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Objective: Hepatocellular carcinoma (HCC) is a genetically and phenotypically
heterogeneous tumor, and the prediction of its prognosis remains a challenge. In the
past decade, studies elucidating the mechanisms that induce tumor cell pyroptosis has
rapidly increased. The elucidation of their mechanisms is essential for the clinical
development optimal application of anti-hepatocellular carcinoma therapeutics.

Methods: Based on the different expression profiles of pyroptosis-related genes in HCC,
we constructed a LASSO Cox regression pyroptosis-related genes signature that could
more accurately predict the prognosis of HCC patients.

Results: We identified seven pyroptosis-related genes signature (BAK1, CHMP4B,
GSDMC, NLRP6, NOD2, PLCG1, SCAF11) in predicting the prognosis of HCC
patients. Kaplan Meier survival analysis showed that the pyroptosis-related high-risk
gene signature was associated with poor prognosis HCC patients. Moreover, the
pyroptosis-related genes signature performed well in the survival analysis and ICGC
validation group. The hybrid nomogram and calibration curve further demonstrated
their feasibility and accuracy for predicting the prognosis of HCC patients. Meanwhile,
the evaluation revealed that our novel signature predicted the prognosis of HCC patients
more accurately than traditional clinicopathological features. GSEA analysis further
revealed the novel signature associated mechanisms of immunity response in high-risk
groups. Moreover, analysis of immune cell subsets with relevant functions revealed
significant differences in aDCs, APC co-stimulation, CCR, check-point, iDCs,
Macrophages, MHC class-I, Treg, and type II INF response between high- and low-
risk groups. Finally, the expression of Immune checkpoints was enhanced in high-risk
group, and m6A-related modifications were expressed differently between low- and high-
risk groups.

Conclusion: The novel pyroptosis-related genes signature can predict the prognosis of
patients with HCC and insight into new cell death targeted therapies.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the third most aggressive and
lethal disease, accounting for approximately 75% of liver cancer
cases, and is a highly genetically and phenotypically
heterogeneous malignancy with 830,000 deaths in 2020
(Petrick et al., 2016; Moon and Ro, 2021). Alcohol abuse,
obesity, diabetes, and metabolic syndromes are significant risk
factors for HCC progression, and inflammation caused by these
risk factors promotes liver fibrosis, leading to cirrhosis and
ultimately HCC(Mittal and El-Serag, 2013; Kim and Viatour,
2020). Patients with HCC are asymptomatic at the early stage,
which seriously delays timely diagnosis. Patients diagnosed at the
late stage of HCC are not suitable for radical surgery, resulting in
minimal availability and effectiveness of therapeutic options
(Llovet et al., 2008). Thus, novel biomarkers that can
discriminate patients at high risk for HCC are urgently needed
to improve personalized HCC prognostic prediction accuracy
and treatment.

In the past decade, studies elucidating the mechanisms that
induce tumor cell pyroptosis has rapidly increased (Derangere
et al., 2014; Jiang et al., 2017;Wang Y et al., 2018). Pyroptosis is an
inflammatory caspase-dependent cell death type characterized by
pore formation, cell swelling and rupture of the plasma
membrane, and release of intracellular contents (Ruan et al.,
2020). Pyroptosis therapies are increasing as opportunities to
inhibit cancer development. Meanwhile, pyroptosis promotes
inflammatory cell death and inhibits cancer cell proliferation
and migration, and decreased expression of some pyroptotic
inflammasomes has been found in cancer cells (Fang et al.,
2020). Apoptosis is widely studied as a major form of
regulated cell death underlying tumor pathogenesis and
therapy. Still, cancer-associated defects in apoptosis induction
and execution contribute to a significant proportion of treatment
failures (Ng et al., 2012; Holohan et al., 2013; Hata et al., 2014).
The clear molecular pathways mediating necrotic types of cell
death have recently been uncovered, the long-standing view of
apoptosis as a standard regulating mechanism of death programs
has changed (Vanden Berghe et al., 2014; Conrad et al., 2016;
Wallach et al., 2016). The previously unknown mechanism of
pyroptosis as a molecularly targeted pathway to eradicate
oncogene addicted tumor cells may have important
implications for the clinical development and optimal
application of anticancer therapeutics (Lu et al., 2018).

However, studies on the functions and mechanisms of
pyroptosis-related genes in HCC progression remain scarce. A
systematic evaluation of pyroptosis-related gene prognostic
signatures and their correlation with HCC patients may
further our understanding of HCC mechanisms and provide
new applications for a rapid, effective, and specific diagnosis
and effective therapy.

A novel pyroptosis-related prognostic signature of
differentially expressed genes in HCC was established in our
study. Then we studied their role in the prognosis of HCC
patients and the associated immune response and the effect of
N6- methylation on adenosine (m6A) modification.

METHODS

Data Collection
We extracted RNA sequencing (50 normal and 374 tumors) data
of 377 patients from the TCGA-LIHC (https://portal.gdc.cancer.
gov/repository) dataset, and RNA sequencing (273 tumors) data
of 261 patients from the ICGC-LIRI-JP (https://dcc.icgc.org/
releases/current/Projects/LIRI-JP) dataset. Clinical
characteristics of HCC patients in the TCGA and ICGC
dataset was shown in Supplementary Table S1. The
corresponding pyroptosis-related genes in Supplementary
Table S2 were identified from the previous studies of multiple
regulatory mechanisms of pyroptosis in the tumor
microenvironment (Xia et al., 2019; Shao et al., 2021; Ye et al.,
2021) and Molecular Signatures database (http://www.gsea-
msigdb.org/gsea/login.jsp) (Liberzon et al., 2015). Before
comparison, normalization of the expression data in both
datasets values was performed using fragment per kilobase
million (FPKM) values. The association between pyroptosis-
related genes and HCC was assessed using the “limma” R
package, and the correlation was considered significant if the
p-value was <0.05. The protein-protein interaction (PPI) network
of the pyroptosis-related differentially expressed genes (DEGs)
was developed by STRING (Szklarczyk et al., 2021), version 11.5
(https://string-db.org/).

Functional Enrichment Analysis
First, the biological process (BP), cellular component (CC), and
molecular function (MF) of the pyroptosis-related DEGs were
investigated using Gene Ontology (GO). Then the biological
pathway functions of DEGs were further analyzed by Kyoto
Encyclopedia of Genes and Genomes (KEGG) based data in R
software version 4.0.5.

Development of the Pyroptosis-Related
Genes Prognostic Signature
To construct an accurate and reliable prognostic prediction
signature for HCC patients, we first screened the resulting
pyroptosis-related DEGs for those with predictive value using
univariate Cox regression analysis and then further processed
using LASSO regression analysis prevent the fitting of risk
models. Finally, the pyroptosis-related genes signature was
constructed and stratified according to the risk score
(esum(each genes’ expression×corresponing cofficient) ). Finally, HCC
patients were divided into high-risk (≥median) and low-risk
(<median) groups according to the median value of the risk
score of the established prognostic model.

The Predictive Nomogram and Calibration
Curves
To create a clinically practical approach in predicting the 1, 3, and
5-year overall survival rate of HCC patients, we developed a
hybrid nomogram model incorporating independent prognostic
factor including risk score signature, gender, age, TMN, stage,
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and grade. We then validated the accuracy of the nomogram
model for judging the prognosis situation of HCC patients using
the degree of fit of the calibration curve to the actual observed
values.

Immune Profile Analysis
Meanwhile, immune cell infiltration levels of the seven
pyroptosis-related genes signatutre in individual samples in
two risk groups were quantified by single-sample gene set
enrichment analysis (ssGSEA) (Rooney et al., 2015). The
cellular immune responses of the pyroptosis-related genes
signature between subgroups were then evaluated by
comparing the results of CIBERSORT(Newman et al., 2015;
Charoentong et al., 2017), CIBERSORT−ABS (Wang L et al.,
2020), QUANTISEQ (Plattner et al., 2020), MCPCOUNTER (Shi
et al., 2020), XCELL (Aran et al., 2017), EPIC(Racle et al., 2017),
and TIMER (Li et al., 2017) algorithms. In addition, we evaluated
differences in immune function expression by tumor-infiltrating
immune cell subsets in the two risk groups. Finally, we analyzed
the status of m6A methylation modification in high and low-risk
groups to explore the possible impact of the seven pyroptosis-
related genes on the activities of methyltransferases,
demethylases, and methylated reader proteins in HCC.

Independent Prognostic Validation of the
Prognostic Signature
Information on clinical characteristics, including gender, age and
staging data, of HCC patients in the TCGA dataset and HCC
patients in the ICGC dataset was extracted. These clinical
variables in combination with our risk score prognostic
signature was analyzed by univariate and multivariate Cox
regression.

Statistical Analysis
We used Bioconductor packages including “limma,” “survival,”
“survminer” in Rstudio software (Version 1.4.1106) for analyzing
data. Wilcoxon test and unpaired Student’s t-test were used to
comparing non-normal and normal distribution expression
variables. Based on the false discovery rate, the different
expression of genes was corrected by the Benjamin Hochberg
method to control the elevated false-positive rate. Kaplan Meier
(KM) survival analysis was performed to evaluate the feasibility of
pyroptosis-related genes signature for predicting the overall
survival of HCC patients. Time-dependent receiver operator
characteristic curve (ROC) and decision curve analysis (DCA)
(Vickers et al., 2008) was used to validate the reliability of the
predictive model and to compare the accuracy of the novel
pyroptosis related gene signature with traditional
clinicopathological features in predicting the prognosis of
HCC patients. Furthermore, Fisher’s exact test was used to
analyze pyroptosis-related gene expression profiles among the
clinicopathological features. To analyze the pyroptosis-related
DEGs associated immune status in each sample in the TCGA-
LIHC cohort, the relative infiltration of 20 immune cell types in
the tumor microenvironment was calculated via ssGSEA with the
application of the “GSVA” package in R. p < 0.05 in the results of

all analyses was considered statistically significant. The flow-
process diagram of this study is shown in Figure 1.

RESULTS

Identification of Pyroptosis-Related DEGs
42 pyroptosis-related DEGs among HCC and normal liver tissues
in the TCGA-LIHC dataset were identified using the limma R
package (Supplementary Table S3). The expression level of these
genes was presented as a heatmap in Figure 2A. Further by PPI
analysis, we explored the interactions among these DEGs
(Figure 2B). With the minimum required interaction score of
0.9 (the highest confidence) in the PPI analysis, we determined
NLRP3, CHMP4A, CASP8, CASP3, TP53, PYCARD, CHMP2A,
and IL1B were hub genes. The correlation network of the
pyroptosis-related DEGs is shown in Figure 2C.

Pyroptosis-Related DEGs-Based HCC
Classification Pattern
To explore the connections between the expression of the
42 pyroptosis-related DEGs and HCC subtypes, we performed
a consensus clustering analysis with all 377 HCC patients in the
TCGA-LIHC cohort. By increasing the clustering variable (k)
from 2 to 9, we found that when k � 2, the intragroup correlations
were the highest and the intergroup correlations were low,
indicating that the 377 HCC patients could be well divided
into two clusters based on the 42 DEGs (Figure 3A). The
DEGs expression profile and the clinicopathological
characteristics were presented in the heatmap (Figure 3B). We
also compared the survival advantage between the two clusters,
and the KM overall survival curves showed that the survival
probability of cluster 1 was higher than cluster 2 (Figure 3C).

Enrichment Analysis of Pyroptosis-Related
DEGs
Gene Ontology (GO) function and KEGG pathways enrichment
analyses of the DEGs were performed. Enriched biological
process (BP), including regulation of interleukin−1 production,
midbody abscission, and mitotic cytokinetic process. Meanwhile,
phospholipid binding, cytokine receptor binding, and
cysteine−type endopeptidase activity were the regular
molecular function (MF). Cellular component (CC) mainly
comprised the ESCRT complex, multivesicular body, late
endosome, and inflammasome complex (Figure 4A).
Moreover, KEGG pathways analysis demonstrated that
necroptosis, NOD−like receptor signaling pathway, apoptosis,
hepatitis, P53 signaling pathway, MAPK signaling pathway, and
MicroRNAs in cancer were markedly enriched (Figure 4B).

Development of Pyroptosis-Related Gene
Prognostic Signature
First, ten HCC prognosis related pyroptosis genes were screened
out from the DEGs by univariate Cox analysis (Figure 5A). Next,
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FIGURE 1 | Workflow diagram.

FIGURE 2 | Expression of the 42 pyroptosis-related DEGs and their interactions. (A) Heatmap of the pyroptosis-related DEGs between the normal and the tumor
samples (blue: low expression level; red: high expression level). p values were presented as: *p < 0.05; **p < 0.01; ***p < 0.001. (B) The PPI network showed the
interactions among the pyroptosis-related DEGs. (C) The correlation network of the pyroptosis-related DEGs (blue lines: negative correlations; red lines: positive
correlations. The color depth reflected the strength of their relevance).
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FIGURE 3 | HCC classification pattern based on the pyroptosis-related DEGs. (A) 377 HCC patients were divided into two groups when k � 2 in the TCGA cohort.
(B) Heatmap of the clinicopathological characteristics between the two clusters classified by the DEGs. (C) KM overall survival curves of the two clusters.

FIGURE 4 | Gene Ontology and KEGG enrichment analysis of the pyroptosis-related DEGs. (A) GO analysis. (B) KEGG analysis.
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the ten pyroptosis-related genes were penalized by LASSO Cox
regression (Figures 5B,C). Finally, the pyroptosis-related genes
signature was constructed based on the risk score�
(0.07486*BAK1 exp.) + (0.14487 *CHMP4B exp.) +
(0.15165*GSDMC exp.) + (−0.309234*NLRP6 exp.) + (0.27176
*NOD2 exp.) + (0.00979 *PLCG1 exp.) + (0.20830 *SCAF11 exp.).

Survival Results and Multivariate External
Examination
KM analysis confirmed that the TCGA and ICGC cohorts HCC
patients in the high-risk group were associated with worse OS
(Figures 6A,D). At the same time, we could see from the hazard
survival status plots of the high-risk groups that high expression
of the novel predictive model is correlated with poor survival of
HCC patients (Figures 6B–F). Besides, PCA analysis and t-SNE
analysis presented that HCC patients in different risk groups were
distributed in two directions (Figures 6G–J). Then, we performed
ROC analysis using the timeROC package in R. The prognostic
prediction power (AUC) of the seven pyroptosis-related genes
signature in the TCGA-LIHC cohort was 0.753(1 year),
0.616(3 years), and 0.639 (5 years) (Figure 7A). Furthermore,
the AUC of the seven pyroptosis-related genes signature in the
IGCG validation cohort was 0.663(1 year), 0.643(3 years), and
0.638 (5 years) (Figure 7C). The clinical characteristics of ROC
analysis revealed that compared with the traditional pathological
characteristics, the risk score model could more accurately predict

the prognosis of HCC patients in the TCGA cohort (AUC �
0.743, Figure 7B) and ICGC cohort (AUC � 0.772, Figure 7D).

Independent Prognostic Value Validation of
the Risk Signature
Univariate and multivariate cox analyses were conducted to
verify whether the novel pyroptosis-related genes risk score
signature was an independent prognostic factor for overall
survival of HCC patients. The risk score model in the TCGA
and ICGC cohorts were significantly associated with overall
survival of HCC patients in the univariate Cox analysis (TCGA
cohort: HR � 4.385, 95% CI � 2.303–8.350, p < 0.001; ICGC
cohort: HR � 3.468, 95% CI � 1.363–8.821, p � 0.009) (Figures
8A,C). After correcting for other confounders, the multivariate
Cox analysis confirmed that the risk score signature remained
an independent predictor of overall survival for HCC patients.
(TCGA cohort: HR � 3.837, 95% CI � 2.008–7.329, p < 0.001;
ICGC cohort: HR � 2.674, 95% CI � 1.114–6.418, p � 0.028)
(Figures 8B,D). The clinical heatmap presented the
relationship between the novel signature and traditional
clinicopathological manifestations in Figure 8E. The fitting
degree of calibration curve verified the accuracy of the
nomogram model in predicting the prognosis of patients
with HCC. (Figures 9A,B). Meanwhile, the net benefit of
the risk score signature in the DCA was superior to
traditional clinical and pathological characteristics in

FIGURE 5 | Development of seven pyroptosis-related genes prognostic signature. (A) Univariate Cox regression revealed 10 pyroptosis-related genes associated
with prognosis. (B) 10 pyroptosis-related genes were penalized by LASSOCox regression analysis. (C) 10-fold cross-validation for the optimal parameter selection in the
LASSO Cox regression.
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predicting the prognosis of HCC patients (Figure 9C).
Therefore, this nomogram could be used in predicting the
prognostic of HCC patients.

Gene Set Enrichment Analysis
The potential pathways, mechanisms, and bioprocess of the
pyroptosis-related genes signature were analyzed based on
GSEA, which revealed those genes regulated both the tumor
development and immune response, centrally including NOD-
like receptor signaling pathway, T-cell receptor signaling
pathway, WNT signaling pathway, regulation of autophagy,
MAPK signaling pathway, spliceosome, VEGF signaling
pathway and pathways in cancer (Figure 10; Supplementary
Table S4).

Immunological Reaction and Immune
Checkpoints Expression
The Heatmap showed that the expression of the immune cell
infiltration responses of the novel pyroptosis-related genes
signature was significantly upregulated in HCC under the
QUANTISEQ, CIBERSORT, CIBERSORT-ABS,

MCPCOUNTER, XCELL, TIMER, and EPIC algorithms
(Figure 11A; Supplementary Table S5). Single-sample gene
set enrichment analysis based on TCGA-LIHC data showed
expression of immune cell subsets and relevant functions,
significantly different between the two risk groups. p values
were presented as: *p < 0.05; **p < 0.01; ***p < 0.001. The
high-risk group’s most prominent up-regulated immune
functions were aDCs, APC co-stimulation, CCR, check-point,
iDCs, Macrophages, MHC class-I, Treg. In contrast, type II INF
response was down-regulated in the high-risk group, implying
one of the main causes that suppression of the production and
release of IFNs leads to loss of control over HCC growth
(Figure 11B). Given the importance of immunotherapy based
on checkpoint inhibitors for HCC, we further investigated the
expressions of immune checkpoints in the two risk groups. The
results showed that most immunological checkpoints were more
active in high-risk groups in Figure 11C. The analysis of the effect
of the pyroptosis-related genes signature on m6A-related
modification showed the methylation expression level of
YTHDF1, YTHDF2, WTAP, YTHDC1, YTHDF2, FTO,
HNRNPC, ALKBH5, RBM15, YTHDC2, and METTL3 in the
high-risk group was higher. (Figure 11D).

FIGURE 6 | Survival analysis of the seven pyroptosis-related genes signature in the TCGA-LIHC cohort and ICGC-LIRI-JP cohort. TCGA-LIHC cohort (A–C,G,H),
ICGC-LIRI-JP cohort (D–F, I,J). (A,D) KM survival analysis result. (B,C,E,F) Survival status and the risk score distribution of HCC patients. (G,I) PCA plot. (H,J) t-SNE
analysis.
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DISCUSSION

Cell death is one of the most fundamental problems of life and
plays a crucial role in organismal development, homeostasis, and
cancer pathogenesis (Hanahan and Weinberg, 2011). As a model
of programmed cell death, pyroptosis, although capable of
suppressing tumor cell proliferation, can also create a
microenvironment suitable for tumor cell growth and
promotion (Minton, 2020; Yu et al., 2021), and thus has
received increasing attention. Meanwhile, many recent studies
have demonstrated that pyroptosis is closely related to developing
liver diseases such as liver damage (Lebeaupin et al., 2015), fatty
lesions (Miura et al., 2010), inflammation (Wei et al., 2019), and
fibrosis (Wree et al., 2014). However, little is currently known
about the role of pyroptosis in liver cancer development, and our
study was undertaken to elucidate this role. In this study, we first
analyzed 42 pyroptosis DEGs in HCC. Based on the pyroptosis

-related DEGs, we determined two molecular subtypes using the
consensus clustering algorithm. It was found that the survival
probability of C2 was much worse than C1 in overall survival.
Functional and KEGG pathways analysis further discovered that
these DEGs in subtypes primarily participated in necroptosis,
NOD−like receptor signaling pathway, apoptosis, hepatitis, P53
signaling pathway, and MAPK signaling pathway. Some recent
studies showed that Caspase/granzyme-induced apoptosis could
be switched to pyroptosis by the expression of GSDMs, appears to
contribute to the killing of tumor cells by cytotoxic lymphocytes,
and reprogram the tumor microenvironment to an
immunostimulatory state (Van Opdenbosch and Lamkanfi,
2019; Tsuchiya, 2020; Tsuchiya, 2021). Zhang et al. (2019)
reported that overexpression of p53 in human lung cancer
alveolar basal epithelial cells significantly reduced tumor
growth and mortality by increasing pyroptotic levels in an in
vivo assay. Therefore, appropriate guiding the pyroptosis of

FIGURE 7 | The ROC curve analysis of the seven pyroptosis-related genes signature in the two cohorts. (A,C) Time-dependent ROC analysis for HCC patients.
(B, D) The ROC analysis for clinical features and risk score signature.
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hepatocellular carcinoma cells may inspire an advanced therapy
strategy of HCC patients.

Next, our study identified seven differently expressed
pyroptosis-related gene markers from DEGs as independent
prognostic factors for HCC. Among the seven pyroptosis-
related genes signature, BAK1 is a vital cell death regulator
that can initiate mitochondria-mediated apoptosis by
interacting with proteins (Wang et al., 2013). The
protection of BAK1 by exosomal circ-0051443 through
sponging mir-331-3p can inhibit the malignant biological
behaviors of HCC(Chen et al., 2020). And silencing
CHMP4B can promote epithelial-mesenchymal transition in
HCC(Han et al., 2019). GSDMC is the only one of the human
gasdermin family members whose biological function has not
been determined (Kovacs and Miao, 2017). GSDMC was
significantly associated with poorer prognosis liver cancer
patients in our study, indicating that it acts as a tumor-
promoting gene. Interestingly, the current study revealed
that TNF α - activated caspase-8 switched apoptosis to
pyroptosis in the presence of hypoxia-activated GSDMC and
nPD-L1, leading to tumor necrosis in hypoxic regions (Hou
et al., 2020; Du et al., 2021). Therefore, the effect of activating
GSDMC in different environments on liver cancer is worthy of
further exploration. Wang Q et al. (2018) reported that NLRP6
inhibits gastric cancer cell proliferation, migration, and
invasion by regulating the STAT3 signaling pathway, and its
down-regulation is closely associated with poor patient
prognosis. Similarly, down-regulation of NLRP6 was
associated with poorer prognosis in HCC patients in our
study, suggesting that NLRP6 may play a tumor suppressor
role in HCC development. Meanwhile, hepatic NOD2
promotes hepatocarcinogenesis through a RIP2 mediated
proinflammatory response and novel nuclear autophagy-
mediated DNA damage mechanism, and its high expression

is closely associated with poor prognosis in HCC patients
(Zhou et al., 2021). Furthermore, increased PLCG1
expression in tumor tissues was significantly associated with
adverse clinical features of HCC, which may be a role played by
PLCG1 through activation of mitogen-activated protein kinase
and NF-kB signaling pathways (Tang et al., 2019). To date,
there are few studies on the regulation of pyroptosis by SCAF11
in cancer (Xu et al., 2021; Ye et al., 2021). In our study, high
expression of SCAF11 was associated with poor prognosis in
liver cancer, reflecting that it may be a liver cancer-promoting
factor associated with positively regulating the pyroptosis
pathway and inhibition of SCAF11 should be considered as
a target for the treatment of HCC. Based on the median value
of the risk score of pyroptosis-related genes signature, HCC
patients were divided into high-risk and low-risk group. The
survival analyses indicated that the pyroptosis-related high-
risk genes were positively related with worse prognosis HCC
patients. Moreover, the pyroptosis-related genes signature
performed well in the ROC and DCA validation. Finally,
their reliability and applicability in predicting HCC
prognosis were demonstrated in the nomogram and
calibration curve and indicated that our novel risk signature
outperformed traditional clinicopathological characteristics.

Pyroptosis serves as a bridge between the immune system and
the tumor (Li et al., 2021). Its activation in immune cells and
cancer cells will cause the release of inflammatory chemokines
and subsequent immune cell infiltration, activating the tumor
microenvironment and improving the tumor’s efficiency of
immunotherapy (Xia et al., 2019; Vietri et al., 2020). On the
other hand, the chronic inflammatory response resulting from
pyroptosis triggered inflammasomes, and produced cytokines can
help tumor cells escape from immune system surveillance and
promote the development of tumors (Cookson and Brennan,
2001; Wang Q et al., 2020). In GSEA analysis, the significant

FIGURE 8 | Assessment of the clinical prognostic value of the risk score model in HCC patients by univariate and multivariate COX analyses. (A) Univariate
independent Cox analysis for TCGA cohort. (B) Multivariate independent Cox analysis for TCGA cohort. (C) Univariate independent Cox analysis for ICGC cohort. (D)
Multivariate independent Cox analysis for ICGC cohort. (E) Heatmap of the pyroptosis-related genes prognosis signature and clinicopathological manifestations.
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enrichment of immune and tumor-related pathways among
individuals in the high-risk group indicated two sides of the
effect of pyroptosis on tumor cell survival, progression, and
apoptosis. Furthermore, relevant functional analysis of
immune cell subsets revealed that aDCs, APC co-stimulation,
CCR, check-point, iDCs, Macrophages, MHC class-I, and Treg of
pyroptosis-related genes signature were significantly attenuated
in HCC high-risk group, suggesting that reduced levels of
antitumor immunity may lead to poor prognosis. Therefore,
promoting antitumor immune response is essential to prevent
HCC at early stage from further development and generate
effective clinical treatments. Moreover, the expression of
Immune checkpoints such as PDCD1, PDCDLG2, TIGIT,

LAG3, and TNFRSF4 was enhanced in the high-risk group.
The PD-1 pathway is a central pathway of
immunosuppression in the human tumor microenvironment.
Inhibition of PD-1 and PD-L1 can generate endogenous
antitumor immunity to inhibit cancer development (Garg and
Agostinis, 2017). However, the response rate may be low since
inflammation in the cancer-immune microenvironment is
ineffective for efficient infiltration and activation of immune
cells. The efficiency of anti-PD-1 or PD-L1 therapy can be
improved under pyroptosis-induced inflammation in the
tumor microenvironment by chemotherapy, radiotherapy, and
other therapeutic regimens (Bergsbaken et al., 2009; Reck et al.,
2019). Published clinical trials have shown that antibiotic

FIGURE 9 | The nomogrammodel and calibration curves developed based on the risk score signature and prognosis-related clinicopathological indicators. (A) The
predictive nomogram. (B) The calibration curves of the nomogram. (C) The decision curve analyses plot.
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FIGURE 10 | GSEA for the seven pyroptosis-related genes signature.

FIGURE 11 | The relationship between prognostic signature and immune response and m6A modification. (A) The immune cell infiltration profile of the novel
pyroptosis-related genes signature. (B) Relevant functional analysis of immune cell subsets. (C) Analyses of immune checkpoints between the two HCC risk groups. (D)
Analyses of m6A modification expression between low and high HCC risk groups.
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chemotherapeutics can promote the combination of STAT3 and
PD-L1 to upregulateGSDMCmediated pyroptosis under hypoxia
(Blasco and Gomis, 2020), which may improve HCC patient
survival compared to patients received only a single type of
treatment to improve the efficiency of PD-L1 inhibitors.
TIGIT, similar to LAG3, belongs to the immunoglobulin
superfamily and is exclusively expressed on lymphocytes,
including CD8 + T cells, memory, and regulatory CD4 +
T cells, follicular CD4 + T cells, and NK cells (Stanietsky
et al., 2009; Ge et al., 2021). In HCC tumor-bearing mice
treated with anti-PD-1, concurrent anti-TIGIT treatment
resulted in a combined blockade effect that expanded the
effector memory CD8 + T cell population and increased the
cytotoxic T cell to Treg ratio in the tumor, thereby suppressing
tumor growth and prolonging survival (Li et al., 2018; Chiu et al.,
2020; Lepletier et al., 2020), indicating that TIGIT can be used as a
rational target to further improve the efficacy of anti-PD-1
therapy in HCC. Unlike standard immune checkpoint blockers
that block surface receptors in tumors and T cells responsible for
inhibiting antitumor immune responses, drugs that target
TNFRSF4 work by directly activating and modulating the
immune response (Alves Costa Silva et al., 2020). Upon
treatment of tumor models with an anti-TNFRSF4 monoclonal
antibody, IL-10 production by tumor-infiltrating Treg cells is
reduced, allowing the maturation of dendritic cells (Burocchi
et al., 2011; Zhang et al., 2018), creating a permissive immune
state that allows for the maturation of dendritic accumulation of
myeloid cells and development of innate and adaptive immunity
(Piconese et al., 2008; Bulliard et al., 2014), opening an additional
avenue for cancer therapy.

Although we verified two subtypes of HCC and validated the
reliability of the novel predictive risk score model of seven
pyroptosis genes and analyzed their functions in HCC
progression, our study has serval limitations. This
bioinformatic study needs to be tested further by experimental
validation. Therefore, further laboratory experiments are
required, including larger sample multicenter studies,
especially studying the relationship between pyroptosis-related
genes signature and immune activity. Compared with other

traditional clinical characteristics, our risk score model is a
better independent prognostic indicator. Thus, this novel risk
model could serve as the prognostic predictor and provide clues
for personalized immunotherapy for HCC patients.

CONCLUSION

The novel pyroptosis-related genes signature can predict the
prognosis of patients with HCC and insight into new cell
death targeted therapies.
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