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Abstract 
Transcriptome sequencing has become essential in clinical tumor research, providing in-depth insights into the biology and function-
ality of tumor cells. However, the vast amount of data generated and the complex relationships between gene expressions make it 
challenging to effectively identify clinically relevant information. In this study, we developed a method called Gene Swin Transformer 
to address these challenges. This approach converts transcriptomic data into Synthetic Image Elements (SIEs). We utilized data from 12 
datasets, including GSE17536-GSE103479 datasets (n = 1771) and The Cancer Genome Atlas (n = 459), to generate SIEs. These elements 
were then classified based on survival time using deep learning algorithms to predict colorectal cancer prognosis and build a reliable 
prognostic model. We trained and evaluated four deep learning models—BeiT, ResNet, Swin Transformer, and ViT Transformer—and 
compared their performance. The enhanced Swin-T model outperformed the other models, achieving weighted precision, recall, and 
F1 scores of 0.708, 0.692, and 0.705, respectively, along with area under the curve values of 80.2%, 72.7%, and 76.9% across three 
datasets. This model demonstrated the strongest prognostic prediction capabilities among those e valuated. Additionally, the PEX10
gene was identified as a key prognostic marker through both visual attention matrix analysis and bioinformatics methods. Our study
demonstrates that the Gene Swin model effectively transforms Ribonucleic Acid (RNA) sequencing data into SIEs, enabling prognosis
prediction through attention-based algorithms. This approach supports the development of a data-driven, unified, and automated
model, offering a robust tool for classification and prediction tasks using RNA sequencing data. This advancement presents a novel
clinical strategy for cancer treatment and prognosis forecasting.
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Introduction 
Colorectal cancer (CRC) is the fourth deadliest cancer globally, 
with nearly 900 000 deaths annually [1, 2]. This complex disease 
requires early detection and accurate assessment of tumors 
to improve prognosis and ensure the long-term survival of 
patients. Typically, CRC patients are evaluated for treatment 
options and survival outcomes through Tumor, Node, Metastasis 
(TNM) s taging, mismatch repair protein (MMR) testing, and
microsatellite stability testing, all of which provide critical
prognostic information [3]. However, these current evaluation 
methods rely on postsurgical pathology and genetic testing, 
which necessitates careful analysis by experienced patholo-
gists. This process can often lead to differing opinions owing 
to subjective interpretations. Additionally, technical factors, 
such as data quality, sample fixation, and varying levels of 
proficiency in interpreting tumor pathology can result in 
inconsistent outcomes. Therefore, achieving consistenc y and
reproducibility, increasing speed and efficiency, and developing
automated methods to handle large-scale data at minimal cost
are essential goals for improving CRC prognosis and treatment.

In recent years, transcriptome sequencing technology has 
matured significantly, and its applications have expanded across 
various diseases. Its impact on clinical practice has grown as 
well. Researchers have used Ribonucleic Acid (RNA) sequencing 
to discover biological markers associated with tumor prognosis 
and to explore the functions of known biomarkers. With the 
accumulation of tr anscriptome sequencing data accumulates,
data-driven bioinformatics approaches and deep learning (DL)
methods have become valuable tools for studying and predicting
patient prognosis in tumors [4, 5]. However, predicting patient 
outcomes using gene sequencing data often relies on known 
or newly discovered biomark ers as intermediaries for analyzing
survival and prognosis [6–8], or it employs pathological markers 
for prognostic predictions [9]. 

A significant challenge in using biomarkers or pathological 
markers for prediction is that researchers are often limited to 
identifying only one or a few markers to forecast outcomes. This 
restriction arises from the limitations of traditional modeling 
techniques, which struggle to manage a large number of variables,
especially when the number of variables far exceeds the number
of observations or sample sizes. Consequently, this complexity
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impedes thorough data analysis and the discovery of new insights 
or patterns in large datasets. Modern computational methods and 
DL algorithms offer promising solutions to these challenges. Com-
pared to traditional machine learning, DL provides significant 
advantages by automatically identifying useful features in data
through multiple levels of abstraction, eliminating the need for
manually designed or selected features.

DL is especially well-suited for handling unstructured data, 
such as text, images, and sounds. These algorithms have evolved 
into powerful tools across various fields, including computer 
vision, pattern re cognition, natural language processing, and
biomedical research, particularly for the management of genomic
data [10–14]. 

In recent years, transformer networks, a new and powerful 
deep-learning architecture, have emer ged prominently in various
artificial-intelligence tasks [15]. In this study, we developed a 
new attention mechanism algorithm, Gene Swin, which is specif-
ically designed for handling gene-related image data. This algo-
rithm is an improvement on the Swin transformer algorithm [16], 
which has been proven effective in predicting tumor m utation
status from radiomics [17] and in classifying tumor pathology [18]. 
Although Gene Swin excels in processing image-format data, RNA 
sequencing inherently quantifies gene expression levels through 
a series of continuous numerical data. We developed a technique 
that initially converts transcriptomic data into Synthetic Image 
Elements (SIEs) and then uses DL algorithms, such as the Gene 
Swin transformer, to classify these SIEs based on survival time. 
This approach enables the survival prognosis prediction analysis, 
outputs risk values, and constructs a prognostic prediction model. 
Finally, we associated the model’s pr ognostic risk values with the
patients’ clinical date using bioinformatics methods. This allowed
us to study the bioinformatics mechanisms related to prognos-
tic risk scoring, thereby providing biological interpretability for
this deep-learning-based prognostic prediction model. This report
summarizes the results of the present study.

Materials and methods
RNA sequencing da ta
We obtained 11 RNA sequencing datasets from the National 
Center for Biotech nology Information (NCBI) Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) 
including GSE17536 (n = 177) [8], GSE38832 (n = 122) [19], GSE39084 
(n = 70) [20], GSE39582 (n = 586) [21], GSE41258 (n = 156) [22], 
GSE106584 (n = 156) [23], GSE17537 (n = 55) [24], GSE24551 (n = 160)
[25], GSE29621 (n = 65) [26], GSE72968 (n = 68) [27], and GSE103479 
(n = 156) [28]. These datasets provide patient clinical information, 
including survival data, and RNA sequencing data as described 
by the original authors. Expression data for these datasets 
w ere quantified using Fragments Per Kilobase of transcript
per million mapped reads (FPKM). Table 1 summarizes the 
details of these datasets. Additionally, an RNA sequencing 
dataset containing information on 459 patients with CRC was 
downloaded from The Cancer Genome Atlas (TCGA) database
(https://www.cancer.gov/ccg/research/genome-sequencing/tcga),
which serves as an external validation set.

Using data produced by different teams are beneficial not 
only because a large dataset can enhance the accuracy and 
generalization capability of DL models, but also to assess the 
impact of data generated by different teams on model perfor-
mance. After obtaining sequencing data from the GEO database, 
we performed a logarithmic (log2) transformation of all transcrip-
tomic data. Subsequently, the expression levels of the transcripts 

were adjusted to a range from 0 to 1. Gene expression data 
from the 11 datasets were converted using official gene symbols, 
and the shared genes among these datasets were used for the 
research. Because the majority of noncoding RNAs have not been 
assigned official gene symbols, the selected genes were predomi-
nantly protein-coding genes. Consequently, we organized the RNA
sequencing data according to the chromosomes on which they
were located and the positions of their transcription start sites,
resulting in a final usable gene list. From this list, the first 16 889
genes were used to create a square SIE for each patient. After
scaling these 16 889 genes, they were configured into a 224×224
pixel grayscale SIE.

Clinical da ta
In this study, we used clinical information from GEO and TCGA 
databases to create o utcome indicators or labels for model train-
ing and prediction. Table 1 summarizes the clinical information 
of the subjects included in these datasets. For patient prognosis, 
we used the patient’s survival time as the outcome indicator: a
survival time of <2 years is considered a poor prognosis [29], 2– 
10 years is considered an intermediate prognosis, and more than 
10 years is considered a good prognosis. These categories were 
labeled as 0, 1, and 2, respectively, in our model training. The
performance of our model was evaluated by predicting survival
time intervals.

Converting RNA sequencing data into Synthetic
Information Elements
The concept of SIEs technology involves transforming non-image 
data, such as one-dimensional sequence data, into images, 
thereby enabling the processing and analysis of these data
using image analysis methods and tools. Deep Insight [30] does 
not reorganize the input feature vectors using domain-specific 
information but instead adopts a general approach by initially 
mapping the preprocessed data to the pixel values of an image. 
This step is the most critical part of the process. The mapping 
method can be selected based on the characteristics of the 
data and the requirements. A common approach involves using
dimensionality reduction techniques, such as t-SNE or Principal
Component Analysis, to project high-dimensional data into two
or three-dimensional spaces, which are then mapped onto an
image.

In the next phase, the image is rotated by a specific angle to 
align it with the Cartesian coordinate axes. After this rotation, the 
adjusted Cartesian coordinates were mapped to the pixel coordi-
nates of the image. Subsequently, the element values are mapped 
to pixel positions to form an i mage of the feature vector. Research
has shown that this method can be effectively integrated with
convolutional neural networks (CNNs) to classify gene expression
data [31]. 

To address this flaw, this study proposes a technique called 
SIEs, a method for converting non-image format data into an 
image format. This method maintains the independence and 
integrity of the original feature data without av eraging feature
information. The SIEs technique uses a multichannel extension
process instead of simply averaging feature values.

We developed a CNN-based multi-omics analysis framework 
that utilizes SIEs to uncover hidden nonlinear relationships within 
complex, high-dimensional data. In this framework, multi-omics 
data are converted into multichannel images, with each gene 
represented as a pixel in a genome-wide image. Different types
of omics data, including mutations, gene expression, DNA methy-
lation, and copy number variations, were integrated into these
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Table 1. Descriptive overview of the datasets used in thin stud y.

Dataset TNM staging Microsatellite 
instab ility 

RAS and BRAF gene 
muta tions

Survival day Survival event Sequencing 
platform ID 

GSE955465 T4N0M0 StageII MSI-S KRAS: WT BRAF: WT 3.049315 years death: 0 GPL570 
GSE955466 T4N1M0 StageIII MSI-H KRAS: M BRAF: WT 4.133247 years death: 0 GPL570 
GSE955467 T2N0M0 StageI MSI-H KRAS: M BRAF: WT 9.126027 years death: 0 GPL570 
GSE955468 T3N0M0 StageII MSI-H KRAS: WT BRAF: WT 4.446575 years death: 0 GPL570 

images as separate layers. This conversion establishes spatial 
relationships among the data, enabling convolutional layers to 
effectively explore and analyze interactions between genes. Com-
pared to traditional nonspatial data transformations, this spatial 
approach offers greater efficiency . Our method organizes genomic
data into gene images sorted by chromosome position, exempli-
fying the SIEs technology introduced in this study.

This study improves upon the aforementioned methods by 
first preprocessing the raw transcriptomic data—including noise 
filtering, normalization, and feature selection—to e nsure the data
have a high signal-to-noise ratio and statistical stability.

Feature Ordering: First, we order the gene/transcript features in 
the transcriptomic data. This ordering is typically based on biolog-
ically or statistically meaningful criteria, such as a gene’s physical 
location on the chromosome, its membership in a specific bio-
logical pathway, or its differential expression significance (e.g. P-
value or fold change) under different experimental conditions— 
similar to the feature or dering strategy that might be employed
in DeepFeature. It is crucial to ensure that all samples use exactly
the same gene/feature order.

Value Mapping: For each sample, we normalize the expression 
values of each gene/transcript (e.g. FPKM, TPM, or normalized 
counts) using min-max scaling to map them between 0 a nd 1
interval. These normalized values serve as the intensity values
of the corresponding pixels.

Constructing a 2D Structure: The sorted and normalized fea-
tures (i.e. the “pixel” intensity values) of each sample are then 
filled into a two-dimensional matrix according to a predeter-
mined sequence, forming a synthetic “image”. The most com-
mon approach is raster scanning, where the matrix is filled row 
by row until all features have been arranged, r esulting in an
SIE that is approximately square or rectangular. For example, if
there are N features, they can be arranged into an approximately
sqrt(N) × sqrt(N) square image.

Generating the SIE: Ultimately, each sample’s transcriptomic 
profile is transformed into a unique SIE. In this SIE, pixel positions 
are determined by the gene/feature ordering, and the brightness 
(intensity) of the pixels represents the normalized expression level
of each gene/feature.

Through this transformation process, the original one-
dimensional or tabular transcriptomic data is endowed with a 
two-dimensional spatial structure, enabling us to apply CNNs to 
effectively learn and extract latent “spatial” patterns potentially 
introduced by the feature ordering, thereby enhancing the perfor-
mance of subsequent analyses such as classification, prediction, 
or feature selection. To further improve the transparency and
reproducibility of the method, we have added two algorithm
tables of the model in Fig. S1A and Fig. S1B, which outline 
each step of the SIE generation process along with its specific
parameters.

This method compensates for lossy compression, allowing the 
generated SIEs to contain more genetic information. In this study, 

we applied this technology to transcriptomic sequence analy-
sis. When selecting genes or transcripts for analysis, we log2-
normalized the expression levels of each gene. For a specific 
patient, the renormalized expression levels correspond to the 
pixel brightness in the patient’s SIE. From the genes across the 
11 datasets used in this study, we selected 16 889 genes based
on gene function and chromosome position to create an SIE for
each patient in all datasets. The 16 889 genes were arranged into
a 224×224 (height×width) grayscale SIE.

The process of converting gene expression data into a gra yscale
SIE is illustrated in Fig. 1a. Using SIEs technology and scaling tech-
niques, the 16 889 genes were placed in a 224×224 pixel image. 
More specifically, for the 224×224 configuration, the top 224 of the 
sorted 16 889 genes were used to build the first channel (layer) of 
the image, with the next 224 genes forming the second channel. 
In these arrangements, the same genes from different individuals 
were located at the same coordinates on the SIE, maintaining
the inter-gene associations from the original datasets. Therefore,
the analysis results based on the SIEs classification were con-
sistent with the results obtained from the original expression
data.

Using the Gene Swin Transformer model for 
classification and prognosis prediction of
Synthetic Image Elements
A Vision Transformer (ViT) [32] is a network architecture entirely 
based on transformers networks [15], effectively processing image 
data through self-attention layers. It can capture complex image 
patterns, enhancing the performance of visual tasks such as 
image classification. Its embedded multi-la yer perceptron (MLP)
improves the ability to generalize and learn spatial correlations
[33]. However, ViT lacks the inductive biases of CNNs, such as 
locality and translational invariance, making its training depen-
dent on large-scale datasets and pretrained models. In contrast,
the Swin Transformer [16], which adopts a CNN-like structure, 
performs more powerfully in image feature extraction and clas-
sification and prediction tasks.

To address these challenges, we developed a new attention 
mechanism named Gene Swin Transformer. Gene Swin was 
designed to efficiently u tilize SIEs for survival analysis and
prognosis prediction, with its structure illustrated in Fig. 1.  In  
this study, we employed the Gene Swin architecture to classify 
and p redict SIEs derived from selected gene expression data.

Survival anal ysis
This study utilized R 4.3.3 for data analysis and visualization. The 
specificity and sensitivity of the model based on the Swin Trans-
former were assessed by calculating the area under the receiver 
operating characteristic (ROC) curve (AUC). To evaluate the clini-
cal prognosis of CRC patients, Kaplan–Meier (KM) curve analysis
and COX regression analysis were performed, focusing on the
risk score derived from the Gene Swin Transformer, with results

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf275#supplementary-data
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Figure 1. The diagram illustrates the conversion of gene expression data into SIEs and the architecture of the Gene Swin model proposed in this paper. (a) 
1. Tabular format of transcriptomic gene expression data. 2. Log2 normalization and rescaling to fit the range of a digital image (0 to 1). 3. Organization 
of expression data into SIEs. 4. SIEs are color images that integrate multi-layered data. (b) Gene Swin comprises two parts: SIEs and a modified Swin 
transformer. The S win transformer uses “shifting windows” and a hierarchical approach. It processes images within local non-overlapping windows 
and captures dependencies across windows by shifting them at each stage. This structure excels in dense prediction tasks like object detection and
bioinformatics image analysis.

reported as hazard ratios (HR) and 95% confidence intervals (CI). 
Additionally, univariate and multivariate COX regression analyses 
wer e conducted to identify significant prognostic markers for CRC
patients.

Results 
Model performance evaluation via metrics and 
fi ve-fold cross-validation
Combining the aforementioned 11 datasets, we tested four mod-
els, BeiT [34], ResNet [35], Swin Transformer [16], and ViT Tr ans-
former [36], to determine the most suitable DL model for this 
study. After evaluating the accuracy, stability, adaptability, and 
generalization capability of each model, we found that the Gene 
Swin model, which included Shifted Window Multi-head Self-
Attention (SW-MSA), Hierarchical Representation, Patch Mer ging,
Linear Embedding, Layer Normalization, and MLP, demonstrated
an excellent testing accuracy. Detailed information on the model

can be found in the Python script published on our website
(https://github.com/). We compared the prognostic performance 
of four models by examining changes in model loss, accuracy, 
validation accuracy, and F1 score. Additionally, the ROC results
for the Swin model (Fig. 3), further highlight its performance in
detail. Table 2 consolidates and compares all results, providing a 
comprehensive overview of outcomes obtained with a 224×224 
configuration. This table includes the accuracy, recall, F1 score, 
and AUC for each of the four models. In terms of prognostic 
prediction, the Swin model demonstrated a weighted aver age AUC
of 0.7837 with corresponding accuracy, recall, and F1 scores of
0.70793, 0.69198, and 0.7052, respectively.

Model validation and sample testing using GEO 
and the Cancer Genome Atlas databases
In this study, we utilized a database comprising 11 GEO datasets 
and one TCGA dataset, which together included clinical informa-
tion and transcriptome data from 2325 patients. After removing

https://github.com/
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Table 2. Comparison of the predictive performance of Gene -Swin and three published models on the prognosis of CRC patients using 
the TCGA-GEO dataset.

DL-model AUC Precision Recall F1score 

Training set 0.802 0.7112 0.6914 0.7043 
Swin-T Test set 0.727 0.6993 0.6894 0.7048 

Validation set 0.769 0.7032 0.7012 0.7123 
Training set 0.667 0.6812 0.6892 0.6912 

BeiT Test set 0.659 0.6912 0.6851 0.6321 
Validation set 0.621 0.6711 0.6754 0.6881 
Training set 0.627 0.6712 0.6812 0.6912 

ResNet Test set 0.636 0.6786 0.6874 0.6754 
Validation set 0.614 0.6613 0.6743 0.6612 
Training set 0.648 0.6812 0.6712 0.6712 

ViT transformer Test set 0.694 0.6936 0.6943 0.6987 
Validation set 0.657 0.6712 0.6812 0.6832 

combined batch effects, we shuffled the data from 2169 patients 
and randomly divided them into three parts: 70% of the samples 
were allocated to train the model (training set), 20% were reserved 
to validate model accuracy (test set), and the remaining 10% 
were designated as an external validation set. This data classifi-
cation method helps prevent performance errors in the training 
model that could arise from technical measurements of gene 
expression correlation reproducibility across different datasets. 
Additionally, the use of a test set and an external validation set 
is intended to more accurately assess and measure the model’s 
generalization capabilities. Based on the results of five-fold cross-
validation, we trained a nd optimized the Swin model to enhance
its suitability for analyzing SIE images and predicting prognosis.
The improved Gene Swin transformer was tested more than five
times on a test set comprising 20% of the total data; the other
three models underwent the same testing and validation pro-
cedures. The results, including three-class clinical survival data
and corresponding SIE images, are presented in Table 2.When 
the test set was used to evaluate the Gene Swin model, the per-
formance closely matched the five-fold cross-validation results, 
with an AUC of 0.727, and precision, recall, and F1 scores of 
0.6993, 0.6894, and 0.7048, respectively. For the ResNet model, 
the AUC value for prognosis prediction in the test set was 0.614 
with precision, recall, and F1 scores of 0.6613, 0.6743, and 0.6612, 
respectively. The BeiT model achieved an AUC value of 0.621 
in the test set, with precision, r ecall, and F1 scores of 0.6711,
0.6754, and 0.6881, respectively. The ViT model demonstrated an
AUC value of 0.694 in the test set, with precision, recall, and
F1 scores of 0.6936, 0.6943, and 0.6987, respectively. The perfor-
mance of all four models in the validation set is summarized in
Table 2. 

The loss changes of the four deep models with an increase i n
the number of training samples (Fig. 2a). In addition, significant 
differences in precision, recall, and F1 scores among the four 
models on the test set, as well as the trends in accuracy as
training samples increased (Figs. 2b and c). Notably, the accuracy 
of the Swin transformer was ∼70.5%, demonstrating superior 
performance compared to the other three models. Furthermore, 
the loss variation results indicate that the Swin model exhibits 
greater stability and generalization ability than the other mod-
els. To further assess the capability of the model structure and 
the use of SIE in predicting the prognosis of CRC patients, we 
utilized an external validation set and performed five-fold cross-
validation using the same model structure, achieving an average 
AUC of 0.769. This outcome closely aligns with the test set re sults,
confirming that the adapted SIE and model structure are effective

in classifying the National Health Group (NHG). Overall, the Swin
transformer demonstrated outstanding performance across the
training set, test set, and external validation set. The accuracy of
the prognosis predictions and a comparative analysis of the four
models’ performance are presented in Fig. 2. 

Survival and COX regression analysis based on 
gene Swin-T risk score in an independent patient
cohort
The ROC curve analysis illustrates the performance of the Gene 
Swin transformer prognosis prediction model across different 
cohorts: the training set, the testing set, and the external vali-
dation cohort at 1 year, 3 years, and 5 years (Fig. 3a–c). The AUC 
values were 80.2% for the training set, 72.7% for the testing set, 
and 76.9% for the external validation set, demonstrating the sta-
bility and consistent predictive performance of the model across
various datasets.

We used the R package maxstat [37] to calculate the optimal 
cut-off value for the Risk Score in the Gene Swin training 
set, with the minimum group sample size set to more than 
25% and the maximum group sample size set to <75%. The 
final optimal cut-off value obtained was 0.689908, allowing us
to categorize patients in each cohort into high Risk Score or
low Risk Score groups (Fig. 3d). The significance of prognostic 
differences between these groups was assessed using the logrank 
test, which revealed significant differences (HR = 0.20, 95% CI: 
0.14–0.29, P < .0001). Similarly, KM survival analyses of over all
survival stratified by risk scores in the testing and validation
cohorts of CRC patients are presented in Fig. 3e and f.  In  the  
testing cohort (HR = 0.36, 95% CI: 0.22–0.57, P < .0001, Fig. 3f)  and  
validation cohort (HR = 4.99, 95% CI: 2.48–10.03, P < .0001), the 
differences in overall survival between high and low risk score 
groups were statistically significant. These findings highlight
the significance of DL attention mechanism techniques for risk
scoring in predicting clinical outcomes in CRC patients.

We utilized the R package glmnet to integrate survival time, 
survival status, and gene expression data, performing regression 
analysis on the training set using the Least Absolute Shrinkage
and Selection Operator (LASSO)-Cox method (Fig. 5a and b). To 
optimize the model, we conducted 10-fold cross-validation, set-
ting the Lambda value at 0.07, which led to the identification 
of 24 genes associated with the survival of CRC samples in the 
test cohort. Simultaneously, using the R package survival, w e
combined the survival time, survival status, and expression data
of these 24 genes to evaluate their prognostic significance in the
training set using the cox method (Fig. 5c).
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Figure 2. Comparison of performance in predicting prognosis across four models. (a) Variations in loss across the four deep learning models. (b) 
Comparison of the test set accuracy for the four models, along with the trend in accuracy as the number of training samples increases. (c) Comparison 
of the recall rates on the training set, including the trend in r ecall rate changes with increasing training samples. (d) Comparison of F1 scores on the
training set, and the trend of F1 score changes as training samples increase. Detailed numerical comparisons are provided in Table 2. (e) Price chart of 
the performance of DL models with the n umber of training epochs.

Multivariate survival regression confirms the 
predictive accuracy of the gene Swin model for
colorectal cancer patient survival
Currently, survival predictions for patients with CRC are primar-
ily based on a range of known clinical and pathological fac-
tors, including clinical tumor staging, tumor gene typing, and 
patient age. However, our multivariate survival regression anal-
ysis demonstrated the high accuracy of the Gene Swin model in 
predicting the survival of CRC patients. To validate and impro ve
the current accuracy of survival predictions, we constructed an
integrated nomogram across the entire patient cohort based on
the risk score from the Gene Swin transformer and predictable
clinical and pathological factors (Fig. 4a). 

ROC analysis revealed that the AUC value for predicting 
Disease-Free Survival (DFS) in C RC patients using the nomo-
gram was 63.7% (Fig. 4b), which was notably higher than the 
predictive performance of TNM staging (AUC = 57.7%). This 
finding highlights the superior predictive accuracy of the 
integrated nomogram compared with traditional clinical and 
pathological factors. Moreover, the Gene Swin-based predictive 
model demonstrated robust effectiveness in forecasting the 
prognosis of patients with CRC, underscoring its potential for 
further clinical validation and widespread application. Supporting
these results, both the decision curve analysis (DCA) curve and the
calibration curve of multivariate survival regression reinforced
that the risk score generated by the Gene Swin transformer
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Figure 3. ROC curve and KM survival analyses for Gene Swin’s prediction of disease-free survival in CRC patients. (a–c) ROC curves showing the prognostic 
prediction scores from Gene Swin in the training, test, and validation sets. (d–f) KM survival analyses, stratified by Gene Swin risk scores, demonstrate 
overall survival outcomes for CRC patients in the training, test, and validation cohorts. (AUC, Area under the curve; CRC, Colorectal cancer; ROC, Receiv er
operating characteristic).

provided highly accurate prognostic predictions for CRC patients
(Fig. 4c and d). 

Identification of prognosis-related 
high-contribution genes via a ttention matrix
visualization
Currently, survival prediction for CRC patients is primarily based 
on established clinical and pathological factors [38, 39], such as 
TNM staging of tumor tissues, tumor markers CEA and CA199, 
and results of immunohistochemical tests. High expression of 
tumor markers or pMMR status is often associated with the over-
expression or underexpression of certain genes, which we refer 
to as high-contribution genes related to prognosis. By visualizing 
the attention matrix, we highlighted the regions with significant 
attention weights in the Gene Swin model within the SIE. The 
brighter the color of a region, the higher the attention score
assigned by the model to that region, indicating a greater contri-
bution to the model’s output prognostic risk score. From the SIE
images, we extracted high-contribution genes related to progno-
sis, as illustrated in Fig. 5a. Compared with the features obtained 
through LASSO-COX analysis, our Gene Swin prognostic model 
identified 29 prognosis-related genes that were not previously
detected by traditional bioinformatics analysis. Table 3 presents 
the genes identified by both methods. Through simultaneous 

visualization of the attention matrix and bioinformatics analysis, 
we identified the overlapping high-contributing gene PEX10. A lit-
erature review further revealed that enzalutamide inhibits PEX10
function, sensitizing prostate cancer cells to ROS activators [40]. 
However, no studies have reported a similar effect in CRC.

This discovery opens new possibilities for exploring prognosis-
related gene pathways and mechanisms, as well as providing 
potential new targets for clinical translation and the development
of novel therapeutic drugs.

Discussion 
The rapid development of high-throughput DNA sequencing tech-
nology has revolutionized the field of clinical research, leading to 
the rapid accumulation of large-scale transcriptome data. This 
presents significant opportunities for applying DL algorithms to 
address clinical challenges, particularly because these algorithms 
can handle nonlinear and high-dimensional data, making them 
well-suited for interpr eting complex biological datasets, such as
transcriptome data. However, most studies on transcriptomic
genes and survival rely on biomarkers to predict prognosis [38, 
39], which may result in the loss of valuable gene expression 
information. To overcome this limitation, our study innovatively
employed DL algorithms to convert gene expression data into SIEs,
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Figure 4. Multivariate survival regression analysis for the Gene Swin model and construction of the nomogram model. (a) Nomogram model predicting 
3-year, and 5-year survival rates. (b) ROC curve for the nomogram model’s survival prediction. (c) DCA of the nomogr am (a) for survival prediction. (d) 
Calibration plot of the nomogram, showing the correlation betw een predicted probabilities and actual values.

enabling a more intuitive understanding of their characteristics. 
The challenge lies in effective use of SIEs to solve clinical prob-
lems. The introduction of artificial intelligence has significantly
transformed traditional diagnostic methods and prognosis pre-
diction approaches [38]. The emergence of attention mechanism 
models, such as the Swin Transformer, addresses this challenge 
by optimizing the standard Transformer architecture with a slid-
ing window approach, making it more suitable for structured 
data, such as images and potentially three-dimensional medical 
imaging data. The Swin Transformer possesses strong feature 
extraction capabilities, enabling it to accurately identify and local-
ize disease-related features when processing structured image 
data such as histological images, pathological slides, or other
biomedical imaging data. However, very few studies have reported
the application of attention mechanism models to transcriptomic
date of CRC.

In this study, we applied DL algorithms to RNA sequencing data 
of CRC and compared the prognostic prediction capabilities of the 
four models in patients with CRC. Based on the training results, 
we selected and improved the most suitable model for analyzing 
SIEs. Our study has two main objectives: first, to optimize the 
representation of SIE technology in the transcriptomic data of CRC 
patients, preserving the independence and integrity of the original 
feature data while making the transcriptomic data expre ssion
more intuitive; second, to evaluate the performance of our Gene
Swin Transformer model using SIEs for prognostic prediction and
validate the clinical value of the improved Swin Transformer
model in enhancing prognostic accuracy.

We first transformed the transcriptomic gene sequencing data
into SIEs (Fig. 1) and then divided all patients’ SIEs in the dataset 
into three cohorts: the training cohort (70%), test cohort (20%), and 
external validation cohort (10%). We employed four distinct CNN
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Figure 5. Comparison of high-contribution prognosis-related genes identified by DL and bioinformatics analysis. (a) Genes identified by Gene Swin using 
visual attention matrix algorithms (highlighting high attention weights). (b) Ten-fold cross-validation error in LASSO analysis. (c) LASSO-COX analysis 
identifying 24 surviv al-related genes. The overall prognostic significance was robust (logtest = 5.12921649608594e-25, sctest = 1.72339363408518e-25, 
waldtest = 1.19757559188477e-18), with a C-index of 0.855861304304002.

architectures—ViT-base, Swin-base, BEiT-base, and ResNet-50—to 
evaluate their performance on the training dataset. Each model 
was trained for five epochs under identical conditions to ensure 
fair comparison. The reason for selecting five training epochs is to 
achieve optimal performance: fewer epochs may lead to underfit-
ting, while more than five epochs may result in overfitting. We 
chose five epochs to ensure that the model achieves the best 
balance between underfitting and overfitting. Underfitting occurs 
when the model fails to adequately learn the data features, while 
overfitting happens when the model excessively adapts to the 
training data, thus reducing its ability to generalize to new data. 
By selecting five epochs, we ensure that the model can effectively 
learn the data features without memorizing irrelevant details. 
This decision is supported by the performance curve during model 
training, which shows that the model’s accuracy improves as 
the number of epochs increases, but decreases after a certain 
point due to overfitting. Additionally, using the same number of
training epochs for all models ensures consistency in evaluation,
enabling a fair comparison of the feature extraction capabilities
of different models. This approach also helps in assessing the
convergence behavior of each model and its ability to consistently
extract features under identical training settings. The results in
the chart clearly reflect the impact of training rounds on model
performance. The results are provided in Fig. 2e. By maintaining 
consistent training parameters across all models, we aimed to 
directly compare their architectural strengths and explore their 
potential applications in bioinformatics, particularly for tasks 
that require robust feature representation. The training cohort 
was used to train and tune the performance of the four dee p-
learning models for prognostic prediction, and the tuned models
were then applied to the test set. By comparing the precision,
recall, and F1 scores of the four models (Table 2), we concluded 

that the Gene Swin model based on the SIE technology proposed 
in this study outperformed the other three advanced models in 
prognostic pr ediction across the three patient cohorts, demon-
strating high predictive accuracy.

We developed an innovative gene ViT DL model named “Gene 
Swin”, which achieves prognostic prediction using gene expres-
sion data through three main steps: (i) data preprocessing, (ii) 
converting transcriptomic sequencing data into SIEs, and (iii) 
inputting the SIEs into the improved Swin-T model for prediction, 
ultimately outputting a risk score associated with prognosis. The 
model consists of three core components. The first component is 
responsible for data preprocessing, starting with data augmenta-
tion to expand the data volume and reduce class imbalance. Next, 
the min-max normalization method was used to normalize the 
augmented dataset, ensuring stable convergence of the model’s 
weights and biases. Dimensionality reduction is then performed 
using stacked autoencoders to select the genes most relevant to 
the study. The second component utilizes the SIE technique with a
channel extension algorithm, transforming the data samples into
an image format, i.e. leveraged for feature extraction and clas-
sification. This structure not only improves the data processing
efficiency but also enhances the model’s ability to understand
features. The third component is the improved Swin-T model,
which processes the SIEs to output the risk score associated with
prognosis.

This study demonstrates that the Swin Transformer (Swin-
T) model outperforms BeiT, ResNet, and ViT in predictive tasks, 
primarily due to its unique structural design, which is particularly
suited for handling latent patterns within our generated SIEs.

Enhanced multi-scale feature capture: Transcriptomic data 
complexity implies critical information may manifest in local 
details (fine interactions between a few genes) or global structures
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Table 3. Presents the high-contribution genes identified 
through both bioinformatics and DL a lgorithm analyses. 
Prognosis-related high-contribution genes.

Bioinformatics-analysis Deep learning algorithm 

1 AKAP12 AXELX 
2 AKIP1 ALG12 
3 BID AICDA 
4 C17orf77 AMOTL2 
5 CCR6 AKT3 
6 CDPF1 AGTPBP1 
7 CLK4 ANKRD6 
8 DCTN2 BTG2 
9 HS1BP3 BAG6 
10 ICOS BEST1 
11 IFI27 CISH 
12 IGFL1 DANSE2B 
13 INPP5D DUSIL 
14 KLK11 FER 
15 PAPPA GCDH 
16 PEX10 GBP1 
17 PHF20L1 GTPBP 
18 SLAMF1 MYH8 
19 SPON1 NDUFAF7 
20 TIMM10B ICAM1 
21 UGGT2 INHBE 
22 ZEB1-AS1 PGF 
23 ZFAND1 PEX1 
24 ZNF396 PEX10 
25 PLK2 
26 REG1A 
27 RARA 
28 SLC6A5 
29 SLC25A4 
30 SLC9A3R1 

Note: PEX10 is the overlapping g ene and has been highlighted.

(coordinated changes across gene sets). Swin-T constructs feature 
maps of varying resolutions through hierarchical patch merging, 
naturally and effectively capturing these multi-scale details. In 
contrast, ViT and BeiT typically use single-resolution patches and 
global attention, potentially less efficient. ResNet’s convolutional
approach may struggle with flexible capture of distant gene inter-
actions.

Efficient local correlation handling: Mapping gene expression 
data to SIEs, adjacent “pixels” or regions may represent genes 
or features with biological associations. Swin-T’s windowed self-
attention restricts computations to local windows, reducing com-
plexity while focusing on local gene modules or interaction pat-
terns. In contrast, ViT/BeiT’s global attention may prematurely
handle all patch relations, leading to computational overload.

Balancing local and global information: The gene expression 
regulatory network is highly complex, where long-distance 
gene interactions are equally critical. Swin-T’s shifted window 
mechanism effectively propagates information across window 
boundaries between layers, maintaining computational efficiency 
while modeling local and global dependencies. In contrast, ResNet
expands receptive fields through stacked layers, and ViT/BeiT’s
global attention has inherent limitations.

In summary, Swin-T, with its layered design, efficient local win-
dow attention, and innovative shifted window mechanism, effi-
ciently captures and integrates complex gene expression patterns 
at multiple scales in SIEs . This explains its superior performance
over BeiT, ResNet, and ViT in predictive tasks.

Finally, we integrated survival time, survival status, and 
gene expression data from the test and validation cohorts and 
conducted a regression anal ysis using the LASSO-COX method,
which ultimately identified 24 prognosis-related genes (Fig. 5c). 
Additionally, by visualizing the self-attention matrix, we extracted 
high-contribution, prognosis-related genes from the SIE images
(Fig. 5a). A comparison between the two methods showed that our 
Gene Swin model identified 29 prognosis-related genes that were 
not detected by conventional bioinformatics analysis. Although 
these genes are linked to prognosis, their mechanisms of action 
remain unclear. To investigate the molecular mechanisms by 
which these genes affect CRC cells, various techniques such as 
proteomics, transcriptomics, and single-cell sequencing can be 
employed to analyze the downstream signaling pathways they 
regulate. The relationship between these genes and prognosis 
can also be validated through in vivo or in vitro experiments, 
for instance, by testing their effects using CRC cell lines. The 
overexpression or knockout of these genes can be used to 
observe their impact on cell proliferation, migration, invasion, 
and apoptosis. Alternatively, animal models, such as nude mice
or transgenic mouse models, can be developed to study the
effects of gene overexpression or knockout on CRC growth. Finally,
analyzing the expression levels of these genes in CRC patient
tissue samples and correlating them with clinical data, such as
patient prognosis and treatment response, can evaluate their
potential as therapeutic targets and facilitate the translation from
research to clinical practice.

Our research did not adopt SHAP (SHapley Additive exPla-
nations) values to enhance model interpretability. While SHAP 
values are indeed a powerful tool in many machine learning sce-
narios, they are not suitable for our research context for several
key reasons:

SHAP values require evaluating the contribution of each 
feature individually. For high-dimensional transcriptome data, 
which contains thousands of genes, the computational cost is 
extremely high. Our model handles complex SIEs, and SHAP 
analysis may require significant computational resources, with 
results that may be difficult to directly translate into biological 
insights. SHAP values are typically more suited for traditional 
machine learning models (such as random forests or gradient 
boosting machines) or neural networks with fewer features. In 
large transformer models, like the Swin Transformer that we 
used, the interpretation of SHAP values might not be intuitive 
because the decision-making process in these models heavily 
depends on nonlinear interactions between features. In contr ast,
the attention mechanism directly reflects the internal workings
of the model, providing a more natural and model architecture-
aligned way to explain the model. Our input data consist of
converting transcriptome data into SIEs, a process that increases
the complexity of the data. The attention mechanism effectively
analyzes the importance of these synthetic elements, whereas
SHAP values may struggle to adapt to this nonstandard input
format.

Our interpretability approach is highly consistent with the 
latest trends in interpretability of transformer models in the field 
of bioinformatics. The attention mechanism has been widely 
recognized as an effective tool for uncovering the decision-
making process of DL models in biological sequence analysis.
For instance, Zhang et al. [41] pointed out in a review that the 
interpretability and adaptability of transformer models have led 
to their widespread application in bioinformatics, especially in 
gene sequence analysis and drug discovery. They emphasized that
self-attention mechanisms not only improve model accuracy but
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also enhance model transparency by revealing key parts of the
input data.

Similarly, Choi and Lee [42] discussed in a review of trans-
former architectures for genomic data analysis how attention 
mechanisms integrate domain knowledge (such as known bio-
logical relationships) to make the model’s representations more 
interpretable. They noted that attention weights could be used 
to identify biologically important features, such as key genes or
regulatory elements, which aligns with our method of identifying
the PEX10 gene using attention matrices.

Furthermore, Wu et al. [43] proposed a transformer-based 
genomic prediction model called GPformer, which utilizes 
attention mechanisms to capture global relationships between 
single nucleotide polymorphisms. Their research further validates 
the interpretability potential of attention mechanisms when 
handling complex biological data, although their primary focus
was genomic prediction rather than prognostic analysis.

From this analysis, we can see that the computational com-
plexity, model specificity, and data characteristics of SHAP values 
make them less advantageous in our study. On the other hand, 
the attention mechanism not only fits large transformer models 
better but also handles complex data formats effectively, and i s
highly consistent with the latest trends in bioinformatics. Rele-
vant studies support the use of visualized attention mechanism
matrices to enhance model interpretability, which further vali-
dates our choice.

Despite these promising results, this study had several limi-
tations. First, although our predictive model performed well in 
distinguishing between patients with high and low survival risk, 
the study was retrospective in nature. Therefore, prospective val-
idation is necessary before the model can be applied to clinical 
practice. Second, the prognosis-related genes identified by Gene
Swin have not been systematically validated and their mecha-
nisms of action remain unexplored. This indicates that significant
work remains before these findings can be translated into clinical
application.

This study presents a new method called Gene Swin Trans-
former, which transforms transcriptomic data into SIEs and uses 
DL models to predict the prognosis of CRC patients. This data-
driven, automated prognostic modeling method offers new pos-
sibilities for personalized medicine, assisting clinical decision-
making through more accurate patient outcome predictions. Con-
ve rting complex transcriptomic data into a visual form and pro-
cessing it using advanced DL algorithms represents a significant
advancement in the fields of bioinformatics and clinical oncology.

However, there are several limitations in this study. First, the 
datasets used in the study (such as GSE17536-GSE103479 and 
TCGA) may have biases, such as sample source (mainly North 
American patients) or an imbalance in the distribution of clini-
cal variables. Although we mitigated these biases by integrating
multiple datasets and stratifying by clinical variables, further
validation on broader, independent datasets is needed to confirm
the mode’s generalization ability and robustness.

Second, training Transformer-based DL models (such as Swin 
Transformer) requires substantial computational resources. Our 
study used an NVIDIA RTX 3090 GPU, with each training session 
taking ∼10–15 hours. Although the popularity of cloud comput-
ing and efficient hardware has made these demands manage-
able, they may still pose a barrier for researchers with limited 
r esources. However, once model training is completed, the infer-
ence time is relatively short (usually a few seconds to minutes),
making the model practical for clinical applications.

Third, while this study focuses on CRC, the method of con-
verting transcriptomic data into SIEs is theoretically applicable to 
other cancer types. However, the gene expression characteristics 
of different cancers (such as the number of differentially 
expressed genes or the complexity of regulatory networks) may 
affect model performance. Therefore , although we believe this
method has broad applicability, it needs to be validated on
datasets from other cancer types (such as breast cancer or lung
cancer) to confirm its effectiveness.

Additionally, our method assumes that SIEs can effectively 
capture the biological information in transcriptomic data. While 
this assumption has been validated in this study, different data 
representation methods may be required for other tasks or cancer 
types. Moreover, this study focuses solely on survival prediction 
and does not a ddress other clinical outcomes, such as treatment
response or recurrence risk. Exploring the potential of this method
in other clinical applications is an important direction for future
research.

Based on these considerations, future research directions 
include: (i) validating the model’s performance on independent 
datasets with greater geographical and clinical diversity to 
confirm its generalization ability; (ii) applying the Gene Swin 
Transformer method to data from other cancer types to assess its 
applicability; (iii) optimizing the model’s computational efficiency 
through model distillation or mor e lightweight architectures to
improve accessibility; (iv) exploring the model’s performance
on other clinical endpoints (such as treatment response or
recurrence risk) to further elucidate its clinical value.

Conclusion 
In this paper, we present a technique that transforms genomic 
data into artificial images and compares the performance of four 
models using these SIEs to predict patient prognosis. Our results 
show that the enhanced Gene Swin model outperforms the other 
models. Specifically, the risk indicators generated by the Gene 
Swin Transformer proved to be reliable prognostic markers for 
CRC patients, highlighting the clinical utility of S IE technology
in forecasting patient outcomes. These findings suggest that SIE
technology has significant potential for widespread use in both
clinical and genomic research, paving the way for more effective
diagnostic and therapeutic strategies for cancer patients.

However, it is important to note that these experimental 
conclusions require further validation through prospective 
studies. Additionally, by visualizing the SIE attention matrix 
in CRC patients, we identified high-contribution genes related 
to prognosis that traditional bioinformatics methods have 
overlooked. Despite this promising discovery, these genes have
not yet undergone systematic validation, and substantial work
remains before they can be translated into clinical treatment.

Key P oints

• A novel deep learning model, Gene Swin Transformer, is 
developed to pr edict colorectal cancer prognosis using 
transcriptomic data.

• The model achieves superior accuracy compared to 
existing methods by integrating transformer -based 
architecture with transcriptomic features.

• Identifies key gene signatures associated with colorec-
tal cancer prognosis, pro viding potential biomarkers for 
clinical applications.
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• Demonstrates robustness across multiple independent 
datasets highlighting its gener alizability and transla-
tional potential.

• Offers insights into the biological mechanisms underly-
ing color ectal cancer pr ogression.
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