied SLRP. Thus, we refer the readers to recent 

comprehensive and specialized reviews on SLRPs [275,281– 283,294,307,316–325]. 

Moreover, it has been proposed that SLRPs can be transcriptionally co-regulated through 

utilization of HOX-Runx modules in their promoters and genomic regions, including 

proximal exons and intergenic regions [326]. Below, is a brief overview of each family with 

emphasis on recent discoveries of their multiple functional roles in physiological and 

perturbed states.

Class I SLRP—Decorin, also known as PG40 and DSPG1, was originally cloned from a 

fibroblast cDNA library [327], and subsequently named decorin because of its ability to 

decorate collagen fibrils [328]. Specifically, decorin protein core is a Zn2+ metalloprotein 

[329,330] that is biologically active in solution as a monomer [293]. As mentioned above, 

decorin protein core binds non-covalently to an intraperiod site on the surface of collagen 

fibrils about every 67 nm, at the D period [312]. Using purified collagen and procollagen 

molecules, that can be visualized by their C-terminal globular regions, it has been shown 

that decorin protein core binds near the C terminus of collagen α1(I), near an intermolecular 

cross-linking site [313]. Not only the protein core but also the N-terminal GAG chain of 

decorin plays a role in collagen fibrillogenesis and structure [285,314,315,331–334]. The 

strategic location of the GAG binding domain in the N-terminus of decorin allows a higher 

degree of mobility for the DS chain, which presumably could align orthogonally or parallel 

to the axis of the collagen fibrils. This dual function of decorin could help in maintaining 

corneal transparency and biomechanical properties of various connective tissues 

[282,284,335].

The decorin gene exhibits a complex genomic organization and transcriptional control 

[276,336–338] and its transcription can be induced by quiescence and suppressed by TNFα 

[339,340]. It was known for many years that the small DSPG of tendon, mostly decorin, is 

capable of inhibiting lateral growth of collagen fibrils [309]. Thus, when the decorin-null 

mice were generated, the first targeted deletion of a proteoglycan-encoding gene, the 
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abnormal collagen structure in the dermis and the skin fragility phenotype [310] provided 

the first genetic evidence for a regulatory role for the prototype member of SLRP gene 

family in collagen fibrillogenesis. The phenotype of the decorin deficient mice includes 

abnormal collagen fibril morphology in the skin and tail tendon, presumably by being less 

stable during development due to abnormal cross-linking or enhanced susceptibility to 

collagenase. The prevalent phenotype of the decorin-null mice is skin fragility caused by a 

thinning of the dermis with concurrent reduced tensile strength, a biomechanical impairment 

directly linked to the abnormal collagen network. Overall, the Dcn−/− mice resemble the 

cutaneous defects observed in the Ehlers–Danlos syndrome, characterized by skin 

hyperextensibility and tissue fragility [341], in a way opposite to fibrosis [342]. Due to its 

mild phenotype, the Dcn−/− mice have been utilized by a large number of investigators using 

many experimental challenges and have provided strong genetic evidence for decorin roles 

in Lyme disease [343,344], lung mechanics and asthma [345,346], diabetic nephropathy and 

tubulointerstitial fibrosis [347–350], myocardial infarction [351], corneal transparency and 

tendon biomechanical properties [352–356], dentin mineralization and periodontal 

homeostasis [357–359], hepatic fibrosis and hepatocellular carcinoma [318,360–362], 

collagen fibrillogenesis [314,363,364], fetal membrane biology [365–367], wound healing 

and angiogenesis [368–373], innate immunity and inflammation [291,374,375], adhesion 

and migration [376], and mesenchymal stem cell biology [377]. Decorin plays an important 

role during zebrafish development insofar as zDcn knockdown causes a severe phenotype 

characterized by abnormal convergent extension, craniofacial abnormalities, and cyclopia 

[278]. As these genetic defects are reminiscent of several zebrafish mutants affecting the 

non-canonical Wnt signaling pathway, it is possible that decorin might also play a role in 

this pathway in mammalians. Indeed, a recent study has shown that decorin is directly 

involved in modulating the signaling pathway of Wnt3a shaping niches supportive of 

hematopoiesis [378].

Mutations in the decorin gene have been linked to congenital stromal corneal dystrophy 

(CSCD) syndrome [301,379] where a truncated form of decorin lacking the ear repeat, the 

C-terminal 33 amino acids, acts in dominant negative fashion. A corneal knock in transgenic 

mouse lacking the C-terminal 33 amino acid residues (952delTDcn) faithfully recapitulates 

the human phenotype of corneal opacities [302]. Mechanistically, the C-terminal truncated 

form of decorin is retained in the cytoplasm of keratinocytes, triggering ER stress and an 

unfolded protein response [380]. These data provide a cell-based, rather than ECM-based, 

interpretation of the CSCD phenotype whereby a truncated SLRP protein core, by inducing 

ER stress, causes an abnormal processing and secretion of decorin and other SLRPs, 

eventually generating an abnormal matrix assembly and corneal opacities.

Decorin was the first proteoglycan to be directly involved in the control of cell growth. Two 

seminal papers identified decorin as a growth suppressor, via a mechanism involving 

decorin's binding to and inhibiting TGFβ in Chinese hamster ovary cells [381,382]. 

Concurrently, decorin was identified as a proteoglycan highly expressed in the tumor stroma 

of colon carcinomas [383], primarily via hypomethylation of its promoter regions [384]. It 

was soon recognized, however, that the growth of most malignant cells does not depend on 

the availability of TGFβ. Thus, there had to be other signaling receptors for the growth 

suppressive function of decorin. The existence of such receptor(s) was supported by an 
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emerging body of literature describing that ectopic expression of decorin or its protein core 

suppress the malignant phenotype in a variety of histogenetic malignant backgrounds 

[385,386]. Utilizing A431 cells, a squamous carcinoma cell line which overexpress EGFR, it 

was discovered that exogenous decorin proteoglycan or protein core transiently activated the 

EGFR to induce growth inhibition via expression of the cyclin-dependent kinase inhibitor 

p21WAF1 [287,387,388]. Indeed, decorin binds to a narrow region of the EGFR, partially 

overlapping with but distinct from the EGF-binding epitope [305]. Mechanistically, decorin 

transiently activates the EGFR and elevates cytosolic Ca2+ in A431 cells [389], but it causes 

a sustained down-regulation of this RTK, thereby providing a plausible mechanism for 

controlling tumor growth in vivo in various forms of cancer [390–392]. Specifically, soluble 

decorin evokes protracted internalization and degradation of the EGFR via caveolar 

endocytosis [393]. An anti-oncogenic role for decorin has been also demonstrated in its 

ability to inhibit another member of the ErbB family, namely the ErbB2/Neu, in this case by 

inhibiting heterodimerization of ErbB4 with ErbB2, thereby leading to growth suppression 

and cytodifferentiation of mammary carcinoma cells [394]. It was subsequently found that 

decorin binds specifically and with higher affinity (KD ~ 2 nM) to hepatocyte growth factor 

receptor known as Met [288] and causes proteasomal degradation of Myc and β-catenin, two 

critical downstream effectors of Met [395]. An important downstream effect of the 

decorin/Met interaction is induction of two anti-angiogenic proteins, Thrombospondin 1 and 

TIMP3, with concurrent inhibition of two powerful pro-angiogenic factors, HIF-1α and 

VEGFA [371,372]. Moreover, decorin binds and suppresses both the IGF-IR [289,396,397] 

and VEGFR2 [371,398].

Loss of decorin in the tumor stroma correlates with poor survival of patients with invasive 

breast carcinomas [275,399,400] and in mice with spontaneous breast cancer [401]. 

Moreover, decorin is markedly reduced in the stroma of many solid tumors [402–404], as 

well as low- and high-grade bladder carcinomas, but is highly expressed in the normal 

bladder stroma [397]. Decorin levels are also decreased in multiple myeloma [405,406], soft 

tissue sarcomas [407], prostatic [408], urothelial [409–411] and hepatic [362,412] 

carcinomas, together with a complete loss of decorin expression by several tumor cells 

[413,414]. Additional proof for an oncostatic role of decorin as a soluble tumor repressor 

stems from genetic models wherein ablation of decorin under conditions of a high-fat, 

western-type diet, is linked to the spontaneous appearance of intestinal tumors [415,416]. 

Moreover, compound Dcn−/−;Tp53−/− mice die of aggressive T-cell lymphomas much sooner 

than mice lacking only the tumor suppressor Tp53 [417]. Notably, systemic delivery of 

decorin, either as a soluble factor or via adenoviral gene delivery, significantly retards 

tumorigenic and angiogenic growth in a wide variety of malignant solid tumors [413,418–

424]. Collectively, these findings provide strong support to the concept that decorin could 

act as a “guardian from the matrix” in analogy to p53, a guardian of the genome [414]. Thus, 

decorin could become a potent therapeutic factor, either alone or in combination with 

traditional chemotherapy, in preventing tumor progression and metastasis [297].

Recently, it was discovered that soluble decorin evokes excessive autophagy in endothelial 

cells, independently of nutrient deprivation, through partial agonistic activity on VEGFR2 

[425]. This signaling cascade emanating from the decorin/VEGFR2 interaction leads to two 

effects. First, it activates AMPKα and Vps34, which in turn stimulate the synthesis of Peg3 
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[426], a recently-identified master regulator of autophagy [422]. Peg3 recruits LC3 and 

Beclin 1, which evoke autophagy, and concurrently induces transcription of both genes, 

while inhibiting VEGFA production [425]. These multiple biological roles of decorin would 

converge on oncostasis by suppressing RTK signaling in the growing cancer cells and 

inhibiting the supply of oxygen and nutrient via hindering angiogenesis and inducing a 

protracted, and in this case deleterious, stromal cell autophagy [427]. In view of the fact that 

decorin has been found in the circulation in nanomolar amounts [428–430], at 

concentrations similar to those used in the experimental studies mentioned above, and as 

plasma decorin is significantly increased in cancer patients [291], it is plausible that this 

endogenous tumor repressor might have a physiological role in vivo.

Biglycan, decorin's closest proteoglycan, was originally isolated from bovine bone and then, 

following its cloning and sequencing, was found to contain two Ser-Gly attachment sites in 

the N-terminal region, thus its eponym meaning two GAG chains [431]. Both the human and 

mouse genes have an overall similar exonic arrangement [432,433]. It is highly homologous 

to decorin, with > 65% overall homology. Similar to decorin, biglycan binds TGFβ [434] 

and modulates its bioactivity [435]. Ablation of the biglycan gene, Bgn−/0 (this genetic 

symbol designates the presence of Bgn gene on the X chromosome), which harbors a gene 

with a ubiquitous tissue distribution and a pronounced expression in bone [433,436], reveals 

a key function for this SLRP in regulating postnatal skeletal growth [437]. In general, the 

long bones in Bgn−/0 mice grow slower than wild-type littermates and eventually are shorter 

and exhibit reduced bone mass. The latter is secondary to the marked decline in number of 

osteoblasts with concurrent progressive depletion of the bone marrow stromal cells [437]. 

These mutant mice also display delayed osteogenesis after marrow ablation [438], broader 

metadentin, and altered dentin mineralization, causing significant enamel structural defects. 

Thus, biglycan-deficient mice could be a promising animal model to study skeletal diseases 

and osteoporosis [439]. Although Dcn−/− mice also show abnormalities in bone collagen 

fibril size and organization, they show neither overt bone mass defects nor abnormal 

osteoblast growth as in the case of biglycan deficiency. These findings underline non-

overlapping functions that have evolved for these two homologous Class I SLRPs.

Biglycan modulates BMP-4-induced osteoblast differentiation [440], and it also binds 

Chordin and BMP-4 in Xenopus embryos, thereby blocking BMP-4 activity [441]. 

Moreover, biglycan affects the Wnt signaling pathway [442], in analogy to decorin (see 

above). However, a recent study has shown that biglycan acts as a pro-angiogenic stimulus 

in contrast to decorin, suggesting that these two functions are SLRP-specific. This pro-

angiogenic activity of biglycan is mediated by its binding to VEGFA and its potentiation of 

the VEGFR2 signaling pathway [443]. This bioactivity favors fracture healing via a pro-

angiogenic stimulus, a process that is markedly attenuated in the absence of biglycan [443]. 

Biglycan can also affect cell growth by inducing the cyclin-dependent kinase inhibitor 

p27KIP1 in pancreatic carcinoma cells [444], as well as myofibroblast differentiation and 

proliferation by modulating the TGFβ/Smad2 signaling pathway [445].

A significant paradigmatic shift for biglycan biology was the discovery that this SLRP is 

proinflammatory and binds to Toll-like receptors (TLR)-2 and -4 [446]. The key observation 

again came from genetic studies where biglycan-deficient mice show a greater survival rate 
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than wild-type when subjected to lethal LPS-induced sepsis. Mechanistically, biglycan is 

highly produced and secreted by circulating macrophages, thereby acting as a danger 

signaling molecule for the innate immunity receptors TLR-2/4 [446] and by activating the 

inflammasome via TLR-2/4 and the purinergic P2X receptors [447]. Indeed, biglycan-

evoked TLR-2/4 activation exacerbates the outcome of ischemic acute renal injury [448] and 

induces the synthesis and secretion of several chemo-attractants in the kidney, thereby 

enhancing the inflammatory damage [449]. Some of the pro-inflammatory roles of biglycan 

affect the pulmonary parenchyma as well via a receptor cross-talk [323,450]. Recently, it has 

been proposed that biglycan could act as a biomarker of inflammatory renal diseases [451]. 

Thus, an emerging picture is appearing where biglycan, often in contrast to its “first cousin” 

decorin, links the innate to the adaptive immunity, thereby operating in a broad biological 

environment including microbial and non-microbial pathogenesis, and cancer growth and 

inflammation [452].

Another Class I SLRP is asporin, also known as PLAP-1 or periodontal ligament-associated 

protein 1. Asporin was originally isolated from cartilage extracts of human patients with 

early osteoarthritis and was soon recognized to share homology with other SLRP members 

[453]. Its eponym derives from the N-terminal region enriched in aspartic acid and its 

homology to decorin. Asporin, although being similar to decorin and biglycan in its overall 

structure, does not contain Ser-Gly dipeptides capable of GAG substitution; thus it might not 

have GAG chains [454]. The overall tissue distribution of asporin is similar to that of 

decorin [276], with high expression detected in the skeleton and other mineralized 

connective tissues, but with minimal expression detected in all parenchymal organs [454]. 

Asporin is located on human chromosome 9 and is a member of the chromosomal SLRP 

gene cluster that includes osteoadherin, osteoglycin and ECM2. The N-terminal 

polyaspartate domain binds calcium and regulates hydroxyapatite formation [455]. 

Moreover, asporin and decorin compete for binding to collagen via LRR10–12, and asporin's 

role in biomineralization is further corroborated by its expression in osteoblast progenitor 

cells [456], key players in intramembranous bone formation. Asporin antagonizes 

chondrogenesis in articular cartilage by interfering with the TGFβ1/receptor interaction on 

the cell surface and by inhibiting the canonical TGFβ/Smad signaling pathway [457]. 

Specifically, suppression of ASPN gene expression via siRNA leads to increased expression 

of TGFβ1 [457], which in turn stimulates the expression of asporin indirectly via 

upregulation of Smad3 [456]. In agreement with these concepts is the discovery that a 

polymorphism in the polyaspartate region of asporin (D14 allele) is strongly associated with 

osteoarthritis. Moreover, the frequency of the D14 allele increases with disease severity 

[458]. Asporin is expressed at high levels in the more degenerate human intervertebral discs 

[459]. Moreover, asporin suppresses the TGFβ-evoked expression of aggrecan and collagen 

type II and reduces proteoglycan accumulation in an in vitro model of chondrogenesis, again 

both prominently linked to the D14 allele [458]. Thus, asporin and TGFβ1 form a regulatory 

feedback loop to fine tune chondrogenesis. Recently it has been reported that asporin is 

highly expressed in the cancer-associated fibroblasts of scirrhous gastric carcinomas [460]. 

In this case, asporin promotes invasion by neighboring cells in a paracrine fashion by 

activating the CD44-Rac1 pathway [460].
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Finally, ECM2 and ECMX, two poorly-studied SLRP Class I, are two genes that are related 

to decorin, being ~35% homologous to the LRR of decorin. However, both SLRPs have a 

larger size and contain an RGD sequence known to bind integrin receptors and a von 

Willebrand Factor-like domain [461]. ECM2 is predominantly expressed in adipose tissue 

and in female organs such as mammary gland, ovary and uterus [461]. Interestingly, ECM2 

gene is physically linked to asporin on chromosome 9, and its promoter shares cis-acting 

elements in common with other members of SLRP gene family [326]. These SLRPs are 

included in Class I based on genomic and protein homology, although most likely they do 

not contain any GAG chains. Future studies are needed to decipher their biological function

Class II SLRP—This class includes five SLRPs that can be further subdivided into three 

subgroups based on protein homology. Subgroup A includes fibromodulin and lumican, 

subgroup B harbors PRELP and keratocan, and subgroup C includes osteoadherin. All these 

Class II SLRPs have homologous genomic organization (three exons), with the largest exon 

encoding for most of the LRRs. All contain a charged N-terminus with multiple tyrosine 

sulfate residues that contribute to the anionic properties of these proteoglycans. 

Characteristically, Class II SLRPs are substituted with keratan sulfate and polylactosamine, 

an unsulfated variant of KS. Notably, corneal KS binds with high affinity to FGF2 and sonic 

hedgehog [462], indicating that KSPGs can participate in the modulation of growth factor 

activity and morphogen gradient formation. Many of these SLRPs are highly expressed in 

connective tissues and cartilage where they bind many ECM constituents, especially fibrillar 

collagens, thereby stabilizing the fibrillar network that constitutes the framework of the 

tissue [242]. KSPGs are also directly involved in regulating corneal transparency, especially 

the interfibrillar spacing of orthogonal fibers, and their sulfation pattern is highly conserved 

throughout the cornea [463].

Fibromodulin was originally isolated from cartilage [464] and soon realized to be 

homologous to decorin. Its eponym derives from the fact that fibromodulin binds to 

collagens I and II and causes delayed fibril formation [465,466]. The N-terminus of 

fibromodulin contains a stretch of tyrosine sulfate residues which can be cleaved by 

MMP-13 [467]. As fibromodulin N-terminal domain appears to be exposed following its 

binding to fibrillar collagens, it is possible that this charged domain would have a dual 

function: it could be involved in collagen cross-linking and it could bind and sequester 

growth factors such as members of the FGF and VEGF family, as well as several 

inflammatory cytokines released during tissue remodeling. Indeed, this domain, as that of 

osteoadherin (see below), physically interacts with basic clusters of several heparin-binding 

growth factors and cytokines [468]. Fibromodulin is a major KSPG [469] and some 

molecules contain KS chains exclusively capped with α(2–3)-linked sialic acid [470]. It 

regulates collagen fibrillogenesis during corneal development [471]. Fibromodulin binds to 

same region of collagen I where lumican binds [472], but in a region different from the 

decorin binding site [473]. Specifically, fibromodulin binds collagen I via residues located in 

LRR11, between Glu-353 and Lys-355, located in the convex surface of the protein core 

[474]. In contrast, both lumican and fibromodulin bind to collagen I via a more proximal 

region located between LRR5 and LRR7 [475]. In spite of this overlapping binding, it has 

been reported that differential expression of lumican and fibromodulin regulates collagen 
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fibrillogenesis during mammalian tendon development [476]. Thus, there is redundancy and 

specificity for SLRP binding and modulation of collagen fibrillogenesis in vivo. As other 

SLRPs, fibromodulin binds TGFβ [434], and, in common to decorin [477], binds the 

collagenous part of complement C1q [478]. However, and in contrast to decorin, 

fibromodulin activates the classical complement pathway [478].

Fibrodulin is widely distributed in connective tissues, and, thus, the phenotype of Fmod−/− 

mice is quite complex [479,480]. These mutant mice exhibit abnormal collagen fibril 

organization, but they also show abnormal deposition of lumican in tendon [481], and 

abnormal dentin mineralization [482] and alveolar bone formation [483,484]. The phenotype 

of Fmod−/− mice becomes ever more complex when these mutant mice are crossed with 

mice deficient in either biglycan or lumican. Double mutant Lum−/−;Fmod−/− mice develop 

a syndrome of joint laxity and tendinopathy [485] reminiscent of patients with Ehlers-

Danlos syndrome. Moreover, Lum−/−;Fmod−/− mice exhibit ocular features of high myopia, 

including thin sclera and increased axial length [486]. When Fmod−/− mice are mated to 

homozygosity with Bgn−/0 mice, the double mutants develop ectopic ossification and 

osteoarthritis [487], and also an accelerated temporomandibular osteoarthritis [488]. In the 

latter case, osteoarthritis arises from accelerated chondrogenesis secondary to decreased 

levels of sequestered TGFβ1 in the double mutant Bgn−/0;Fmod−/− mice, thereby causing an 

over-activation of the TGFβ signaling pathway [488]. This mechanism is similar to that 

recently reported for excessive TGFβ signaling due to low decorin expression/levels in 

osteogenesis imperfecta [489] and recessive dystrophic epidermolysis bullosa [490]. In both 

diseases, the clinical severity of the relative phenotypes is markedly enhanced by TGFβ 

freed from sequestration by low SLRP levels. Thus, there is a genetic interaction among 

various SLRPs and their temporal and spatial expression needs to be maintained and finely 

balanced to prevent significant pathology.

In solid tumors, fibromodulin appears to modulate the tumor stroma by increasing 

extracellular fluid volume and lowering interstitial fluid pressure [491]. This bioactivity has 

been proposed to influence cancer fluid balance, which in turn affects the response to 

chemotherapy [491]. Finally, recent reports have shown that fibromodulin promotes in vitro 

and in vivo angiogenesis [492], and this is particularly prominent in melanocyte-secreted 

fibromodulin [493]. Mechanistically, fibromodulin appears to be secreted at high levels in 

low pigmented melanocytes and it stimulates the secretion of monocyte chemotactic 

protein-1, which is a powerful angiogenic factor [494].

The second member of Class II SLRP is lumican which was originally characterized from 

avian cornea as a KSPG and derives its eponym in recognition of lumican's role in regulating 

corneal transparency [495,496]. However, it is now clear that lumican is ubiquitously 

expressed and is localized primarily to mesenchymal tissues and tumor stroma [480,497]. 

This KSPG plays a critical role in corneal clarity by maintaining the interfibrillar space of 

the corneal collagen architecture vital for transparency. Indeed, Lum−/− mice develop 

bilateral corneal opacities together with skin laxity and fragility reminiscent of Ehlers 

Danlos syndrome [498]. The posterior corneal stroma is most vulnerable to lumican 

deficiency as this region shows early developmental defects in fibril structure and 

architecture in the Lum−/− mice [499]. The causative role of lumican in corneal opacity is 
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demonstrated by genetic studies where a mouse overexpressing lumican in the cornea, 

driven by the keratocan promoter, can fully rescue the Lum−/− eye phenotype [500]. Notably, 

these ocular abnormalities are more exaggerated and include scleral alterations when both 

lumican and fibromodulin are ablated [486]. In zebrafish, knock-down of lumican leads to 

scleral thinning and increased size of scleral coats [501]. Moreover, mice deficient in 

lumican and fibromodulin have joint laxity and severe tendinopathy [485]. Indeed, 

differential expression of lumican and fibromodulin (see above) regulates the proper 

alignment and overall structure of collagen fibrils during murine tendon development 

[476,502].

Lumican has been involved in cancer and inflammation [503], two areas of research where 

other SLRPs, predominantly Class I decorin and biglycan, have been extensively 

investigated. One of the first observations was that lumican could inhibit colony formation in 

soft agar induced by v-K-ras and v-src [504]. Indeed, lumican is markedly increased in the 

stroma of breast carcinomas [505,506], and is highly expressed in melanomas [507,508]. 

Lumican also inhibits melanoma progression [509,510], and blocks melanoma cell adhesion 

via interaction with β1-containing integrins [511] and by modulating focal adhesion 

complexes [512]. These effects are all mediated by the protein core, as a peptide fragment 

named lumcorin from LRR9 can by itself inhibit melanoma cell migration [513]. Lumican 

has also been involved in other forms of malignancy including prostate cancer [514], 

pancreatic cancer [515], and osteosarcomas [516]. In the latter case, lumican regulates 

osteosarcoma cell adhesion by modulating TGFβ2 activity [517]. Lumican can be the target 

of MMPs and can also inhibit MMP activity, as recently shown for MMP-14 [518]. Using 

expression cloning, it was found that lumican specifically interacts with membrane-type 

MMP-1, which can cleave lumican, thereby preventing induction of p21 [519], with a 

mechanism similar to the p21 induction described for decorin [387]. Thus, it seems that in 

certain neoplastic conditions the biological effects of Class I and II SLRPs can converge on 

an antioncostatic function, as decorin was also found to be susceptible to membrane-type 

MMP-1 cleavage in the same cell system [519].

Lumican's involvement in inflammation is exemplified by the findings that lumican regulates 

corneal inflammation by binding to the Fas ligand and thus interfering with Fas–Fas ligand 

interaction [520]. This mechanism is again shared by Class I SLRPs where several 

components bind various forms of TGFβ. Notably, lumican deposited on the surface of 

neutrophils during their transmigration across endothelia promotes neutrophil migration via 

β2 integrin [521] and keratinocyte-derived CXCL1 chemokine [522]. These findings are 

consistent with a role for lumican in evoking neutrophil recruitment and invasion following 

corneal injury and wound healing [523]. Lumican can also interact with the innate immune 

receptor Toll-like receptor 4 [524], as it was previously shown for the Class I SLRP biglycan 

[446]. Soluble lumican evokes bacterial phagocytosis thus providing a molecular protection 

against Gram-negative bacteria [525]. This biological function of lumican has been 

corroborated by genetic studies whereby Lum−/− mice show an enhanced pulmonary 

infection by Pseudomonas aeruginosa [525] and a low innate immunity and inflammatory 

response in a murine model of colitis [526]. Recently, it has been shown that lumican binds 

via its C-terminal 50 amino acid region to TGFβ receptor 1, also known as ALK5 [527]. 
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Thus, in common to other SLRP members, lumican can affect both the innate immune 

system and the TGFβ signaling pathway.

PRELP (proline/arginine-rich end leucine-rich repeat protein), also known as prolargin, 

derives its eponym from its unique N-terminal domain enriched in basic amino acid residues 

[528]. The N-terminus of PRELP binds heparin, heparan sulfate and also tyrosine sulfate-

rich domains of Class III SLRPs, fibromodulin and osteoadherin [242]. PRELP was 

originally isolated from cartilage extracts and found to be expressed predominantly in the 

territorial matrix [464]. However, it is now recognized that PRELP has a much wider 

distribution, with expression in kidneys, aorta, liver and skeletal muscle. It is expressed in 

pericellular regions near basement membranes [242]. Indeed, PRELP binds to the N-

terminus of perlecan via its HS chains and thus it might constitute a bridge between 

basement membranes and the surrounding collagenous matrices linked by the LRRs of 

PRELP [529]. Notably, the N-terminal positively-charged domain of PRELP inhibits NF-κB 

signaling and thus acts as a potent anti-resorptive molecule attenuating osteoclast formation 

[530]. A peptide derived from the N-terminus of PRELP has been recently shown to 

concurrently inhibit the progression of osteoporosis and the formation of osteolytic bone 

metastases from aggressive mammary carcinoma xenografts [531]. We should point out, 

however, that in pancreatic ductal carcinomas, increased levels of PRELP correlate with 

either a good [532] or bad prognosis [533], suggesting that there might be, as in other cases, 

an organ and tissue-specificity of activity. Another interesting biological function of PRELP 

is its ability to inhibit the formation of complement membrane attack complex [534]. Thus, 

PRELP could suppress complement attack near basement membranes of vascularized tissues 

and diminish pathological complement activation in chronic inflammatory disease such as 

rheumatoid arthritis [534]. Recently, this bioactivity of PRELP has been exploited in murine 

models of macular degeneration, where AAV-mediated delivery of human PRELP inhibits 

complement activation, choroid angiogenesis and deposition of the membrane attack 

complex [535].

Another Class II SLRP member is keratocan, a KSPG involved in maintaining corneal 

transparency [536,537]. It contains three chains of KS, a highly-sulfated linear polymer of 

N-acetyl-lactosamine covalently linked to asparagine residues via a mannose-containing 

oligosaccharide. Mice deficient in keratocan, Kera−/−, have normal corneal transparency, but 

they exhibit a thinner corneal stroma and a narrow corneal/iris angle vis-à-vis wild type 

littermates [538]. Moreover, Kera−/− corneas have larger collagen fibrils and abnormal 

packing of the stromal collagen, indicating a role for keratocan in maintaining proper 

corneal structure [538]. Consistent with a role for keratocan in corneal physiology, KERA 
mutations in a Finnish population have been causatively linked to a severe form of cornea 

plana, the autosomal recessive cornea plana (CNA2) [539]. The key observation, which now 

extends to other non-Finnish populations [540], is that these affected patients have 

recessively inherited N247s mutation that replaces a single asparagine residue in the LRRR 

consensus sequence. This leads to loss-of-function of keratocan. Noticeably, another 

mutation Q174X leads to a truncated form of keratocan and this is also linked to CNA2 

[539]. Keratocan is expressed in organs other than the ocular system, especially prominent 

being skin, tendon, cartilage and striated muscle [536,537,541]. It is also expressed in 

osteoblasts and it might be involved in osteogenesis since Kera−/− show a decreased rate of 
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bone formation and mineral apposition [542]. Keratocan fragments, together with fragments 

of other SLRPs (decorin, biglycan and lumican) are increased in degenerate human menisci, 

knees and articular cartilages [543]. As in the case of lumican, keratocan contains short, 

non-sulfated polylactosamine chains in tissues other than cornea [536], suggesting that they 

might serve other functions in non-ocular systems. In addition to its structural role, this 

KSPG is involved in regulating corneal inflammation by actively binding the major 

neutrophil chemokine CXCL1/KC and forming a chemokine gradient that evokes neutrophil 

recruitment [522]. Moreover, keratocan and lumican play a role in resolution of the 

inflammatory response, as neutrophils are required for cleavage of these KSPGs and release 

of cleavage products and chemokines are detected in the anterior chamber, resulting in loss 

of the chemokine gradient and cessation of neutrophil infiltration [544].

Osteoadherin, also known as osteomodulin, was originally isolated from guanidinium 

extracts of bovine bone as a cell-binding KSPG, hence its eponym [545]. It is highly 

expressed in mineralized tissues reaching concentrations of up to 400 µg/g wet weight, 

where it localizes to the primary spongiosa of fetal growth plate [545]. Osteoadherin 

contains six closely-spaced tyrosine sulfate residues in its N-terminal extension and two in 

its C-terminal region [546]. The N-terminal domain also contains a large number of acidic 

amino acid residues that, together with the tyrosine sulfate ones, would generate a strong 

polyanionic scaffold [547]. This region could simulate “heparin” in several interactions with 

growth factors and cell surfaces [242]. Indeed the tyrosine sulfate-rich domains of both 

fibromodulin and osteoadherin bind basic cluster motifs shared by a wide variety of heparin-

binding proteins and growth factors [468]. The ability of osteoadherin to provide a cell-

binding substrate is shown by the fact that this KSPG is as efficient as fibronectin in 

promoting osteoblast attachment in vitro [545]. The binding is mediated by the αvβ3 

integrin, as shown by osteoadherin-linked affinity chromatography [545]. During 

endochondral bone formation, the glycosylation pattern of osteoadherin is quite unique. It is 

primarily a KSPG in the mineralized zone of developing bones, but it is unglycanated in the 

non-mineralized zones [548], further reinforcing a role for this KSPG in endochondral bone 

mineralization [548]. Osteoadherin, together with biglycan, decorin and fibromodulin, is 

dynamically expressed during odontogenesis [358,549]. Osteoadherin is primarily localized 

in the predentin, generating a gradient toward the mineralization front suggesting a direct 

role in regulating tooth development [549].

Class III SLRP—This class encompasses three structurally and genomically related 

members, epiphycan, opticin and osteoglycin. This class contains only seven LRRs in 

contrast to the more usual 10–12 LRRs of the other classes. In common with Class II 

members, Class III members harbor N-terminal consensus sequences for tyrosine sulfation, 

which may provide am signal for keratan sulfate addition to the protein core during 

assembly and post-translational modification [536].

Epiphycan was originally isolated as a glycoprotein from the epiphyseal cartilage, and thus 

its eponym [550]. It was soon realized that epiphycan is the mammalian ortholog of the 

avian dermatan sulfate proteoglycan PG-Lb, isolated from the developing chick cartilage, 

with Lb standing for its low buoyant density during its purification using density gradient 

ultracentrifugation [551]. Epiphycan has a precise spatiotemporal distribution during 
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cartilage development and is localized to the entire growth plate, suggesting that epiphycan 

is a player in chondrogenesis [552]. Although the Epyc−/− mice have a mild bone phenotype, 

the epiphycan/biglycan double-knockout mice have shorter long bones and developed 

osteoarthritis with age, suggesting a potential synergism between these two SLRPs [553]. 

Notably, epiphycan has recently been shown to be part of collagen IX interactome, further 

suggesting that it might be involved in growth plate organization [554].

Opticin was concurrently isolated and characterized by several groups and has also been 

named oculoglycan [555–557]. The eponym obviously derives from its original ocular 

source of cloning/purification, although its expression is not limited to the eye. Several 

opticin ESTs are present in many data banks from nonocular tissues including brain, kidney, 

urinary bladder and uterus. Indeed, opticin is also expressed in the human articular cartilage 

and it's degraded in osteoarthritis by MMP-13 [558]. In contrast, in the mouse opticin 

appears to be localized to the eye, especially in the ciliary body [325]. More recently, opticin 

has been identified as one of the tyrosine sulfated constituents of the retinal pigment 

epithelium [559]. In common with Class I member decorin [369,371], opticin inhibits 

angiogenesis [560] by binding to collagen and competitively disrupting the interaction of 

collagen with α1β1 and α2β1 integrins, two key receptors regulating experimental and 

developmental angiogenesis [194,561–564].

Osteoglycin, also known as mimecan, was originally isolated as a truncated protein from 

bone and later identified as a keratan sulfate SLRP in the cornea [565,566]. Numerous 

mRNA are generated from a single Ogn gene, and these mRNA are all detectable in the 

cornea, although a single protein core is generated [326,567,568]. Functionally, Ogn−/− mice 

have increased collagen fibril diameter in both cornea and dermis [569], analogous to other 

SLRP phenotypes described above. These studies have been corroborated by the observation 

that both osteoglycin and epiphycan appear to be proteolytically processed in vivo. 

Specifically, osteoglycin is processed by BMP-1/Tolloid-like metalloproteinases and this 

processing enhances osteoglycin's ability to regulate collagen fibrillogenesis [570].

One of the emerging biological roles of osteoglycin is its ability to modulate myocardial 

integrity and injury, and to affect cardiac remodeling in concert with several ECM 

glycoproteins of the myocardium [571]. An integrated genomic approach has found that 

elevated osteoglycin is a positive regulator of rat left ventricular cardiac mass, and OGN 
transcript abundance has the highest correlation with left ventricular mass among 22,000 

subjects tested [572]. In support of these observations is the finding that abnormal collagen 

assembly in Ogn−/− mice leads to increased infarct rupture and wall thinning after 

myocardial infarction, and this phenotype can be improved by adenoviral-mediated Ogn 
gene delivery [573]. Of interest, and in analogy to decorin and biglycan which are also 

increased in the circulation following inflammation and cancer, circulating osteoglycin 

levels are markedly increased in patients with ischemic heart failure and correlate with 

markers of cardiac remodeling [573]. Recently, it has been shown that osteoglycin can act as 

anabolic bone factor secreted by muscle cells [574], and that increased levels of circulating 

osteoglycin correlate with vascular remodeling in apolipoprotein E-deficient mice [575]. 

Thus, osteoadherin or fragment of it could act as predictors of adverse cardiovascular events 

after coronary angiography [576]. Thus, as in the case of decorin and biglycan, several other 
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SLRPs are found in the circulation, and, hopefully in the near future, we will dissect their 

function as key components of the human plasma.

Class IV SLRP—This non-canonical class of SLRPs includes chondroadherin [577], 

nyctalopin [578,579] and tsukushi [580].

Chondroadherin is primarily located in cartilage and provides a link between chondrocytes 

and the surrounding ECM via specific interactions with the α2β1 integrin [581] and HS 

chains [582]. As perlecan also binds to the same integrin [168] and it contains HS chains at 

its N-terminus, it is possible that chondroadherin and perlecan could compete for the same 

binding site, especially when perlecan has been shown to be arranged in a peri-chondrocytic 

basement membrane-like zone [583]. Chondroadherin also binds to collagens II and VI 

[242] and Chad−/− mice show both cartilage and bone abnormalities [584]. A recent study 

using atomic force microscopy has shown that the Chad−/− cartilage show abnormal collagen 

network assembly and mechanical properties especially in the superficial cartilage zone 

[585].

Nyctalopin is a quite interesting and unique SLRP for two reasons: (a) It is the only member 

of this family that is GPI-anchored to plasma membrane, and (b) It is the only SLRP gene 

member, with the exception of biglycan, to be located on the X chromosome. Several 

mutations in the NYX gene have been causatively linked to X-linked congenital stationary 

blindness, a group of retinal diseases characterized by reduced nocturnal vision, often 

associated with myopia and reduced visual acuity [578,579]. Notably, mutations in the 

TRPM1 gene (transient receptor potential cation channel subfamily member 1) are 

associated with congenital stationary blindness [586]. It is interesting that in the mouse eye, 

nyctalopin is a transmembrane SLRP rather than anchored via GPI [587]. Thus, it seems that 

the mode of anchor to the plasma membrane is not important, rather the orientation of this 

SLRP and its exposed LRR interacting with other receptors and surface proteins. Indeed, 

nyctalopin interacts directly with both TRPM1 [588,589] and the glutamate receptor 

mGluR6 [589]. Thus, it is likely that nyctalopin is a key component of a supramolecular 

complex, where this SLRP acts as scaffold to target and maintain the correct signaling 

ensemble at the visual synapse.

The final Class IV SLRP member is tsukushi, an eponym derived from its expression pattern 

in avian embryos reminiscent of the Japanese horsetail plant tsukushi (Equisetum arvense) 

[580]. Tsukushi has important regulatory functions insofar as it is involved in modulating 

BMP and Wnt signaling pathways [580,590–593]. For example, overexpression of tsukushi 

in embryonic retinal cells, both in vivo and in vitro, effectively antagonizes Wnt2b and 

represses Wnt-dependent specification of peripheral eye fates [593]. Moreover, tsukushi 

binds TGFβ1 [594] and controls macrophage function by inhibiting TGFβ1 [595]. Notably, 

targeted inactivation of the Tsk gene in mice causes malformation of the corpus callosum, 

similar to the SPOCK1 mutants [596] (see below) and agenesis of the anterior commissure 

[597]. This forebrain commissure formation is co-regulated by draxin, dorsal inhibitory axon 

guidance protein [598]. Finally, tsukushi has been shown to control the hair cycles by 

regulating the TGFβ1/Smad pathway [594]. Tsukushi shares several functional properties 

with other SLRPs such as decorin and biglycan, which have been shown to bind TGFβ1 and 
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modulate BMP and Wnt pathways [278,367,378,442,599–602], as well as controlling the 

hair follicle cycle [603].

Class V SLRP—This is the least studied family of non-canonical SLRPs with only two 

members, podocan [604,605] and podocan-like [606]. The eponym derives from its high 

expression in podocytes isolated from sclerotic glomeruli of experimental HIV-associated 

nephropathy [604]. In normal kidneys, podocan shows a distribution along the basement 

membrane of the glomeruli and proximal tubules [604], and more recent studies have shown 

that podocan is a constituent of human aortic tissue [607]. In agreement with its tissue 

distribution, podocan has been identified as a negative regulator of migration and 

proliferation of smooth muscle cells [608]. On this basis, podocan can affect atherosclerosis 

development like other SLRPs, such as biglycan. Of note, Podn−/− smooth muscle cells 

exhibit a constitutively-activated Wnt pathway, whereas wild-type smooth muscle cells 

overexpressing podocan have a significantly depressed Wnt signaling pathway [608], 

biological properties also shared by other SLRPs (see above). As in the case of other-non 

canonical SLRPs, podocan shares functional properties with decorin and biglycan, 

especially in its ability to bind collagen I and to induce p21WAF1 and growth suppression 

[605].

Testican/SPOCK family

The next subclass of extracellular proteoglycans includes the testican/SPOCK family of 

genes. Testican was originally isolated from seminal fluid over two decades ago as a hybrid 

CS/HSPG [609] and its sequence showed homology to SPARC, secreted protein acidic and 

rich in cysteine, also known as BMP-40 [610]. The testican family of HSPGs has now been 

shown to comprise three members and has been renamed SPOCK, referring to SPARC/

Osteonectin CWCV and Kazal-like domain proteoglycans [611–614]. SPOCKs have a 

modular structure, similar to perlecan and agrin, characterized by five domains (Fig. 6). 

Domain I, a SPOCK-specific N-terminal domain, does not have any significant homology 

except to other members of the testican/SPOCK proteoglycan gene family. Domain II is a 

cysteine-rich module homologous to follistatin, also shared by agrin (cfr. Fig. 1). Domain III 

shares homology with the extracellular calcium-binding domain of SPARC, characterized by 

two Ca2+-binding EF-hand motifs [615]. Domain IV harbors a thyroglobulin-like domain, 

relatively short sequence stabilized by three disulfide bonds and harboring a CWCV 

tetrapeptide sequence [612]. The C-terminal Domain V, in analogy to Domain I, is unique to 

the testican/SPOCK family and harbors two potential GAG attachment sites [616]. Notably, 

SPOCK3 contains two consecutive SGD triplets, known attachment sites for HS also shared 

by perlecan and agrin. Although isolated from testis, it has become apparent that SPOCKs 

are almost exclusively expressed in the central nervous system and they are primarily 

HSPGs. For example, SPOCK1 is associated with the postsynaptic area of the hippocampus 

pyramidal cells [617], while SPOCK2 has been located to various neuronal cells of several 

brain regions including the corpus callosum, cerebral peduncles and fimbria fornix [612]. 

SPOCK3 is an HSPG in brain and appears to be ubiquitously expressed in the cerebral 

nervous system, including the forebrain, the striatum, the thalamus and to a lesser extent the 

cortex [616]. Notably, SPOCK3 and MMP-16 can be co-induced by TGFβ-evoked 
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upregulation of a specific MKL1 isoform, a cofactor for the transcriptional program 

regulated by serum responsive elements [618].

Functional studies utilizing recombinant SPOCK-2 proteoglycan and protein core have 

shown that both forms inhibit neurite extension from cerebellar neurons, thus providing 

strong support to the notion that SPOCKs are involved in neuronal regulation [619]. In 

support of these studies, Spock3−/− mice show many structural anomalies of the corpus 

callosum and cortical axonal tracts linked to abnormal behavior, supporting a role for 

Spock3 gene in neuronal tropism [596]. A novel de novo missense mutation in SPOCK1 on 

chromosome 5q31 (c.239A>T; p.D80V), has been recently shown to cause a syndrome 

including intellectual disability with dyspraxia, dysarthria, partial agenesis of corpus 

callosum, prenatal-onset microcephaly and atrial septal defect [620]. As this mutation, i.e. 

replacement of a polar aspartic acid with a hydrophobic nonpolar valine, affects a highly-

conserved area of the gene, it is plausible that an abnormal SPOCK1 could contribute to this 

human phenotype of developmental delay and microcephaly.

Other proteoglycans

There are a number of part-time proteoglycans that are not included in this comprehensive 

nomenclature, including Prg4/lubricin, endocan, leprecan, collagens IX and XII, bikunin and 

CD44. These molecules have been investigated to a lesser extent and reports are scarce 

regarding their biological functions as proteoglycans. We do apologize to the authors 

working on these interesting molecules and we hope to cover them in future updates of this 

nomenclature.

Final considerations

Of the 43 genes encoding full-time proteoglycans, only 33 appear to be glycanated. Thus, 

roughly 1 in 10,000 genes in the human genome codes for a proteoglycan protein core. This 

is quite amazing and indicates that proteoglycans play fundamental and often vital functions 

necessary for life to operate and evolve. We are confident that new proteoglycans will be 

discovered in the future. One of the major difficulties in finding new proteoglycans is their 

large size and negative charge. Both hinder proper separation in conventional acrylamide or 

2D gels used for routine proteomic studies of various biological fluids and tissues. However, 

as in the case of agrin and collagen XVIII which were studied for several years without 

knowing their proteoglycan nature, it is likely that there will be significant discoveries of 

known proteins as being members of the “restricted” proteoglycan gene family. We hope 

that this nomenclature will help researchers who want to familiarize themselves with our 

exciting and growing field of proteoglycan biology.

Acknowledgments

We would like to thank T.J. Mercer for help with the illustrations, M. Agapiou, S. Ward, and T. Neill for helpful 
comments, all the members of our laboratories, past and present, and our numerous collaborators who have 
contributed to the advancement of the proteoglycan research field. The original research in our laboratories was 
supported in part by National Institutes of Health Grants RO1 CA39481, RO1 CA47282 and RO1 CA164462 (to 
RVI) and by the German Research Council SFB 815, project A5, and SFB 1039, project B2 (to LS).

Iozzo and Schaefer Page 34

Matrix Biol. Author manuscript; available in PMC 2016 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abbreviations used

SLRP small leucine-rich proteoglycan

LRR leucine-rich repeat

RTK receptor tyrosine kinase

GAG glycosaminoglycan

HS heparan sulfate

HSPG heparan sulfate proteoglycan

He heparin

CS chondroitin sulfate

KS keratan sulfate

CSPG chondroitin sulfate proteoglycan

DSPG dermatan sulfate proteoglycan

CSPG4/NG2 chondroitin sulfate proteoglycan 4/nerve glial antigen 2

TGFβ transforming growth factor β

EGF epidermal growth factor

EGFR EGFR receptor

FGF fibroblast growth factor

VEGF vascular endothelial growth factor

PDGF platelet-derived growth factor

BMP bone morphogenetic protein

PKC protein kinase C

ZP-C zona pellucida C region

N-CAM neural cell-adhesion molecule

RTPT receptor-type protein tyrosine phosphatase

GPI glycosylphosphatidylinositol

Hh hedgehog

Wnt wingless-related integration site

IGF-II insulin-like growth factor II

SEA sea urchin sperm protein, enterokinase and agrin

AChR acetylcholine receptor

MMP matrix metalloproteinase

Hyalectan hyaluronan- and lectin-binding proteoglycan
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CRP complement regulatory protein

MMP matrix metalloproteinase

ADAMTS a disintegrin and metalloproteinase with thrombospondin motifs

SLRP small leucine-rich proteoglycan

PRELP proline/arginine-rich end leucine-rich repeat protein

SPOCK secreted protein acidic and rich in cysteine (SPARC)/Osteonectin CWCV 

and Kazal-like domain proteoglycan

TLR Toll-like receptor

LPS lipopolysaccharide endotoxin

CSCD congenital stromal corneal dystrophy

HAT histone acetyl transferase

HDAC histone deacetylase
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Fig. 1. 
A comprehensive classification of proteoglycans. The four families are based on their 

cellular and subcellular location, homology at the protein and genomic levels and the 

presence of unique protein modules which are often shared by members of a given class. 

The key for the various modules is provided in the bottom panel. For additional details about 

structure and function, please consult the text.

Iozzo and Schaefer Page 70

Matrix Biol. Author manuscript; available in PMC 2016 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Schematic representation of the cell surface proteoglycans, which comprise transmembrane 

type I (the N-terminus is outside of the plasma membrane) proteoglycans (four syndecans, 

CSPG4/NG2, betaglycan and phosphacan) and six GPI-anchored proteoglycans, glypicans 

1–6. The type of GAG chain and the major protease sensitive sites are indicated. The key for 

the various modules is provided in the bottom panel.
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Fig. 3. 
Schematic representation of the pericellular proteoglycans, which comprise perlecan agrin, 

and collagens XVIII and XV. The collagenous (COL) and non-collagenous (NC) domains of 

collagen XVIII are numbered on the top and bottom of the lower schematics. For brevity 

only the structure of collagen XVIII is shown. The key for the various modules is provided 

in the bottom panel.
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Fig. 4. 
Schematic representation of the hyaluronan- and lectin-binding proteoglycans (hyalectans), 

which comprise aggrecan, versican, neurocan and brevican. The full-length versican (V0) 

and the three splice variants lacking GAGα (V1), GAGβ (V2) or both GAGα and GAGβ 

(V3) are shown. A new variant, V4, containing a portion of GAGβ is not shown. A GPI-

anchored form of brevican is also not shown in the graphic. The dotted circles specify the 

globular domains (G1–G3) shared by the other hyalectans. These modules are compose of 

~100 amino acids and have a characteristic consensus sequence with four disulfide-bonded 

Cys residues. The key for the various modules is provided in top right panel.
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Fig. 5. 
Phylogenetic tree of the small leucine-rich proteoglycans (SLRPs) and crystal structure of 

porcine decorin and biglycan decorin. (A) Dendogram of the five human SLRP classes, 

numbered and color-coded. Protein sequences were first aligned with CLUSTALW before an 

unrooted dendogram was generated by a neighbor joining method using GenomeNet. (B) 

Cartoon ribbon diagram of the crystal structure of monomeric bovine decorin rendered with 

Pymol v1.7 (PDB accession number 1XKU). Vertical arrows indicate β-strands, while coiled 

ribbons indicate α-helices. The leucine- rich repeats (LRRs) are numbered above the 
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diagram. The sequence (SYIRIADTNIT) involved in binding to collagen type I [306,307] is 

highlighted in yellow. The terminal LRR Cys capping motif, known as the ear repeat, is also 

indicated [299].
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Fig. 6. 
Schematic representation of the modular organization of testican/SPOCK family of brain-

specific proteoglycans. The five domains in roman numerals from N- to C-terminus are 

indicated at the top, and their structural homology is indicated at the bottom. Domains I and 

V appear to be specific for this family, whereas the other domains are shared with other 

proteoglycan gene families (see Fig. 1). The C-terminal Domain V contains two attachment 

sites for heparan sulfate chains labeled by asterisks. SP, signal peptide.
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