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Abstract 

Background:  Chinese herbal medicine is made up of hundreds of natural drug molecules and has played a major 
role in traditional Chinese medicine (TCM) for several thousand years. Therefore, it is of great significance to study 
the target of natural drug molecules for exploring the mechanism of treating diseases with TCM. However, it is very 
difficult to determine the targets of a fresh natural drug molecule due to the complexity of the interaction between 
drug molecules and targets. Compared with traditional biological experiments, the computational method has the 
advantages of less time and low cost for targets screening, but it remains many great challenges, especially for the 
molecules without social ties.

Methods:  This study proposed a novel method based on the Cosine-correlation and Similarity-comparison of Local 
Network (CSLN) to perform the preliminary screening of targets for the fresh natural drug molecules and assign 
weights to them through a trained parameter.

Results:  The performance of CSLN is superior to the popular drug-target-interaction (DTI) prediction model GRGMF 
on the gold standard data in the condition that is drug molecules are the objects for training and testing. Moreover, 
CSLN showed excellent ability in checking the targets screening performance for a fresh-natural-drug-molecule 
(scenario simulation) on the TCMSP (13 positive samples in top20), meanwhile, Western-Blot also further verified the 
accuracy of CSLN.

Conclusions:  In summary, the results suggest that CSLN can be used as an alternative strategy for screening targets 
of fresh natural drug molecules.
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Background
Traditional Chinese medicine (TCM) is an important 
part of the medical system in China, and its systematic 
and holistic view of treating diseases has been increas-
ingly valued by the scientific community [1]. Therefore, 
it is of great significance to explain the overall mech-
anism of TCM’s function for the sake of promoting 
modernization of TCM and development of modern 
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medicine. The microscopic manifestation of the overall 
efficacy of TCM is that it forms a complex network of 
multiple natural drug molecules to act on multiple tar-
gets and produce synergistic effects in different path-
ways and functional modules, so the most pressing task 
is to uncover the truth of this phenomenon[2]. How-
ever, the discovering process is still both time-consum-
ing and costly in the biological experiments [3, 4].

In the early stage, when a fresh-natural-drug-mole-
cule was found from nature, some researchers identi-
fied drug-target interaction from literature through text 
mining technique [5, 6] and explored drug-target inter-
action through common biological elements of drug 
and target [7, 8]. They applied some methods based on 
text mining to collect the known drug-target interac-
tion from literature, but they could not predict the new 
interactions. In fact, a large number of drug molecules 
and targets have no common elements [9], which also 
reduces the ability of text mining methods to recognize 
DTIs.

Over the past few decades, many researchers have 
made predictions of the interaction between targets 
and drug molecules based on the available data [10, 
11], which contributed a lot to drug discovery and drug 
recycle in other situations. For example, Chen et al. [12] 
creatively used unsupervised pre-training and supervised 
fine-tuning to predict associations of miRNA-disease. 
Lee et al. [13] constructed a directed network of protein 
interactions and gene data, consequently inferred the 
shortest path between targets and genes. Lu et  al. [14] 
investigated the predictive power of similarity indices 
such as common neighbors and Jaccard Index on predict-
ing DTI, purely based on known DTI information.

Although machine learning methods had been pro-
posed for drug-target interactions prediction, the predic-
tive performance of many methods needs to be improved. 
First, a large number of methods were adopted on basis 
of the characteristics of drugs and targets with the known 
drug-target correlations to predict DTIs. However, not 
all drugs and targets have complete characteristics. If the 
information is incomplete, the prediction method cannot 
be effectively predicted. Second, some researchers found 
that the traditional similarity-based methods are effec-
tive for specific protein classes, but not for other classes 
[11]. On the other hand, almost all algorithms, whose 
purpose is to find targets for the drug molecules that had 
been studied, are designed based on the drug molecules’ 
social relationships, they can’t provide services for a fresh 
natural drug molecule that has no interactions with any 
target. But drug development has more needs for that 
aspect, in other words we need a predictor to screen the 
targets for a fresh-natural-drug-molecule when it is sepa-
rated from the medicinal plants or animals.

Cosine-correlation is an algorithm that measures the 
difference between two individuals by the cosine of the 
Angle between two vectors in the vector space. It pos-
sesses the characteristics of high reliability and simple 
operation and has been used in many kinds of scientific 
researches, in particular, it tends to perform better when 
the input vector is sparsely populated and high-dimen-
sional [15–18]. Notably, the fingerprints of drug mol-
ecules are generally high dimensional and sparse vectors.

Hence, on the grounds of the idea that is molecules, 
which bound to the same target, have similar structures 
[19], a computation method screening the possible tar-
gets for the fresh natural drug molecules based on the 
Cosine-correlation and Similarity-comparison of Local 
Network (CSLN) was proposed in this paper, it can per-
form its target screening for a molecule newly discovered 
in nature, even if it has no known interaction with any 
targets.

The traditional Chinese medicine systems pharmacol-
ogy database and analysis platform (TCMSP) was built 
based on the framework of systems pharmacology for 
herbal medicines [20]. It is a relatively comprehensive 
database for collecting relevant data in the field of TCM, 
it is designed to fuel the development of herbal medicines 
and to promote the integration of modern medicine and 
traditional medicine in drug discovery and development.

In addition, since triptolide is a very widely studied nat-
ural drug molecule [21], we used CSLN to screen targets 
for triptolide (simulating the situation of a fresh natural 
drug molecule), the train and test set were constructed 
through TCMSP. Meanwhile, Western-Blot (WB) [22] 
was used to verify the screening results.

Materials and methods
Materials
The CSLN mainly uses the following databases for exper-
iments and verification. We acquired four datasets of the 
DTI network from the gold standard data [23] coover-
ing nuclear receptors (NR), enzymes (EN), G-protein 
coupled receptors (GPCR) and ion channels (IC). And 
it can be downloaded from http://​web.​kuicr.​kyoto-u.​ac.​
jp/​supp/​yoshi/​drugt​arget/. Each dataset includes 2 types 
of information, the observed DTIs and the similarities 

Table 1  The statistics of the four datasets of gold standard data

NR EN GPCR IC

Numbers of Targets 26 664 95 204

Numbers of Drugs 54 445 223 210

Numbers of Interactions 90 2926 635 1476

Sparsity(%) 93.59 99.01 97.00 96.55

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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among drugs. In addition, the detailed statistics of the 
above four datasets are shown in Table 1.

Cosine‑correlation and similarity‑comparison of Local 
Network (CSLN)
The specific implementation process of CSLN is shown in 
Fig. 1, which can be subdivided into the following steps. 
First, we got the molecular fingerprint through MAC-
CSkeys based on Rdkit [24] for all drug molecules. Sec-
ond, Tanimoto [25] was used to calculate the similarity 
between two molecules. Third, the screened target was 
expressed in combination with related drugs, and its sim-
ilarity with the fresh drug molecule was calculated with 
Cosine-correlation [16]. Fourth, compared the average 
similarity of local networks after the addition of the fresh 
drug molecule with that before the addition. Finally, the 
binding score of the target to the fresh drug molecule was 
obtained by combining the two values and assigning dif-
ferent weights to them through negative feedback adjust-
ment in machine learning. Then the scores were ranked 
from high to low, and the predicting results of the higher 
score were more likely to be the potential DTIs.

The drug-target dataset was described as a binary net-
work V = (D,T ,A) . D =

{
d1, d2, ..., dm

}
 was a collection 

of drug nodes, T = {t1, t2, ..., tn} was the set of target 
nodes and A =

{
a11, ..., aij, ..., amn

}
 was the set of edges 

between interconnected nodes in the network, where D 
and T respectively represented two independent sets. If 
there was a known interaction between the drug di and the 
target tj , then set aij = 1 , otherwise set aij = 0.

Based on RDKit, the characteristics of chemical mole-
cules were expressed in binary. The MaccsKeys fingerprint 
was put forward by a company whose name is MDL and 
had a total of 166 features, but the total length of Maccs-
Keys was 167bits, because bit 0 was a placeholder, and bit 
1–166 was a molecular feature bit. Then, the drug molecule 
di can be expressed as:

The Tanimoto score between the drug molecule di and dj 
is calculated according to the following formula:

where:
Fdi is the elements of molecular fingerprint of di;
Fdj is the elements of molecular fingerprint of dj;

Fdi =
{
fdi0, fdi1, fdi2, . . . , fdi166

}

TN (di, dj) =
Fdi ∩ Fdj

Fdi ∪ Fdj

Fig. 1  The overall architecture of CSLN [1]. Get the molecular fingerprint through MACCSkeys based on Rdkit; [2] Tanimoto was used to calculate 
the similarity between two molecules; [3] w1 is a globally shared value trained from the training dataset
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For example, we calculate the binding score between a 
target ty and a fresh drug molecule dy , the drug molecules 
d1, d2, ..., dx are which interact withty.

Here, d1, d2, ..., dx together denotety:

Cosine-correlation of ty and dy

Then, the mean similarity of drug molecules 
( d1, d2, . . . . . . , dx ) S1 is calculated by the following 
formula

And, the mean similarity S2 is calculated according to 
the following formula when dy is merged with the drug 
molecules

where
TN (a, b) represents the similarity between drug 

molecule a and drug molecule b (Obtained through 
Tanimoto);

Finally, we can get the binding score of target ty with 
drug dy according to the formula

where w1 (Global Shared) is the weight value between 
the Cosine-correlation and the Similarity-comparison 
scores. And they are obtained through feedback learning 
in training. The calculation formula of residual error in 
feedback learning is as follows

where yi is the true label of the sample, and ŷi is the pre-
dicted value.

Case study and verification
In the past decades, triptolide, a very widely studied nat-
ural drug molecule, has attracted considerable interest 

Fty =
{
fty0, fty1, fty2, . . . , fty166

}
=

[
x∑

m=1

fdm0,

x∑

m=1

fdm1,

x∑

m=1

fdm2, . . . ,

x∑

m=1

fdm166

]

Scos
(
ty, dy

)
=

Fty • Fdy

�Fty��Fdy�
=

∑166
i=0 ftyi ∗ fdyi√∑166

i=0 ftyi ∗

√∑166
i=0 fdyi
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∑x−1
i=1
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j=i+1 TN (di, dj)

x(x−1)
2

S2 =

∑x−1
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∑x
j=i+1 TN (di, dj)+

∑x
i=1 TN (di, dy)

x(x+1)
2

Score
(
ty, dy

)
= w1 ∗ Scos

(
ty, dy

)
+ (1− w1) ∗

S2

S1

Error =

n∑

i=1

∣∣yi − ŷi
∣∣

in the organic and medicinal chemistry society owing to 
its intriguing structural features and promising multiple 
pharmacological activities. However, its imprecise mech-
anism of action and severe toxicity have greatly hindered 

its clinical potential [21]. Therefore, in this study, trip-
tolide was selected as the experimental object to predict 
its targets by CSLN and TCMSP was used to build the 
training set and test set. Notably, the environment of new 
natural drug molecules was simulated in this experiment.

Cell culture
The HL-7702 cell lines and L02 cells were obtained from 
China Academy of Chinese Medical Sciences (Beijing, 
China). L02 cells were cultured in Dulbecco’s Modified 
Eagle’s Medium (DMEM, Sigma, USA) supplemented 
with 10% fetal bovine serum (Solarbio, Beijing, China), 
100 units/ml penicillin and 100  mg/ml streptomycin 
(Solarbio, Beijing, China). All cell lines were in a humidi-
fied environment containing 5% CO2 at 37 °C.

Western‑Blot
The indicated cells were lysed in RIPA buffer (solar-
bio, Beijing, China) at 4  °C. The protein concentration 
was determined according to BCA Protein Assay Kit 
(solarbio, Beijing, China), and the equal amounts of cell 
lysates (30–50  µg of proteins) were subjected to 10% 
SDS-PAGE. After electrophoresis, proteins were trans-
ferred onto PVDF membrane Then the membranes were 
blocked with 5% BSA at room temperature for 1  h, fol-
lowed by the incubation with NRH dehydrogenase [qui-
none] 2(NQO2) (1: 1000; ProteintechGroup, Inc, Beijing, 
China) and β-actin (1:1000; ProteintechGroup, Inc, Bei-
jing, China) antibody at 4  °C overnight. After the incu-
bation with the primary antibodies, the membranes were 
rinsed and probed with HRP-conjugated Affinipure Goat 
Anti-Rabbit IgG(H + L) (1:5000; ProteintechGroup, Inc, 
Beijing, China) for 1.5 h at room temperature. Then the 
immune-reactive bands were detected through Chemi-
DocTM Touch Imaging System (Bio-RAD, USA), and 
ImageJ software was used to analyze the gray value of the 
strip.

Statistical analysis
All data in this experiment were expressed as the 
mean ± SEM values. Multiple statistical analyses were 
conducted with one-way analysis of variance (ANOVA). 
A probability value of p < 0.05 was defined as significant. 
GraphPad Prism6.0 was used for statistical analyses.
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Results
To systematically evaluate the performance of the 
method in every dataset of gold standard data, tenfold 
cross-validation was used to evaluate the generalization 
ability of CSLN. The experimental dataset was divided 
into 10 parts, one ample set was randomly selected for 
testing, and the remaining nine sample sets were used for 
training. Remarkably, CSLN was an inductive method, 
which means that when we split data, the object was drug 
molecules.

When CSLN was in operation, it was necessary to set 
a threshold value to filter out some targets with low con-
nection degree when comparing-similarity of local net-
works. In other words, targets with lower connection 
degrees should be deleted when constructing the train-
ing set and test set. This threshold was determined by the 
training set, therefore, in tenfold-cross-validation, each 
training set had an optimal threshold. And the way to 
gain the threshold in each training set was to obtain the 
changing relationship between the performance of CSLN 
and the threshold in this data set by Leave-One-Out, 
finally, we selected the optimal threshold according to its 
performance. Where Leave-One-Out referred to taking 
every drug molecule in the training set as the test drug, 
deleting all its edges in the training set, and taking the 
remaining data as the basic data to calculate the binding 
score of the drug molecule with other targets according 
to CSLN.

Here, Fig.  2 shows the optimal thresholds for each 
training set in the tenfold cross-validation.

Performance comparison
We mainly compared CSLN with GRGMF [26], the 
state-of-the-art approach which was published in 2020 
and GRGMF has demonstrated superior performance 
over previously published models in biomedical net-
works. GRGMF formulated a GMF model which learns 
the latent factor of each node based on its neighborhood 
information. And instead of utilizing the similarity matri-
ces derived from external-related databases with prede-
fined metrics, this model could learn the neighborhood 
information for each node adaptively and further pro-
mote the prediction of potential links. And there is no 
threshold screening for GRGMF because according to 
the description of the author of GRGMF in the article, 
it is the result of calculation after decomposition of the 
whole matrix. If threshold screening is carried out, the 
information in the whole network will be reduced, so the 
accuracy will be reduced Here, we mainly compared the 
AUROC(area under ROC curve) and AUPR(area under 
the precision-recall) performance of CSLN and GRGMF 
on gold standard data, and showing the results in Fig. 3. 
In the results of performance comparison, CSLN’s 
AUROC on EN and IC datasets is superior to GRGMF, 
meanwhile, for AUPR, the former performs better than 
the latter in all four data sets.

Prediction by CSLN
Further, to demonstrate the reliability of CSLN in targets 
prediction for fresh natural drug molecules, we did an 
experiment and took the triptolide (Fig. 4a) as its object. 

Fig. 2  The optimal thresholds for each training set in the tenfold-cross-validation
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We simulated the environment of a fresh natural drug 
molecule by deleting its interaction with targets in the 
database. Meanwhile, from the results, we selected a pro-
tein with a high score that had not been found to interact 
with triptolide in previous relevant work to see whether 
triptolide could affect its expression with Western-Blot 
(WB).

We collected data of natural drug molecules from 
TCMSP (https://​tcmsp-e.​com/), which includes 6,494 
natural drug molecules and 1,718 targets that have inter-
actions with them, and the number of interactions is 
54,852. Since triptolide is not a fresh natural drug mol-
ecule, the interactions data of it in TCMSP were deleted 
to simulate the situation of a fresh natural drug mole-
cule and construct a new data-set, and CSLN was used 
to calculate the binding score between triptolide and 
the targets in the new dataset. When reconstructing the 
data-set, we deleted the triptolide known interactions 
[34] in the data-set, among which 3 targets only inter-
acted with triptolide, to simulated the environment of a 
fresh natural drug molecule for triptolide. Therefore, 34 
interactions and 3 targets were deleted. The detailed sta-
tistics of the above two datasets are shown in Table 2.

In this simulated prediction, Leave-One-Out was used 
to detect the performance of CSLN on the reconstructed 
data-set, and the data-set was adjusted according to the 
change of the threshold value to obtain the changing 

relationship between the threshold value and the perfor-
mance of CSLN. Finally, the optimal threshold value was 
selected as 24. The calculation would be skipped when 
the link degree of the target was less than 24. There were 
152 targets (include 10 positive samples) that have been 
selected. CSLN was used to calculate the binding scores 
of triptolide with 152 targets and we ranked them accord-
ing to the score, the top 20 were shown in Table 3.

Because this experiment is the simulation of tar-
gets prediction for a fresh ingredient, the source of the 

Fig. 3  The performance comparison of DTI prediction across four datasets between CSLN and GRGMF

Table 2  Details of the TCMSP data

Original Reconstructed

Numbers of ingredients 6494 6493

Numbers of targets 1718 1715

Numbers of interactions 54,852 54,818

Table 3  Top 20 targets of the binding score with triptolide

Name of the target Source

1 Proto-oncogene c-Fos TCMSP

2 Interleukin-6 [27]

3 Tumor necrosis factor TCMSP

4 Apoptosis regulator BAX [28]

5 Vascular endothelial growth factor A TCMSP

6 Apoptosis regulator Bcl-2 TCMSP

7 Caspase-3 TCMSP

8 Gamma-aminobutyric-acid receptor subunit alpha-4 [29]

9 NRH dehydrogenase [quinone] 2 –

10 Matrix metalloproteinase-9 Stitch

11 Glutamate receptor 2 –

12 Transcription factor AP-1 TCMSP

13 Transcription factor p65 TCMSP

14 Ig gamma-1 chain C region –

15 Glucocorticoid receptor Stitch

16 Gamma-aminobutyric-acid receptor alpha-5 subunit –

17 Neuronal acetylcholine receptor subunit alpha-2 [30]

18 Neuronal acetylcholine receptor subunit alpha-7 –

19 Gamma-aminobutyric-acid receptor alpha-3 subunit –

20 Muscarinic acetylcholine receptor M2 –

https://tcmsp-e.com/
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interaction information between the target and triptolide 
is briefed as the Source.

As we can see from the results, the 10 positive sam-
ples scored relatively high on the whole, and 7 of them 
appeared at the Top 20. Furthermore, there were another 
6 false-negative samples in the Top 20 interacting with 
triptolide, which had been evidenced in other databases 
and literature.

Results of Western‑Blot
To explore whether triptolide contributes to the regula-
tion of the expression of NRH dehydrogenase [quinone] 
2 (NQO2) in L02 hepatocyte, western blot analysis was 
performed to detect the expression levels of NQO2. Sta-
tistical differences between the two groups were found 
according to one-way ANOVA (Fig. 4c), p = 0.0236 < 0.05. 
This indicates that triptolide reduces the expression of 
NRH dehydrogenase [quinone] 2 in the L02 hepatocyte 
(Fig. 4b).

Discussion
In this study, we proposed a CSLN-based target screen-
ing method, which calculated the binding score between 
the target and the drug molecule according to cosine-
correlation and similarity-comparison of the Local Net-
work. The innovation of CSLN is that the method could 
predict the target for a fresh drug molecule, that is, for 

the newly discovered drug molecules, the possible tar-
get can be recommended more accurately with CSLN. 
Its advantage lies in the fact that the prediction of a drug 
molecule’s target is not limited by its social relationships.

Meanwhile, we compared the performance of CSLN 
and GRGMF on the gold standard data, and the result 
proved that the former has a better prediction perfor-
mance than the latter for the fresh drug molecules. This 
indicates that CSLN has a more excellent performance.

In pharmaceutical research, more fresh drug molecules 
are being found in nature. Therefore, we followed up 
with a case study of natural drug molecules. We chose 
triptolide, a highly studied natural drug molecule, as 
an object to verify the reliability of CSLN. In the target 
prediction experiment of triptolide, CSLN also showed 
excellent performance. 13 targets that have interactions 
with triptolide (7 of TCMSP, 6 of other databases or lit-
erature) were predicted in the top 20. These demonstrate 
the ability of CSLN not only to predict positive samples 
but also to maintain a high hit rate for potential- interac-
tions (which didn’t appear in the basal data).

In the WB experiment, we chose NRH dehydrogenase 
[quinone] 2 (NQO2) as the target, which had no interac-
tion with triptolide in previous studies and it ranks the 
ninth in the results according to CSLN, to further verify 
the accuracy of CSLN. Experimental results show that 
compared with the blank group, the NQO2 expression 
quantity of the medicine group was decreased in L02 
hepatocytes. This means that triptolide could down-reg-
ulate the expression of NQO2. It again proves that CSLN 
has high accuracy in the screening targets of fresh natural 
drug molecules.

Coincidentally, an interesting situation was found in 
the results of our validation. Qi et al. [31] found that trip-
tolide is highly toxic and can cause toxicity to the diges-
tive system, urinary system, blood circulation system, 
reproductive system, and bone marrow, causing vary-
ing degrees of damage, which seriously affects its use. 
In addition, according to relevant studies, renal insuffi-
ciency/failure is the most important cause of death in all 
cases of triptolide poisoning, and the kidney is the most 
important target organ for the chronic toxic effects of 
triptolide [32]. However, the mechanism of renal injury 
induced by triptolide is still unclear. Therefore, from a 
safety perspective, efforts must be made to understand 
the mechanism of the nephrotoxic effects of triptolide. 
Meanwhile, NQO2 is a quinone reductase associated 
with the conjugation of hydroquinone and is involved in 
detoxification pathways as well as biosynthesis processes 
such as vitamin K-dependent γ-carboxylation of gluta-
mate residues in prothrombin synthesis [33]. Therefore, 
this suggests that, possibly, the toxic effects of triptolide 

Fig. 4  Experimental result of Western blot (*p < 0.05). a is the 
chemical formula for triptolide. b is the result of Western-Blot to 
verify the effect of triptolide on the expression of NQO2 in the L02 
hepatocyte. c is the result of one-way ANOVA between the control 
group (NC) and the experimental group (Triptolide)
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are expressed through suppressing the mediation agent 
NQO2.

At present, the known interactions of drug-target have 
high sparsity, this sparsity provides unlimited possibili-
ties for the new use of old drugs and the development of 
new drugs, but it leads to the low accuracy of prediction 
algorithms precisely, CSLN is also limited in this regard.

Conclusion
CSLN proposed in this study performs better than 
GRGMF on gold standard data although GRGMF has 
demonstrated superior performance over previously 
published models in biomedical networks. In addition, 
when predicting the target of triptolide based on TCMSP, 
CSLN also performed quite accurately. Moreover, the 
Western-Blot experiment further proves its accuracy.

These evidence indicate that CSLN has good per-
formance in the pre-screening stage of targets for the 
fresh drug molecules. Therefore, in the process of tar-
get discovery, using CSLN for pre-screening can save 
much time and energy for researchers. Especially, 
CSLN is very useful in the field of Chinese herbal medi-
cine research. When a fresh natural drug molecule is 
found from plants or animals, CSLN will provide great 
help for ascertaining its target. It is worth noting that 
the final prediction result is only a binding score of the 
drug molecule to be predicted and the target in the data 
set given by CSLN, and the predicted results will be 
ranked according to the score. The closer the ranking is 
to the top, the more likely the result is to be a positive 
sample.
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