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metabolism and cell proliferation via promoting small
GTPase Rheb synthesis and AMPK activation
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Eukaryotic translation initiation factor 3 subunit A (eIF3a),
the largest subunit of the eIF3 complex, has been shown to be
overexpressed in malignant cancer cells, potentially making it a
proto-oncogene. eIF3a overexpression can drive cancer cell
proliferation but contributes to better prognosis. While its
contribution to prognosis was previously shown to be due to its
function in suppressing synthesis of DNA damage repair pro-
teins, it remains unclear how eIF3a regulates cancer cell pro-
liferation. In this study, we show using genetic approaches that
eIF3a controls cell proliferation by regulating glucose meta-
bolism via the phosphorylation and activation of AMP-
activated protein kinase alpha (AMPKα) at Thr172 in its ki-
nase activation loop. We demonstrate that eIF3a regulates
AMPK activation mainly by controlling synthesis of the small
GTPase Rheb, largely independent of the well-known AMPK
upstream liver kinase B1 and Ca2+/calmodulin-dependent
protein kinase kinase 2, and also independent of mammalian
target of rapamycin signaling and glucose levels. Our findings
suggest that glucose metabolism in and proliferation of cancer
cells may be translationally regulated via a novel eIF3a–Rheb–
AMPK signaling axis.

Regulation of mRNA translation (or protein synthesis) plays
an important role in controlling gene expression, and its
dysregulation associates with health disorders such as cancer
(1, 2), and it mainly takes place in the initiation step involving
many eukaryotic translation initiation factor (eIF) complexes
(3). The largest and most complicated of such complexes is
eIF3, consisting of 13 subunits known as eIF3a to eIF3m (4).
eIF3a, a 170-kDa protein containing three putative domains
including proteasome-COP9-initiating factor 3, spectrin, and
the C-terminal 10 amino acid repeat domain (5), has been
shown to overexpress in many types of cancers (6–8). eIF3a
has also been thought to have a noncanonical function outside
the eIF3 complex to regulate translation of a subset of mRNAs
by suppressing the translation of some mRNAs, whereas
activating the others (9, 10). It has also been shown to associate
with cancer prognosis and patient response to chemotherapy
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(11–13) and to regulate cancer cell proliferation (14–17).
Although the eIF3a function in cancer prognosis has been
shown to attribute to its function in suppressing synthesis of
DNA damage repair proteins in cellular response to DNA-
damaging drugs and radiation (11, 18, 19), it remains to be
determined how eIF3a controls cancer cell proliferation.

Glucose metabolism is primarily glycolytic even in the pres-
ence of abundant oxygen in cancer cells. Aerobic glycolysis (the
Warburg effect) has been shown to confer bioenergetic advan-
tages to proliferating cells by generatingmetabolic intermediates
from glucose (20). The AMP-activated protein kinase (AMPK), a
key player in themetabolic system, promotes glucose uptake and
fast conversion of glucose to lactate (21). It is a highly conserved
serine–threonine kinase complex that forms heterotrimers
composed of a catalytic (α) subunit and two regulatory (β and γ)
subunits, with each present in multiple isoforms, including α1,
α2, β1, β2, γ1, γ2, and γ3 (22, 23). As a key regulator of cellular
energy, AMPK plays a critical role in cancer cell growth and
proliferation (24–28). AMPK activation promotes catabolic
pathways to maintain cell growth and proliferation with rapid
effects by directly phosphorylating metabolic enzymes and with
long-term effects by regulating signal transduction and gene
expression (22, 29–32). Consistently, genetic or pharmacologic
inhibition of AMPK activity reduces cell proliferation and in-
duces apoptosis of cancer cells (23, 24, 31, 33).

AMPK senses and is activated by low energy levels because
of energetically demanding processes through AMP binding
on the γ subunit and absolutely requires phosphorylation of
Thr172 in the activation loop of the α subunit (34). Increasing
evidence suggest that AMPK is directly activated by at least
two major upstream kinases, the liver kinase B1 (LKB1) and
Ca2+/calmodulin-dependent protein kinase kinase 2
(CaMKK2) (35–38). LKB1 activates AMPK under low energy
conditions when intracellular AMP levels are elevated, whereas
CAMKK2 activates AMPK in response to cellular calcium flux,
regardless of cellular energy status. In addition, AMPK can be
activated by transforming growth factor-β–activating kinase 1
(TAK1) (39) and the small GTPase Rheb (40). While TAK1
mediates tumor necrosis factor–related apoptosis-inducing
ligand–induced activation of AMPK, independent of LKB1
and CAMKK2, Rheb activates AMPK in Tsc2-null cells in a
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eIF3a–Rheb–AMPK pathway in regulating cell proliferation
mammalian target of rapamycin complex 1 (mTORC1)–in-
dependent manner. AMPK is also negatively regulated by
multiple mechanisms including the serine/threonine protein
kinase AKT (41), a stable complex formed by glycogen syn-
thase kinase 3 through interactions with the AMPKβ subunit
(42), the phosphorylation of AMPKα1 at Ser485, and the
phosphorylation of AMPKα2 at Ser491 (43, 44).

Recently, we showed that eIF3a regulates Raptor phos-
phorylation at Ser792 (45), a direct substrate of AMPK (46),
suggesting that eIF3a may regulate AMPK that in turn regu-
lates glucose metabolism and cell proliferation. In this study,
we tested this possibility and determined the mechanism of
eIF3a action in controlling cell proliferation. We show that
eIF3a upregulates AMPK activity and glucose metabolism
possibly by controlling Rheb protein synthesis, which may
mediate eIF3a regulation of cancer cell proliferation.
Results

eIF3a knockdown reduces AMPK activity

To test the hypothesis that eIF3a regulates AMPK activity,
we took advantage of human non–small cell lung cancer
(NSCLC) cell lines with (H1299, SW1573, and H226) or
without (A549, H460, and H23) endogenous wildtype LKB1
and evaluated AMPK activation following eIF3a knockdown by
assessing the phosphorylation of the AMPKα activation loop
residue Thr172 and phosphorylation of its substrate acetyl-CoA
carboxylase 1 (ACC1) at its Ser79. ACC1 is solely phosphory-
lated on Ser79 by AMPK as a direct substrate of and has been
used as a marker of AMPK activation (47). As shown in
Figure 1, A and B, eIF3a knockdown significantly reduced the
levels of both pT172AMPKα and pS79ACC1 with little effect on
the expression of total AMPKα and ACC1 in all cell lines
Figure 1. eIF3a regulation of AMPK activity. A and B, lysates from H1299, SW
(Scr) or eIF3a (Si(3a)) siRNA were subjected to Western blot analyses of eIF3a
lysates from H1299 and A549 cells transfected with scrambled control (Scr) or e
(eIF3a) or harboring vector control (Vec) (F) were subjected to AMPK activity
(eIF3a) or harboring Vec were subjected to Western blot analyses of eIF3a, A
protein intensity in A and D, respectively. (n = 3, **p < 0.01, ***p < 0.001). A
eukaryotic translation initiation factor 3 subunit A.
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examined regardless of their LKB1 status. We also performed
an in vitro AMPK activity assay using lysate from H1299 and
A549 cells following eIF3a knockdown. As shown in Figure 1C,
AMPK activity was significantly reduced by eIF3a knockdown,
consistent with the findings on AMPK activation and ACC1
phosphorylation analyzed using Western blot.

To ensure that the aforementioned observations were due to
specific effect of eIF3a knockdown, we tested two additional
siRNAs (#2 and #3) with different eIF3a-targeting sequences.
As shown in Fig. S1, A and B, both siRNA#2 and #3 suc-
cessfully knocked down eIF3a expression, which led to
decreased level of pT172AMPKα and AMPK activity, similar to
that by the first eIF3a siRNA.

To ensure scientific rigor and to further validate afore-
mentioned findings, we took advantage of the stable NIH3T3
cells overexpressing eIF3a (11) and performed a reverse
experiment to determine the effect of eIF3a overexpression on
AMPK activity. As shown in Figure 1, D–F, the pT172AMPK
level and AMPK activity were significantly increased in cells
with eIF3a overexpression compared with the control cells
harboring empty vector. Hence, eIF3a likely regulates AMPK
activity regardless of the LKB1 status.
eIF3a regulation of AMPKα1 and AMPKα2 phosphorylation
and activation

Because there are two AMPKα isoforms (α1 and α2) and the
antibody against pT172AMPKα does not differentiate them, we
next determined which isoform is inhibited by eIF3a knock-
down using Western blot analysis. As shown in Figure 2, A and
B, eIF3a knockdown caused a reduction in the level of
AMPKα2 protein but not that of AMPKα1 in both H1299 and
A549 cells. We also determined mRNA levels of AMPKα1 and
1573, H226, A549, H460, and H23 cells transfected with scrambled control
, AMPKα, pT172AMPKα, ACC1, pS79ACC1, and actin loading control. C and F,
IF3a (Si(3a)) siRNA (C) or from NIH3T3 cells with stable eIF3a overexpression
assay. D and E, lysates from NIH3T3 cells with stable eIF3a overexpression
MPKα, pT172AMPKα, and actin loading control. B and E, quantifications of
CC1, acetyl-CoA carboxylase 1; AMPK, AMP-activated protein kinase; eIF3a,



Figure 2. eIF3a regulation of AMPKα1 and AMPKα2 expression. A and B, Western blot analyses of eIF3a, AMPKα1, AMPKα2, and actin loading control in
H1299 and A549 cells transfected with scrambled control (Scr) or eIF3a (Si(3a)) siRNA. C–F, effect of eIF3a knockdown on AMPKα1 or AMPKα2 phos-
phorylation. Lysates from H1299 cells transfected with Scr or eIF3a (Si(3a)) siRNA were subjected to immunoprecipitation using AMPKα1 (C and D) or
AMPKα2 (E and F) antibody or control normal IgG (nIgG) followed by Western blot analyses of pT172AMPKα, AMPKα1, or AMPKα2 in the precipitate and input
control. B, D, and F, quantifications of protein intensity in A, C, and E, respectively. G, Western blot analysis of AMPKα1, AMPKα2, AMPKα, pT172AMPKα, ACC1,
pS79ACC1, and actin loading control in H1299 and A549 cells transfected with Scr, AMPKα1 (Si(α1)), AMPKα2 (Si(α2)) siRNA, or both AMPKα1 and AMPKα2
siRNAs. H, real-time RT–PCR analyses of AMPKα1 and AMPKα2 in H1299 and A549 cells. I, AMPK activity in H1299 and A549 cells transfected with Scr,
AMPKα1 (Si(α1)), or AMPKα2 (Si(α2)) siRNA (n = 3, ***p < 0.001). ACC1, acetyl-CoA carboxylase 1; AMPK, AMP-activated protein kinase; eIF3a, eukaryotic
translation initiation factor 3 subunit A.

eIF3a–Rheb–AMPK pathway in regulating cell proliferation
AMPKα2 using real-time RT–PCR following eIF3a knock-
down in these cells. Consistent with the change in the protein
level, the mRNA level of AMPKα2 but not AMPKα1 was
reduced by eIF3a knockdown (Fig. S2).

Finally, we determined the relative contribution of AMPKα1
and AMPKα2 to the total AMPKα activity that are inhibited by
eIF3a knockdown. For this purpose, AMPKα1 and AMPKα2
were immunoprecipitated using their respective specific anti-
bodies from H1299 cells with eIF3a knockdown and analyzed
for the phosphorylation status of Thr172 using Western blot.
As shown in Figure 2, C–F, eIF3a knockdown reduced the level
of both pT172AMPKα1 and pT172AMPKα2 in the
immunoprecipitate.

The aforementioned finding that total AMPKα2 but not
AMPKα1 was reduced while the phosphorylation and activa-
tion of both AMPKα1 and AMPKα2 were reduced by eIF3a
knockdown suggests that AMPKα2 may contribute to eIF3a
regulation of AMPK activity. To test this possibility, we first
determined if AMPKα2 plays a major role in total AMPKα
phosphorylation and activation since AMPKα1 and AMPKα2
can phosphorylate and activate each other (43, 44). For this
purpose, we determined the level of pT172AMPKα and
pS79ACC1 in H1299 and A549 cells after knocking down
AMPKα1, AMPKα2, or both. As expected, the AMPKα1 or
AMPKα2 protein level was reduced by their respective siRNAs
compared with the cells transfected with scrambled control
siRNA (Fig. 2G). Interestingly, the levels of pT172AMPKα, total
AMPKα, and pS79ACC1 were downregulated by AMPKα1 but
not AMPKα2 knockdown (Fig. 2G). This finding is peculiar
and suggests that the abundance of AMPKα1 and AMPKα2
may differ in these cells.

To determine the relative abundance of AMPKα1 and
AMPKα2, we analyzed their relative mRNA levels in H1299
and A549 cells using real-time RT–PCR. As shown in
Figure 2H, AMPKα2 mRNA represents only 5% of that of
AMPKα1. Furthermore, the total AMPK activity was inhibited
when AMPKα1 but not AMPKα2 was depleted (Fig. 2I). Thus,
the abundance of AMPKα2 is likely much less than that of
AMPKα1 in these cells and possibly plays a minor role in
overall AMPK activity. Together with the aforementioned
findings, we conclude that AMPKα2 unlikely mediates eIF3a
regulation of AMPK activity because of its low abundance
J. Biol. Chem. (2022) 298(7) 102044 3



eIF3a–Rheb–AMPK pathway in regulating cell proliferation
although eIF3a regulates its expression and that AMPKα1 may
be responsible for eIF3a regulation of the overall AMPK
activity.

eIF3a does not affect AMP/ATP ratio

It has been shown that AMPK activity is regulated by AMP/
ATP ratio, and the increase in the AMP/ATP ratio triggers
AMPK activation and phosphorylation of its downstream
targets (48). We, thus, determined the effects of eIF3a
knockdown on the intracellular AMP and ATP levels in
H1299 cells, which may mediate eIF3a regulation of AMPK
activation. As shown in Fig. S3, eIF3a knockdown did not
change the levels of intracellular AMP and ATP or the AMP/
ATP ratio. Thus, AMP/ATP ratio unlikely mediates eIF3a
regulation of AMPK activation.
Figure 3. eIF3a regulation of STRAD, MO25α, CAMKK2, and TAK1. Western
and D), TAK1 and pT184/187TAK1 (E and F) in H1299 and A549 cells transfected w
its knockdown, and actin was used as a loading control. B, D, and F, quantific
CAMKK2, Ca2+/calmodulin-dependent protein kinase kinase 2; eIF3a, eukaryot
STRAD, STE20-related kinase adaptor protein; TAK1, transforming growth fact
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eIF3a regulates AMPK not via CAMKK2 or TAK1

To understand the mechanism of eIF3a regulation of AMPK
activity, we next studied other members of the LKB1 complex,
the pseudokinase STRAD (STE20-related kinase adaptor
protein) and the scaffolding protein MO25α (mouse protein 25
alpha), as well as CAMKK2 and TAK1, known enzymes in
activating AMPK using LKB1-proficient H1299 and LKB1-
deficient A549 cells. As shown in Figure 3, A and B, eIF3a
knockdown did not change the level of these proteins in both
H1299 and A549 cells. Because phosphorylation of the highly
conserved Ser495 within the CaM-binding sequence impairs
Ca2+–CaM binding and activation of CAMKK2 (49) and
phosphorylation of Thr184/187 is an essential step for complete
TAK1 kinase activation (50), we also determined if eIF3a
knockdown affects the phosphorylation of these residues in
blot analyses of STRAD and MO25α (A and B), CAMKK2 and pS495CAMKK2 (C
ith scrambled control (Scr) or eIF3a (Si(3a)) siRNA. eIF3a was tested to ensure
ations of protein intensity in A, C, and E, respectively (n = 3, ***p < 0.001).
ic translation initiation factor 3 subunit A; MO25α, mouse protein 25 alpha;
or-β–activating kinase 1.



eIF3a–Rheb–AMPK pathway in regulating cell proliferation
CAMKK2 and TAK1. As shown in Figure 3, C–F, eIF3a
knockdown did not change the level of pS495CAMKK2 and
pT184/187TAK1, suggesting that CAMKK2 and TAK1 may not
mediate eIF3a regulation of AMPK.

Since AMPK activation is highly dependent on glucose levels
(51), we tested the possibility that CAMKK2 or TAK1 may
mediate eIF3a regulation of AMPK activity under different
glucose conditions. As shown in Fig. S4, increasing or
decreasing glucose level did not influence the effect of eIF3a
knockdown or overexpression on the level of CAMKK2,
pS495CAMKK2, TAK1, and pT184/187TAK1. These findings
together eliminate the possible involvement of CAMKK2 and
TAK1 in eIF3a regulation of AMPK. It is noteworthy, however,
that eIF3a knockdown reduced LKB1 expression and that LKB1
overexpression rescued eIF3a knockdown–induced
pT172AMPK reduction in the LKB1-proficient H1299 cells
(Fig. S5,A–C). Thus, LKB1 likely participates inmediating eIF3a
regulation of AMPK activity only in LKB1-proficient cells.
eIF3a regulates AMPK via Rheb

Although the aforementioned findings suggest that LKB1
may mediate eIF3a regulation of AMPK activation in
Figure 4. Rheb mediates eIF3a regulation of AMPK activation. A–D, Wester
H226, A549, H460, and H23 cells transfected with scrambled control (Scr) or eIF
(eIF3a) or harboring vector control (Vec) (C and D). B and D, quantification of
Western blot analyses of Rheb, AMPKα, pT172AMPKα, and actin loading contro
quantification of eIF3a, Rheb, AMPKα, and pT172AMPKα from E (n = 3, ***p <
pS79ACC1, and actin loading control in H1299 and A549 cells transfected w
expressing ectopic FLAG-Rheb (Rheb(OE)). ACC1, acetyl-CoA carboxylase 1; A
factor 3 subunit A.
LKB1-proficient cells, there should be an alternative pathway
in LKB1-deficient cells. Previously, it has been reported that
Rheb controls cancer cell proliferation by regulating AMPK
(40). Thus, we tested the possibility that eIF3a may work
through Rheb in the LKB1-deficient cells. Interestingly, eIF3a
knockdown reduced Rheb protein level in all six LKB1-
proficient and LKB1-deficient cells (Fig. 4, A and B). eIF3a
knockdown using two other independent siRNAs targeting
eIF3a (#2 and #3) also resulted in reduction in Rheb protein
level (Fig. S6). Furthermore, eIF3a overexpression in NIH3T3
cells increased the level of Rheb protein (Fig. 4, C and D).
Together, these results suggest that eIF3a likely regulates
Rheb expression in both LKB1-proficient and LKB1-deficient
cells.

Next, we determined if Rheb possibly regulates AMPKα
phosphorylation in LKB1-proficient and LKB1-deficient cells
using siRNA to knock down Rheb expression and Western
blot analysis of pT172AMPKα. As shown in Figure 4, E and F,
Rheb knockdown reduced the level of pT172AMPKα in both
LKB1-proficient H1299 and LKB1-deficient A549 cells.
Consistently, overexpressing ectopic Rheb rescued eIF3a
knockdown–induced reduction in pT172AMPKα level in these
cells (Fig. 4G). Hence, we conclude that Rheb is likely
n blot analyses of eIF3a, Rheb, and actin loading control in H1299, SW1573,
3a (Si(3a)) siRNA (A and B) and NIH3T3 cells with stable eIF3a overexpression
eIF3a and Rheb from A and C, respectively (n = 3, ***p < 0.001). E and F,
l in H1299 and A549 cells transfected with Scr or Rheb (Si(Rheb)) siRNA. F,
0.001). G, Western blot analysis of eIF3a, Rheb, AMPKα, pT172AMPKα, ACC1,
ith Scr or eIF3a (Si(3a)) siRNA together with or without the plasmid over-
MPK, AMP-activated protein kinase; eIF3a, eukaryotic translation initiation
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eIF3a–Rheb–AMPK pathway in regulating cell proliferation
responsible for eIF3a regulation of AMPK activity in both
LKB1-deficient and LKB1-proficient cells.

It has been reported that Rheb is a key protein that relays
upstream signals to regulate mTORC1 activity (52), and
AMPK phosphorylates the key mTORC1 component Raptor
to inhibit mTORC1 signaling (46). To examine whether
mTORC1 is involved in Rheb regulation of AMPK activity, we
used the mTORC1 inhibitor everolimus. As shown in Fig. S7,
everolimus is effective in inhibiting phosphorylation of the
mTORC1 target S6K1, whereas it was unable to inhibit Rheb-
induced AMPK activation. Thus, Rheb may affect AMPK
function in an mTORC1-independent manner, consistent with
a previous finding that Rheb activates AMPK independent of
mTORC1 (40).
eIF3a regulates the synthesis of Rheb protein

To determine how eIF3a regulates Rheb expression, we first
determined the mRNA level of Rheb in H1299 and A549 cells
following eIF3a knockdown using real-time RT–PCR. As
shown in Figure 5A, compared with the dramatic reduction in
eIF3a mRNA level, eIF3a knockdown had no effect on the
mRNA level of Rheb. We next performed cycloheximide-chase
and click-pull-down (PD) experiments to determine if eIF3a
regulates the degradation or synthesis of Rheb protein,
respectively. As shown in Figure 5, B and C, eIF3a knockdown
had no effect on Rheb degradation. However, eIF3a knock-
down caused drastic reduction in the level of nascent Rheb
Figure 5. eIF3a regulation of Rheb protein synthesis. A, quantitative RT–PC
fected with eIF3a or scrambled control siRNAs (n = 3, ***p < 0.001). B and C,
A549 cells transfected with eIF3a or scrambled control siRNAs using Western
periments. D and E, click-PD analysis of nascent Rheb protein in H1299 and A
quantification of nascent Rheb in D (n = 3, ***p < 0.001). F and G, NIH3T3 cel
were subjected to click-PD assay followed by Western blot analysis of nascent R
level of nascent Rheb protein from F (n = 3, ***p < 0.001). eIF3a, eukaryotic t
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protein (Fig. 5, D and E) and, consistently, eIF3a over-
expression increased the level of nascent Rheb protein (Fig. 5,
F and G) as determined using click-PD. Thus, eIF3a likely
regulates Rheb expression by regulating its protein synthesis.
eIF3a regulates Rheb and AMPK independent of mTORC1
signaling and glucose level

In a previous study, we showed that eIF3a, in collaboration
with HuR, regulated mTORC1 activity by controlling Raptor
synthesis (45). Thus, mTOR signaling may mediate eIF3a
regulation of Rheb expression although it does not mediate
Rheb regulation of AMPK activation. To test this possibility,
we examined if inhibiting mTORC1 using everolimus could
reverse eIF3a knockdown–induced downregulation of
pT172AMPK and Rheb expression. As shown in Fig. S8A,
everolimus treatment significantly reduced the activation of
the mTORC1 target S6K1. However, inhibiting mTORC1
failed to reverse eIF3a knockdown–induced downregulation of
pT172AMPK and Rheb levels. Thus, mTORC1 signaling is
unlikely involved in eIF3a regulation of Rheb expression and
AMPK activation.

It has also been reported that AMPK activation is highly
dependent on glucose levels (51). It is, thus, of interest to
determine if glucose levels influence eIF3a regulation of Rheb
expression and AMPK activation. For this purpose,
H1299 cells with eIF3a knockdown and NIH3T3 cells with
stable eIF3a overexpression along with their respective control
R analysis of Rheb mRNA levels in H1299 and A549 cells transiently trans-
cycloheximide (CHX)-chase analyses of Rheb protein stability in H1299 and
blot. C, quantification of Rheb densities from B of three independent ex-
549 cells transiently transfected with eIF3a or scrambled control siRNAs. E,
ls with stable eIF3a overexpression (eIF3a) or harboring vector control (Vec)
heb in the PD materials probed with Rheb antibody. G, quantification of the
ranslation initiation factor 3 subunit A; PD, pull down.



eIF3a–Rheb–AMPK pathway in regulating cell proliferation
cells were cultured in media supplemented with high or low
concentration of glucose before Western blot analysis. As
shown in Fig. S8, B–E, increasing or reducing glucose con-
centration had no effect on eIF3a regulation of Rheb expres-
sion or AMPK activation. Hence, eIF3a regulation of Rheb
expression and AMPK activation is likely independent of
glucose concentrations.
eIF3 subunits and eIF3 complex in Rheb expression and AMPK
activation

Because eIF3a is a subunit of eIF3(a:b:i:g) subcomplex, which,
together with eIF3(c:d:e:l:k) and eIF3(f:h:m) subcomplexes, and
eIF3j forms the complete eIF3 complex (53, 54), alteration of
eIF3a level may disrupt this complex integrity, which in turn
affect Rheb expression and AMPK activity. To eliminate this
possibility, we determined the protein levels of eIF3 subunits in
the eIF3(a:b:i:g) subcomplex and eIF3d and eIF3h, representa-
tive subunits in eIF3(c:d:e:l:k) and eIF3(f:h:m) subcomplexes, as
well as eIF3j using immunoblot analysis following eIF3a
knockdown. As shown in Figure 6, A and B, eIF3a knockdown
had no effect on the level of eIF3b, i, g, d, and j. However, the
level of eIF3h was significantly reduced (Fig. 6, A and B). To
Figure 6. eIF3a, other eIF3 subunits, and eIF3 complex in Rheb expression
eIF3g, eIF3d, eIF3h, eIF3j, and actin loading control in H1299 cells transfected w
of eIF3g, eIF3h, AMPKα, pT172AMPKα, Rheb, and actin loading control in H129
(Si(3h)) (E and F). B, D, and, and F, quantifications of protein intensity in A, C, and
kinase; eIF3a, eukaryotic translation initiation factor 3 subunit A.
determine if eIF3h downregulation potentially mediates eIF3a
regulation of Rheb expression and AMPK activity, we knocked
down eIF3h as well as eIF3g as another representative eIF3
subunit. As shown in Figure 6, C–F, eIF3h and eIF3g knock-
down in H1299 cells had no effect on the level of pT172AMPK,
AMPK, and Rheb protein. Hence, eIF3a likely regulates Rheb
expression and AMPK activity independent of other eIF3 sub-
units and the eIF3a complex integrity.
eIF3a regulation of glucose metabolism and cell proliferation

As AMPK positively regulates cell proliferation (25, 27, 31,
33), we postulated that eIF3a may regulate cell proliferation by
regulating AMPK. To test this hypothesis, we first assessed the
effect of eIF3a depletion on the proliferation of H1299 and
A549 cells using methylene blue assay. As shown in Figure 7A,
eIF3a knockdown significantly inhibited the proliferation of
both cell lines compared with cells transfected with scrambled
control siRNA, consistent with previous findings (9).

We next determined if eIF3a regulates glucose metabolism.
As shown in Figure 7, B and C, eIF3a knockdown significantly
decreased 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]
-D-glucose (2-NBDG) uptake and lactate production in
and AMPK activation. A and B, Western blot analyses of eIF3a, eIF3b, eIF3i,
ith scrambled control (Scr) or eIF3a siRNA (Si(3a)). C–F, Western blot analysis
9 cells transfected with Scr or eIF3g siRNA (Si(3g)) (C and D) or eIF3h siRNA
E, respectively (n = 3, ***p < 0.001, #p> 0.05). AMPK, AMP-activated protein
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Figure 7. AMPK mediates eIF3a regulation of cell proliferation and glucose metabolism. A, proliferation of H1299 and A549 cells transfected with
scrambled control (Scr) or eIF3a (Si) siRNA. B and C, glucose uptake (B) and lactate production (C) in H1299 and A549 cells transiently transfected with eIF3a
or Scr siRNAs (n = 3, **p < 0.01, ***p < 0.001). D–F, proliferation (D), glucose uptake (E), and lactate production (F) of H1299 and A549 cells transiently
transfected with Scr or eIF3a (Si) siRNA together with or without the plasmid overexpressing AMPKα1 (n = 3, **p < 0.01, ***p < 0.001). AMPK, AMP-activated
protein kinase; eIF3a, eukaryotic translation initiation factor 3 subunit A.

eIF3a–Rheb–AMPK pathway in regulating cell proliferation
comparison with their respective scrambled control siRNA-
transfected H1299 and A549 cells. Consistently, eIF3a over-
expression increased the proliferation, 2-NBDG uptake, and
lactate production in NIH3T3 cells (Fig. S9, A–C).

We finally investigated if AMPKα1 mediates eIF3a regula-
tion of cell proliferation and glucose metabolism by perform-
ing a rescue experiment with ectopic AMPK overexpression
on eIF3a knockdown in H1299 and A549 cells. As shown in
Figs. 7, D–F and S9, D–G, overexpressing AMPKα1 or Rheb
reversed the inhibition in cell proliferation, 2-NBDG uptake,
and lactate production induced by eIF3a knockdown. Thus,
eIF3a upregulation in cancer cells may turn on aerobic glucose
metabolism and promote proliferation by activating the Rheb–
AMPK pathway.
Discussion

In this study, we show that eIF3a may regulate aerobic
glucose metabolism and cell proliferation by regulating
AMPKα1 activation via controlling Rheb synthesis in both
LKB1-proficient and LKB1-deficient cells. However, LKB1 also
contributes to eIF3a regulation of AMPKα1 in LKB1-proficient
cells.

The finding that eIF3a regulates phosphorylation of AMPKα
at Thr172 and AMPK activity is remarkable. While phosphor-
ylation of either AMPKα1 and AMPKα2 activates AMPK and
the phosphorylation of both AMPKα1 and AMPKα2 at Thr172

is regulated by eIF3a, AMPKα2 is much less abundant than
AMPKα1 in the NSCLC cells tested in this study. Thus,
AMPKα1 is likely a major contributor to AMPK activity
regulated by eIF3a.

It is noteworthy that in addition to its phosphorylation,
AMPKα2, not AMPKα1, was also changed at its mRNA level
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by eIF3a knockdown. Interestingly, knocking down AMPKα2
did not cause changes to the total AMPK activity likely
because of its scarcity. However, in cells or tissues where
AMPKα2 is more abundant, it could play a bigger role in eIF3a
regulation of AMPK activity. To this end, it is noteworthy that
AMPKα1 and AMPKα2 may have some specificity in tissue
distribution, subcellular localization, and substrate selection
(55–58). Future studies are clearly needed to determine
whether eIF3a regulation of AMPK activity is tissue or sub-
cellular location dependent.

While both LKB1 and CaMKK2 are known major upstream
activators of AMPK (37, 59), we show here that LKB1 con-
tributes to eIF3a regulation of AMPK in only LKB1-proficient
NSCLC cells, whereas CaMKK2 does not in either LKB1-
proficient or LKB1-deficient cells. Although LKB1 requires
the binding of MO25α and STRAD to be active and it is the
LKB1–STRAD–MO25α complex that activates AMPK (60),
eIF3a does not appear to regulate the expression of STRAD
and MO25α. This finding is consistent with previous obser-
vations that LKB1 directly phosphorylates Thr172 and activates
AMPKα (35, 61). In other studies, efficient activation of AMPK
by LKB1 requires STRAD and MO25 subunits (60, 62). The
association of LKB1 with STRADα and MO25α has also been
shown to increase LKB1 kinase activity (63, 64). However, it
remains unresolved how eIF3a regulates the expression of
LKB1.

In addition to LKB1, we show here that Rheb is probably a
major mediator in eIF3a regulation of AMPKα, especially in
NSCLC cells that are LKB1 deficient. Although Rheb has been
shown in a previous study to activate AMPK (40), it remains to
be determined how it activates AMPK. Nevertheless, we show
here that eIF3a regulates Rheb protein synthesis. It is note-
worthy that other eIF3 subunits such as eIF3g and eIF3h do
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not regulate Rheb synthesis and AMPK activation. It is also
unlikely that the eIF3a regulation of Rheb synthesis and AMPK
activation is due to potential disruption of the eIF3 complex by
eIF3a knockdown. Thus, eIF3a may have a noncanonical
function in regulating Rheb protein synthesis and AMPK
activation. Indeed, eIF3a has previously been shown to regulate
translation of a subset of mRNAs possibly via the HuR-binding
sites in their 50-UTR or 30-UTR (45, 65). Examination of the
UTR sequence of Rheb mRNA shows that there are 4 and 36
putative HuR-binding sites in its 50-UTR and 30-UTR,
respectively. These HuR-binding sites may contribute to eIF3a
regulation of Rheb synthesis via HuR.

Over the past decade, a large amount of evidence has
emerged in supporting the critical roles of aerobic glucose
metabolism in promoting proliferation of cells in various
cancer types (66–68). Furthermore, AMPK activation pro-
motes glucose uptake by phosphorylating TBC1D1 (TBC
domain family, member 1) and TXNIP (thioredoxin-interact-
ing protein), which control the translocation and cell-surface
levels of glucose transporters GLUT4 and GLUT1, respec-
tively (69, 70). eIF3a regulation of AMPK and glucose uptake
in promoting cancer cell proliferation may work through
TBC1D1 and TXNIP regulation of GLUT4 and GLUT1.
Although this speculation needs to be tested in future studies,
our findings here provide essential evidence on translational
regulation of metabolism by eIF3a in cancer cell proliferation.
Experimental procedures

Materials

Antibodies against AMPK, AMPKα1, AMPKα2,
pT172AMPKα, ACC1, pS79ACC1, LKB1, MO25α, Rheb, eIF3h,
and pS495CAMKK2 were obtained from Cell Signaling Tech-
nology. Antibodies against STRAD, eIF3b, eIF3i, eIF3d, eIF3j,
Protein G PLUS-Agarose, and siRNAs against eIF3a, AMPKα1,
AMPKα2, eIF3g, eIF3h, and Rheb were from Santa Cruz
Biotechnology. CAMKK2 antibody and L-Lactate Assay Kit
(catalog no.: ab65331) were from Abcam. TAK1 and pT184/

187TAK1 antibodies were from ABclonal. Antibody against
eIF3g was purchased from Invitrogen. These antibodies were
validated by their respective manufacturers with information
provided on their websites. The eIF3a siRNA #2 and #3 of
different sequences were purchased from OriGene Technolo-
gies. The scrambled control siRNA and the Streptavidin
MagneSphere Paramagnetic Particle were purchased from
Applied Biosystems Ambion and Promega, respectively. The
plasmid containing complementary DNAs (cDNAs) encoding
human LKB1 (catalog no.: 8590), Rheb (catalog no.: 19996),
and pECE-AMPKα1 (catalog no.: 69504) were from Addgene.
The High-Capacity cDNA Reverse Transcription Kit, SYBR
Green PCR Master Mix, 2-NBDG, and fetal bovine serum
(FBS) were all from Applied Biosystems. The protease inhibi-
tor cocktail and CycLex AMPK Kinase Assay kit (catalog no.:
CY-1182) were from Roche Diagnostics and MBL Interna-
tional Corporation, respectively. Cell culture media were from
Corning. Azidohomoalanine, biotin-PEG-4-alkyne, Tris[(1-
benzyl-1,2,3-triazol-4-yl) methyl] amine, Tris(2-carboxyethyl)
phosphine, CuSO4, and β-actin antibody were all from Sigma–
Aldrich. All other chemicals were from either Fisher Scientific
or Sigma–Aldrich.

Cell lines, transient transfection, and proliferation assay

Human lung cancer cell lines H1299, SW1573, H226, A549,
H460, and H23 were from American Type Culture Collection
and reauthenticated using short tandem repeat on February
17, 2022. NSCLC cell lines H1299, H226, H23, and H460 were
cultured in RPMI1640 containing 10% FBS. NIH3T3 cells with
stable eIF3a overexpression or transfected with vector control
(11) and A549 cells were cultured in Dulbecco’s modified
Eagle’s medium containing 10% FBS. SW1573 cells were
cultured in α-minimum essential medium containing 10% FBS.

For transient transfection, cells were seeded in 6-well plates
and cultured for 24 h before transfection with siRNAs or
plasmids using Lipofectamine RNAiMAX Regent (Invitrogen)
or Lipofectamine 3000 (Invitrogen) transfection reagent ac-
cording to manufacturer’s instructions. Cells were harvested
for analysis 24 or 48 h after transfection.

For proliferation determination, 24 h following transfection
with siRNAs or plasmids, cells were seeded in 96-well plates in
triplicates followed by continuous culture for different times.
Cells were then fixed with methanol and stained with methy-
lene blue followed by determination of absorbance at 650 nm.
The data were analyzed using GraphPad Prism program
(GraphPad Software, Inc).

Quantitative RT–PCR analysis

Total RNAs were purified using the PureLink RNA mini kit
from Thermo Fisher Scientific according to the protocol
provided by the manufacturer. First strand (cDNA) synthesis
and quantitative PCR were performed using the High-Capacity
cDNA Reverse Transcription Kit and SYBR Green PCR Master
Mix on an Applied Biosystems 7500 PCR System. The primers
used were 50-TGATGAGGACAGAGGACCAAGAC-3’ (for-
ward) and 50-TCAGCATTACGCCAGGATGA-3’ (reverse) for
eIF3a (65), 50-CCTCAAGCTTTTCAGGCATC-3’ (forward),
and 50-CAAATAGCTCTCCTCCTGAGACA-3’ (reverse) for
AMPKα1 (71), 50-CAGGCCATAAAGTGGCAGTTA-3’ (for-
ward) and 50-AAAAATCTGTTGGAGTGCTGA-3’ (reverse)
for AMPKα2 (72), 50-GCCAATTTGTGGACTCCTACG-3’
(forward) and 50-CCCACCATATCCAACAATTTGC-3’
(reverse) for Rheb (73), and 50-TGGCACCCAGCACAATGA
A-3’ (forward) and 50-CTAAGTCATAGTCCGCCTAGAA
GCA-3’ (reverse) for β-actin (74); all as previously described.
Data were processed using the 2−△△Ct formula and normal-
ized using the internal control actin.

Western blot analysis

Cells washed twice with ice-cold PBS were lysed in 10 mM
Tris–HCl, pH 7.5, 100 mM NaCl, 1% Nonidet P-40 (NP-40),
10 mM pyrophosphate, 50 mM NaF, 2 mM EDTA, and 1 mM
PMSF. After centrifugation to remove insoluble cell debris at
15,700 g for 15 min at 4 �C, the supernatant was collected for
determination of protein concentrations using the Bradford
J. Biol. Chem. (2022) 298(7) 102044 9
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reagent and separation by SDS-PAGE followed by Western
blot analysis. Signals were developed using enhanced chem-
iluminescence, captured using X-ray film, and quantified using
the ImageJ software (National Institutes of Health).

Immunoprecipitation

For immunoprecipitation, cells were lysed as described
previously, and 0.5 to 1 mg of the lysates were mixed with
20 μg of primary antibodies followed by incubation at 4 �C for
2 to 3 h with gentle agitation before mixing with 40 μl Protein
G PLUS-Agarose slurry. Following incubation overnight at 4
�C with agitation, immunoprecipitates were collected by
centrifugation at 400g for 2 min and washed six times with ice-
cold lysis buffer. The precipitates were dissolved in SDS
sample buffer, boiled for 5 min, and centrifuged at 400g for
2 min to remove insoluble materials before separation by SDS-
PAGE and Western blot analysis as described peviously.

AMPK assay

AMPK activity was measured using the CycLex AMPK Ki-
nase Assay kit according to manufacturer’s instructions.
Briefly, H1299 and A549 cells transfected with scrambled or
eIF3a siRNA as described previously were lysed in 20 mM
Tris–HCl, pH 7.5, 250 mM NaCl, 0.5% NP-40, 10% glycerol,
1 mM EDTA, 1 mM EGTA, 5 mM NaF, 2 mM Na3VO4, 2 mM
β-glycerophosphate, 1 mM DTT, 0.2 mM PMSF, and protease
inhibitor cocktail. The cell lysates were added to a plate pre-
coated with an AMPK substrate peptide derived from mouse
IRS-1 (insulin receptor substrate-1) containing Ser789 and
incubated at 30 �C for 30 min. The phosphorylated peptides
were then reacted with AS-4C4, an anti-pS789IRS-1 mono-
clonal antibody, and horseradish peroxidase–conjugated anti-
mouse immunoglobulin in the kit. The signal was then
developed using tetramethylbenzidine and detected by ab-
sorption at 450 nm.

AMP and ATP assay

H1299 cells transfected with scrambled or eIF3a siRNA as
described previously were harvested and homogenized for
determination of the AMP or ATP levels with colorimetric
assay using AMP and ATP assay kits from Abcam according to
instructions by the manufacturer. AMP and ATP concentra-
tions were extrapolated from standard curves and normalized
to the protein content of each sample.

Cycloheximide-chase and click-PD assays

Cycloheximide-chase assay was performed as we previously
described (75). Briefly, H1299 and A549 cells transfected with
scrambled or eIF3a siRNA as described previously were pre-
treated with 10 μM cycloheximide for various times before
harvest for Western blot analysis of Rheb.

Click-PD assay was performed also as previously described
(45, 65). Briefly, cells in 6-well plates were rinsed with PBS and
starved in methionine-free medium for 1 h followed by
culturing in methionine-free medium supplemented with azi-
dohomoalanine for another 3 h before harvest. The cells were
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then lysed in 50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 0.5%
NP-40, 50 mM NaF, 1 mM Na3VO4, 1 mM PMSF, and 1 mM
DTT followed by mixing with 0.1 mM biotin-PEG-4-alkyne,
0.04 mM Tris[(1-benzyl-1,2,3-triazol-4-yl) methyl] amine,
1 mM Tris(2-carboxyethyl) phosphine, and 1 mM CuSO4 with
equal amount of protein. The mixtures were allowed to react
for 3 h at room temperature with agitation. Nascent proteins
labeled with biotin were pulled down using Streptavidin
MagneSphere Paramagnetic Particles and analyzed by Western
blot.

Glucose uptake assay

Glucose uptake assay was performed using 2-NBDG as a
glucose tracer as previously described (67). Briefly, 2 × 105 cells
per well were seeded in 6-well plates and incubated overnight
before transfection with siRNAs or plasmids. Forty-eight hours
after transfection, cells were deprived of glucose for 6 h and
then supplemented with 50 μM 2-NBDG tracer or glucose
control followed by culturing for 1 h. The cells were then
harvested and washed twice with PBS before determining
mean fluorescence intensity using flow cytometry.

Lactate production assay

Lactate production was measured using the L-Lactate Assay
Kit according to manufacturer’s specifications. Briefly, 2 ×
105 cells per well were seeded in 6-well plates overnight before
transfection with siRNAs or plasmids as described previously.
Cells were cultured for additional 48 h before collection of
media for analyses using the kit. Each test was performed in
duplicate, with output adjusted to background lactate levels in
medium and normalized to total cell count.

Statistical analysis

All statistical analyses were performed using GraphPad
Prism. Each experiment was performed three times indepen-
dently for statistical analyses with data presented as mean ±
standard deviation. One-way ANOVA followed by Dunnett’s
test was used to compare more than two groups, and two-
tailed Student’s t tests were done to compare two groups.
Values of p < 0.05 were considered statistically significant.

Data availability

All data are contained within the article and supporting
information.
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