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The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that

responds to a wide range of chemicals, including chemical carcinogens such as dioxins

and carcinogenic polyaromatic hydrocarbons, and induces a battery of genes associated

with detoxification, proliferation, and immune regulation. Recent reports suggest that

AHR plays an important role in carcinogenesis and maintenance of various types

of skin cancers. Indeed, AHR is a susceptibility gene for squamous cell carcinoma

and a prognostic factor for melanoma and Merkel cell carcinoma. In addition, the

carcinogenic effects of ultraviolet (UV) and chemical carcinogens, both of which are

major environmental carcinogenetic factors of skin, are at least partly mediated by

AHR, which regulates UV-induced inflammation and apoptosis, the DNA repair system,

and metabolic activation of chemical carcinogens. Furthermore, AHR modulates the

efficacy of key therapeutic agents in melanoma. AHR activation induces the expression

of resistance genes against the inhibitors of V600E mutated B-Raf proto-oncogene,

serine/threonine kinase (BRAF) in melanoma and upregulation of programmed cell death

protein 1 (PD-1) in tumor-infiltrating T cells surrounding melanoma. Taken together, these

findings underscore the importance of AHR in the biology of skin cancers. Development

of therapeutic agents that modulate AHR activity is a promising strategy to advance

chemoprevention and chemotherapy for skin cancers.

Keywords: aryl hydrocarbon (Ah) receptor, squamous cell carcinoma, melanoma, ultraviolet, air pollutant, BRAF

inhibitor, PD-1

INTRODUCTION

Recently, the incident rate of skin cancer has been greatly increasing. The number of patients
treated for skin cancers has increased by 44% during the past 5 years (1), and skin cancer has
become themost common cancer type in Caucasians (2). Although both genetic and environmental
factors contribute to the carcinogenesis of skin cancer, this rapid increase suggests the relative
importance of environmental factors. The skin is the outermost interface between the body and
the environment and is ineluctably exposed to environmental insults such as ultraviolet radiation
(UVR) or air pollutants (3). As UVR and air pollutants can induce carcinogenesis in the skin (4), the
skin contains a system that recognizes and detoxifies these carcinogenic insults, the dysregulation
of which leads to the initiation of skin cancer. In addition to the increase in carcinogenesis of skin
cancer, recent therapeutic aspects of skin cancer have greatly changed. In particular, the emergence
of molecular targeted therapies including inhibitors for V600E mutated B-Raf proto-oncogene,
serine/threonine kinase (BRAF) and checkpoint inhibitors, which attenuate suppression of the
anti-tumor immune response, have drastically improved the outcome of advanced melanoma.
These drugs retrogradely elucidated the critical contribution of specific proliferative signals
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and tumor immunity in the maintenance of melanoma. These
recent changes in skin cancers imply the importance of
identifying a key molecule that modulates carcinogenesis and
maintains skin cancer to improve prevention of and therapy for
skin cancers.

The aryl hydrocarbon receptor (AHR) is an evolutionarily
conserved, ligand-activated transcription factor, which is a
member of the basic helix-loop-helix/PER-ARNT-SIM family (5).
Due to its broad capacity to recognize a wide range of chemicals
in the environment, AHR is often described as an environmental
sensor. Once activated by ligand binding, AHR translocates into
the nucleus and dimerizes with ARNT (Ah receptor nuclear
translocator). Then the AHR/ARNT heterodimer enhances the
expression of its target genes that encode drug-metabolizing
cytochrome P450s, including CYP1A1, CYP1A2, and CYP1B1
(6) (Figure 1). These target molecules of AHR facilitate the
metabolic degradation of its ligands. In addition to this role
in detoxification, recent works have also revealed novel roles
for AHR in tumor biology. In various tumors, differential
expression of AHR is indeed observed compared to normal
tissue. This different expression status of AHR plays a critical
role in pro- or anti-tumor activity according to the cell state
(7). Regarding skin cancer, a genome-wide association study of
cutaneous squamous cell carcinoma (SCC) also identifiedAHR as
a novel susceptibility locus (8). Furthermore, among various solid
tumors, the expression level of CYP1A1, CYP1A2, and CYP1B1
is associated with prognosis of melanoma (9). These findings
imply that AHR also plays important roles in the biology of
skin cancers. In support of this hypothesis, AHR has recently
been found to be associated with UVR and air pollutant-induced
carcinogenesis of skin cancer (10, 11). Furthermore, AHR may
play a role in modulating the efficacy of BRAF inhibitors
and checkpoint inhibitors (12, 13) (Figure 2). In the following
sections, we introduce the function of AHR in the context of
carcinogenesis and maintenance of skin cancer and mainly focus
on environmental carcinogens and molecular targeted therapy.

ENVIRONMENTAL FACTOR-INDUCED
SKIN CARCINOGENESIS VIA AHR
ACTIVATION

Ultraviolet Radiation
As much as 90% of non-melanoma skin cancers are associated
with exposure to UVR (14). UVR causes mutagenesis of DNA
and inflammation, which may eventually lead to the formation
of skin cancers. UVA radiation (400-320 nm wavelength)
excites endogenous chromophores and generates reactive oxygen
species, leading to modifications of oxidative bases and
generation of 7,8-dihydro-8-oxoguanine at guanine bases (15).
In contrast, UVB radiation (320-290 nm wavelength) activates
a photochemical reaction and forms photoproducts, including
cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4
pyrimidones, at adjacent pyrimidine nucleotides (15). To keep
genomic integrity, these DNA photoproducts have to be removed
by DNA repair system or apoptosis, depending on the extent
of DNA damage (16). However, once the incorrect repair of

these DNA modifications occurs, it may inhibit polymerases,
lead to the arrest of replication or cause misreadings during
transcription or replication, which results in the formation of
mutations, initiation of carcinogenesis, and skin cancer (15).
The importance of DNA repair enzymes is clearly evident
as seen by the drastically increased risk of developing UV
signature mutations and subsequent skin cancers in Xeroderma
Pigmentosum patients who lack one of the DNA repair enzymes
(17). In addition to mutagenesis, UVR causes the body a
UV stress response, the inflammatory response at the exposed
site. Increasing evidence suggests that sustained inflammation
induced by UVR plays an important role in cancer initiation and
progression (18).

AHR acts as a light sensor in keratinocytes following
activation by UVR. UVR (in particular UVB) generates
formylindolo (3,2-b)carbazole (FICZ), a tryptophan derivative,
in epidermal keratinocytes (19). FICZ functions as a high-affinity
ligand for AHR and induces UVR-mediated AHR activation,
which is associated with UV-induced skin carcinogenesis.
Pollet et al. reported that the chronic irradiation of UVB
causes only a half numbers of cutaneous SCCs on AHR−/−

mice compared to AHR+/+ littermates, which implies a
critical contribution of AHR in carcinogenesis of SCC. As a
molecular mechanism, they revealed AHR activation attenuates
the clearance of UVB-induced CPDs by repressing global
genomic repair in a p27-dependent manner (10). In addition
to the role of AHR in the attenuation of DNA repair
systems, AHR works as a negative regulator of apoptosis
in UVB damaged keratinocytes. Frauenstein et al. reported
that chemical inhibition or knockdown of AHR sensitize
keratinocytes to UVB-induced apoptosis by decreasing the
expression of E2F1 and its target gene checkpoint kinase 1
(CHK1) (20). AHR also promotes the UV stress response
(19). Although the concise molecular mechanism of the UV
stress response remains largely unknown, the involvement of
different tyrosine kinases including the epidermal growth factor
receptor (EGFR) and pro-inflammatory molecules has been
suggested (21). For instance, FICZ induces the internalization
and subsequent activation of EGFR in an AHR-dependent
manner, which is also induced by UVB radiation (19). Moreover,
AHR activation in keratinocyte induces the expression of various
pro-inflammatory molecules. Irradiation of UVR followed
by topical application with FICZ on Ahr+/+ mice induces
cutaneous expression of a neutrophil directing chemokine
(C-X-C motif) ligand 5 (Cxcl5) compared with UV alone,
which cannot be observed in Ahr−/− mice (22). In addition,
the exposure of FICZ to keratinocyte cell-line induces the
activation of AHR and ROS production, which leads to
the production of pro-inflammatory cytokine, IL-6 (23).
Furthermore, AHR activation induced by UVB irradiation can
activate the expression of cyclooxygenase-2, which is pro-
inflammatory and associated with the development of skin
cancer (19, 24).

These observations imply that AHR activation promotes
UVR-induced skin carcinogenesis via attenuation of the DNA
repair system and apoptosis and via enhancement of the
UV response.
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FIGURE 1 | AHR works as an environmental sensor. AHR binds to polycyclic aromatic hydrocarbons and their derivatives derived from environment. Once these

ligands binded, AHR isolates from the complex in cytoplasm, translocates into nucleus and activates translation of the target genes, including CYP1A1 and CYP1B1.

DMBA, 7,12-Dimethyl benz[a]anthracen; B[a]P, Benzo[a]pyrene; TCDD, 2,3,7,8-Tetrachloro dibenzo-p-dioxin; FICZ, 6-Formylindolo [3,2-b]carbazole.
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FIGURE 2 | Summary of the effect of AHR activation on skin cancer.

Carcinogenic Chemicals in Air Pollutants
Carcinogenic chemicals are another well-known type of
environmental carcinogen that leads to skin cancer. Airborne
particulate matter (PM) and ambient air pollution, which
contain various carcinogenic chemicals, are considered group
1 human carcinogens by the International Agency for Research
on Cancer (25, 26). As the skin is located at the outermost
layer of the body, it is continuously exposed to air pollutants,
which may increase the risk of skin cancer. Carcinogenic
chemicals, including polycyclic aromatic hydrocarbons (PAHs)
and dioxins, contained in PM are responsible for PM-induced
carcinogenesis (27). Due to their lipophilicity, these chemicals
easily penetrate through the skin (28, 29) and are retained in

the skin for a long time (30). PAHs and dioxins exert their
biological effects via binding to AHR. AHR activation by
these chemicals has gained a lot of attention as a mechanism
that contributes to skin carcinogenesis. In fact, PAHs and
dioxins cause SCC in in vivo animal models. For instance,
chronic subcutaneous injection of TCDD to hamster results in
formation cutaneous SCC (31). In addition, application of 7,12-
Dimethylbenz[a]anthracene (DMBA), a member of the PAH
family that is typically found in cigarette smoke, to murine skin
causes lesions that are histologically similar to benign papilloma
to SCC (32, 33). Whole-exome sequencing analysis has been
conducted in this murine model of DMBA-induced SCC to
investigate its mutational landscape (34). As a result, the majority
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of DMBA-induced SCC possesses mutations in oncogenes
including Hras, Kras, and Rras2. These mutations in human
SCCs are similar to those in head and neck, esophageal, lung,
and cervical SCC (34–36). In addition to SCC, the development
of melanoma is also accelerated by the application of DMBA in
some genetically engineered mouse models of melanoma (37).

In these models of PAH-induced skin carcinogenesis, AHR
plays a considerable role. Chronic topical application of organic
extracts of airborne particulate matter causes SCCs in a
half of AHR +/+ mice but none of AHR−/− mice (11).
Benzo[a]pyrene, another PAH contained in PM from cigarettes
or air pollutants, can also induce SCC following subcutaneous or
topical application to wild-type mice. This carcinogenic property
of benzo[a]pyrene is attenuated when applied to Ahr-deficient
mice (38). In the case of DMBA-induced carcinogenesis, the
mice possessing the 375A allele of Ahr, encoding the high-
affinity ligand-binding receptor, develop skin cancers, but the
mice possessing the 375V allele, encoding the low-affinity one
do not (39); in contrast, there is another report demonstrating
no significant differences in carcinogenesis betweenAhr+/+ mice
and Ahr−/−mice by topical application of DMBA (40). Taken
together, these results suggest that AHR activation promotes
tumor induction of PAH-induced skin carcinogenesis.

Several studies investigated the mechanism of PAHs-induced
carcinogenesis and revealed that AHR-dependent induction of
CYP1A1/CYP1B1 expression likely plays a key role (38). In
general, CYP1A1 and CYP1B1 enzymes facilitate removal of
AHR ligands by degrading them to metabolites with decreased
activity and increasing their water solubility (41). In contrast,
in the case of carcinogenic PAHs, the same metabolic reaction
results in the metabolic activation of PAHs. For instance,
CYP1B1-mediated metabolism of DMBA results in the synthesis
of DMBA-trans-3,4-diol, which is highly electrophilic and causes
damages to DNA (42). Moreover, CYP1A1, CYP1B1 and epoxide
hydrolase-mediated metabolism of benzo[a]pyrene results in the
synthesis of highly electrophilic benzo[a]pyrene-7,8-diol-9,10-
epoxide (43).

Regarding the mechanism of dioxins-induced carcinogenesis
and its dependency of AHR, they remain largely unknown, as
dioxins are not generallymetabolized to be directly genotoxic and
there is lack of related articles.

MAINTENANCE OF SKIN CANCER VIA
AHR ACTIVATION

In addition to the carcinogenic role of AHR activation, AHR
also greatly contributes to the maintenance of various skin
cancers. In non-cutaneous tumors, AHR is an established factor
that induces suppression of the anti-tumor immune response,
resulting in the escape of tumor cells from immune-mediated cell
death (44). Furthermore, AHR affects multiple aspects of cancer
biology, including cell survival and proliferation (45). Recent
findings show that AHR modulates anti-tumor immunity and
proliferative signals in skin cancers. In the following sections, we
introduce recent findings regarding how AHR contributes to the
maintenance of skin cancers, mainly focusing on melanoma.

Melanoma
Melanoma is believed to be derived from malignant
transformation of melanocytes, which are pigment-producing
cells that generally reside in skin (46). Studies investigating
the melanocytes of Ahr-deficient mice indicated that AHR is
essential for proliferation of melanocytes (47). In addition, some
reports using melanoma cell lines indicate that AHR activation
attenuates tumorigenicity (48, 49); in contrast, others reported
that AHR activation promotes tumorigenicity of melanoma
(50, 51). These observations suggest the contribution of the AHR
system to the biology of melanoma, the details of which have
been revealed in recent reports.

In the clinical setting, therapy for melanoma is based on
the staging system, which scores clinical and pathological
risk factors, including tumor thickness, mitotic rate, and
presence of ulceration and metastases (52). In the past, once a
melanoma was scored as high grade, patients were considered
to have an extremely high mortality rate due to resistance to
chemotherapy (53). However, recent development of molecular
targeted therapies against the oncogene or checkpoint inhibitors
has drastically improved the prognosis of patients with
advanced melanoma (54). This improvement indicates the
critical importance of BRAF and checkpoint molecules in the
maintenance of melanoma. Surprisingly, recent findings have
revealed a significant role for AHR in modulating the effect of
these critical molecules.

The BRAF V600E mutation is the most prevalent mutation
and is present in approximately half of patients with advanced
melanoma (55). Specific inhibitors of mutated BRAF have
achieved high response rates and improved overall survival
(56). Meanwhile, the efficacy of BRAF inhibitors is transient
due to acquired resistance, which usually appears within a year
after the time of response and results in relapse of melanoma
(57, 58). One mechanism of the induction of resistance to
BRAF inhibitors is upregulation of genes related to resistance to
BRAF inhibitors, including AXL receptor tyrosine kinase (AXL),
EGFR, and neuropilin 1 (NRP1) (59, 60). Recently, Corre et
al. demonstrated that in a subset of melanoma cells, AHR is
constitutively activated, which drives expression of these genes
that are related to resistance to BRAF inhibitors (12). In addition,
they also reported that co-administration of AHR antagonists
with BRAF inhibitors maintains at least partial sensitivity to
BRAF inhibitors in melanoma cells.

Melanoma is a solid tumor with a high mutational burden,
which induces the generation of neo-antigens and the infiltration
of cytotoxic T cells (CTLs) that recognize neo-antigens (61, 62).
The level of mutational burden is correlated with that
of transcripts related to cytolytic activity of local immune
infiltrates (63). To evade the anti-tumor immune response,
melanoma cells express molecules associated with checkpoint
pathways. Approximately 40% of melanoma biospecimens
express programmed death-ligand 1 (PD-L1), one of the
molecules associated with the checkpoint pathway (64). When
PD-L1 expressed on melanoma cells binds to the PD-1 receptor
expressed on CTLs, CTLs become dysfunctional, and melanoma
cells escape immune-mediated cell lysis (65, 66). As mentioned,
PD-1 blockade by checkpoint inhibitors significantly improves
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overall survival and progression-free survival compared with
classical chemotherapy in patients with advanced melanoma
(67). These findings imply the importance of elucidating
how melanoma cells upregulate the expression of PD-1 on
CTLs. Liu et al. found that tumor-repopulating cells, a
subpopulation of cancer cells having stem cell-like property that
are tumorigenic and can grow in soft 3D matrices, produce
kynurenine, a known AHR ligand of tryptophan metabolism, by
type I IFN-induced expression of indolamine 2,3-dioxygenase.
Then kynurenine activates AHR in tumor-repopulating cells,
which enters them into dormancy, the condition resistant to
immune-therapies (68, 69). In addition, released kynurenine
is taken up by surrounding CTLs and upregulates PD-1
expression on CTLs in an AHR-dependent manner (13). This
finding tells us that the AHR system may be a significant
modulator of PD-1-mediated suppression of the anti-melanoma
immune response.

Other Cutaneous Carcinomas
Several reports have suggested possible links between the AHR
system and tumor biology in Merkel cell carcinoma (MCC) and
extramammary Paget’s disease (EMPD).

MCC is a rare and aggressive neuroendocrine skin cancer, and
∼80% of patients are infected with merkel cell polyomavirus.
Univariate analysis of clinical specimens revealed that a longer
overall survival is achieved in the group with lower expression
of tryptophan 2,3-dioxygenase 2 (TDO2) and AHR in cells
surrounding the tumor (70). As TDO2 is an enzyme in the
tryptophan-kynurenine metabolic pathway, the TDO2-AHR axis
may play a significant role in the pathophysiology of MCC.

Another study of EMPD, an adenocarcinoma of apocrine
origin, reported that the epidermis adjacent to EMPD lesions

expresses CYP1A1 and CCL20, an interleukin-17-related
chemokine. Malassezia yeast, which are often pathogenic in
apocrine lesions, produce a metabolite that activates AHR and
induces the Th17 immune response. Thus, a possible link may be
present between Malassezia metabolite-induced AHR activation
and the Th17-skewed tumor immune response in EMPD (71).

CONCLUDING REMARKS

As summarized above, AHR was recently found to be a key
modulator of UVR- and carcinogenic chemical-induced skin
carcinogenesis. In addition, this molecule is associated with
the efficacy of BRAF inhibitors and checkpoint inhibitors,
which are core therapeutic drugs in melanoma. Taken together,
these data underscore the importance of the AHR system
in carcinogenesis and maintenance of skin cancers, especially
SCC and melanoma. This means that the AHR system is a
putative target, particularly for chemoprevention and cancer
chemotherapy of skin cancer. The emergence of research
investigating the effect of AHR antagonists for various skin
cancers is promising and eagerly awaited.
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