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ABSTRACT
Sickle cell disease (SCD) is a single gene disorder
causing a debilitating systemic syndrome characterised by
chronic anaemia, acute painful episodes, organ infarction
and chronic organ damage and by a significant
reduction in life expectancy. The origin of SCD lies in the
malarial regions of the tropics where carriers are
protected against death from malaria and hence enjoy
an evolutionary advantage. More recently, population
migration has meant that SCD now has a worldwide
distribution and that a substantial number of children
are born with the condition in higher-income areas,
including large parts of Europe and North and South
America. Newborn screening, systematic clinical follow-
up and prevention of sepsis and organ damage have led
to an increased life expectancy among people with SCD
in many such countries; however, in resource-limited
settings where the majority continue to be born, most
affected children continue to die in early childhood,
usually undiagnosed, due to the lack of effective
programmes for its early detection and treatment.
As new therapies emerge, potentially leading to disease
amelioration or cure, it is of paramount importance that
the significant burden of SCD in resource-poor countries
is properly recognised.

INTRODUCTION
Sickle haemoglobin (HbS) is a structural variant of
normal adult haemoglobin (HbA) caused by a
mutation in the HBB gene that leads to the substitu-
tion of valine for glutamic acid at position 6 of the
β-globin subunit (βS) of the haemoglobin mol-
ecule.1 The term ‘sickle cell disease’ (SCD) refers to
any condition in which the production of HbS
leads to pathophysiological consequences. The
most common form (>70% of SCD worldwide)2

results from the homozygous inheritance of the
βS-mutation and is usually referred to as either
‘SCD SS’ or as ‘sickle cell anaemia’ (SCA).
However, SCD can also result from the inheritance
of βS in combination with a wide range of other
HBB mutations, the two most common being a
second structural β-globin variant βC (SCD SC)3

and one of the many β-thalassaemia mutations that
lead to the reduced production of normal β-globin
(SCD S/β-thalassaemia).4 SCD SS is the most severe
form of SCD and, consequently, is the main focus
of the current review.

HISTORICAL PERSPECTIVE
SCD was first described in the Western medical lit-
erature by the American physician James Herrick
who reported the presence of ‘peculiar elongated
and sickle-shaped red blood corpuscles’ in the
blood film of a Grenadan student with a history of

leg ulcers, shortness of breath and jaundice.5

Pauling and Itano6 established the fact that SCD
was a molecular disease almost 50 years later while
in the decades that followed, scientific advances led
to descriptions of the structure of the HbS mol-
ecule,7 molecular basis of the sickling phenom-
enon,1 cloning and sequencing of the β-globin
gene, development of molecular diagnostic
methods8 and establishment of prenatal diagnosis.9

In parallel with such advances, significant pro-
gress was made towards improving clinical out-
comes among those born with SCD during the
1970s and 1980s, before which very few affected
subjects survived beyond 10 years.10 In response to
reports of poor funding for SCD research, a series
of comprehensive SCD centres were created in the
USA during the 1970s,11 and by 1994 the median
age of death had risen to 48 and 42 years in
women and men, respectively.12 13 Following the
introduction of newborn screening programmes in
cohorts in the USA,14 Jamaica15 and the UK,16 and
the gradual introduction of a broad range of life-
saving measures (including penicillin prophylaxis,
vaccination for common bacterial diseases, training
of parents to detect splenic sequestration events
and provision of disease-modifying treatment with
hydroxycarbamide), in the US cohort overall sur-
vival to 18 years had risen to 85% by 200414 and
to 96% by 2010,17 while in the London cohort
overall survival to 16 years was almost universal by
2007.16 Nevertheless, despite these dramatic
improvements, the outcome for adolescents and
adults with SCD remains disappointing. In a
recent US study, mortality among patients aged
20–25 years was twice that of patients aged 15–19
years, highlighting the importance of the transition
from paediatric to adult services.18

THE BURDEN AND GLOBAL DISTRIBUTION OF SCD
The βS-mutation is the archetypal example of
natural selection in humans. Heterozygotes, whose
red blood cells contain both HbA and HbS, are so
strongly protected from malaria19 20 that the global
distribution and the frequency of the βS-mutation a
mutation now strongly reflects the historic inci-
dence of death from malaria.21 Nevertheless,
despite the extraordinary protection that βS-carriers
enjoy from malaria, there are few places where the
carrier frequencies exceed 25% because the rise of
the mutation in populations above that level has
been kept in check by the profound disadvantage
conferred by homozygosity.22 Despite the fact that
SCD originates in the malaria-endemic world,
population migration during the last few hundreds
of years, first through the slave trade and more
recently for economic and work-related reasons,
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means that substantial numbers of children with SCD are now
being born in high-income countries, particularly in the larger
cities in Europe and North America.23 No global data regarding
the precise numbers of children born with SCD exist because, in
contrast to Europe and North America, newborn screening for
SCD is not available in most resource-poor countries with the
highest predicted burdens; however, on the basis of data on
carrier frequencies and global birth rates, we recently estimated
that around 312 000 children are born each year with SCD SS,
a figure that includes approximately 300 births in the UK and
almost 3000 in the USA.24 Given the more limited availability
of detailed contemporary allele frequency data for haemoglobin
C (HbC) and the β-thalassaemias, it is more difficult to estimate
the numbers born with other forms of SCD, but they probably
total a further 50 000–100 000 births per year.2

Despite the numbers born with SCD in resource-poor coun-
tries, remarkably, few detailed studies have described the clinical
course and complications of the disease in that context. Even
today, the majority of those born with the disease in Africa,
where more than 80% of affected births occur, die undiagnosed
in early childhood,22 presumably from preventable causes that
include invasive bacterial diseases,25 malaria26 and severe acute
anaemia. As a consequence, in many parts of sub-Saharan
Africa, SCD is probably responsible for up to 6% of all child
deaths,2 27 a situation that must be addressed if recent improve-
ments in overall child survival are to be consolidated. Because
so little is known about the clinical course and natural history of
SCD in resource-poor countries, the majority of this review is
focused on data from Europe and North America, where most
detailed studies have been conducted.

DIAGNOSIS AND PATHOPHYSIOLOGY
The diagnosis of SCD relies on the analysis of haemoglobin,
most commonly using either protein electrophoresis or high-
performance liquid chromatography. Subjects with the most
common form of SCD, SCD SS, produce no HbA, but predom-
inantly produce HbS along with variable amounts of haemoglo-
bin F (HbF) and haemoglobin A2 (HbA2), while those with SCD
SC produce mainly HbS and HbC. DNA-based methods are
commonly used to confirm the diagnosis of SCD in more com-
plicated cases.28

Since SCD was first described a century ago, a great deal has
been learnt about its pathophysiological consequences. Under
conditions of hypoxia, acidity and cellular dehydration, the
polymerisation of HbS within erythrocytes leads to their
deformation into the characteristic ‘sickle’ shape. In dynamic
interaction with the vascular endothelium, this sickling leads to
episodic microvascular occlusion, ischaemia and reperfusion,29

vascular and inflammatory stress, and increased expression of
vascular oxidases, inflammatory cytokines and adhesion mole-
cules.29 In addition, chronic haemolysis results in anaemia,
hypoxia, cholelithiasis, fatigue, exercise intolerability, hypercoa-
gulability30 and vasculopathy,31 which lead in turn to endothe-
lial nitric oxide depletion, development of pulmonary
hypertension32 and ischaemic strokes.33 Recent work in trans-
genic sickle mice has highlighted the central role played by
hypoxia in generating multi-organ damage by increased adeno-
sine signalling via the G-protein coupled adenosine receptor
ADORA2B.34

The pathophysiology of pain in SCD remains poorly under-
stood.35 Nociceptive stimuli generated from cellular responses
to vaso-occlusion, tissue infarction, inflammation and
ischaemia-reperfusion injury activate receptors in the peripheral
sensory nerves. However, neuropathic pain and increased

sensitisation to mechanical touch have also been frequently
noted, the latter being recently characterised as driven by
increased primary afferent input to the central nervous system
by the transient receptor potential vanilloid-1 channel in trans-
genic sickle mice.36

CLINICAL FEATURES
The clinical features of SCD, described through multiple studies
conducted in high-income populations in Europe and North
America, are defined by chronic anaemia, sepsis, haemolysis and
recurrent acute vaso-occlusive crises. The last are characterised
by pain and a systemic inflammatory response that may be
severe, episodic and unpredictable. Some of the more common
acute clinical and laboratory features of SCD are summarised in
table 1, along with descriptions of current approaches to their
management. Although this list would almost certainly look
very different among children with SCD in low-income coun-
tries who are often exposed to malaria, geo-helminth infections,
undernutrition and variable standards of care, this is beyond the
scope of the current review.

VASO-OCCLUSIVE CRISES AND BONE DISEASE
Painful vaso-occlusive crisis due to bony infarction is the com-
monest cause for hospital admissions. Infants may present with
dactylitis or bony infarction of digits, irritability and swelling of
fingers or toes. Infarction can affect any bone or joint and may
mimic osteomyelitis.37 Avascular necrosis—the result of recur-
rent vaso-occlusion and infarction of the articular surfaces and
heads of long bones—is found in 12%–15% of children with
SCA38 39 and has been associated with both high haematocrit
and the concomitant presence of α-thalassaemia.40 41

Osteomyelitis and septic arthritis, most commonly due to
Salmonella spp, Staphylococcus aureus and Gram negative
enteric bacilli,42 are also common, a cumulative incidence of
12% having been reported in one paediatric cohort in metropol-
itan France.43 Osteopaenia and osteoporosis are frequent find-
ings in SCD and patients may suffer from chronic back pain as a
result of vertebral collapse.38

ACUTE CHEST SYNDROME
Acute chest syndrome (ACS) is the second most common cause
of hospitalisation and is characterised by intrapulmonary ischae-
mia and infarction, systemic hypoxia and pulmonary infiltrates
on chest radiography.44 Community-acquired pneumonias and
fat embolism from bone marrow necrosis have been implicated
in its pathogenesis. In a recent study, 50% of paediatric and ado-
lescent patients with SCD reported acute pulmonary events
during a median follow-up of 21 months. Children with
asthma, a major cause of morbidity in SCD, suffer twice as
many episodes of ACS as those without45 while other risk
factors include a high white cell count, and a high tricuspid-
regurgitant jet velocity (TRV).46 While raised TRVs have been
associated with mortality in adults,32 no such correlation has
been reported in children; nevertheless, in one recent study, a
gradual decline in exercise tolerance was noted in follow-up of
children with elevated TRVs, suggesting that tricuspid valve
disease may well progress throughout childhood.47

BACTERIAL SEPSIS
Evidence of reduced splenic function is evident from early
childhood. Functional asplenia is the norm by 6 months to
3 years of age48 49 and leads to an increased susceptibility to
infections, particularly those caused by encapsulated bacteria
and malaria.25 26 50 51 In high-income countries, mortality from
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sepsis was greatly reduced following the introduction of
newborn screening and the early implementation of penicillin
prophylaxis, while further improvements in survival and reduc-
tions in documented blood stream infections were subsequently
achieved following the introduction of Haemophilus influenzae
and Streptococcus pneumoniae vaccines.17 Nevertheless, the
combination of suboptimal compliance and resistance to penicil-
lin prophylaxis, non-vaccine serotypes of S. pneumoniae, and
hyposplenism means that even today children with SCD remain
at increased risk of bacterial infections.52

SEQUESTRATION CRISES
Splenic sequestration is defined as an acute enlargement of the
spleen with a drop in haemoglobin of at least 2 g/dL from base-
line and a normal or raised reticulocyte count.53 In severe cases,
it may result in hypovolemic shock and death in a matter of
hours. Splenic sequestration can occur as early as 3 months of
age but is rarely seen beyond the age of 6 years. Recurrence can
occur in up to 50% of children.54 Prompt transfusion can be
life saving.55 Hepatic sequestration is a rare but severe complica-
tion of SCD caused by the obstruction of hepatic sinusoidal
blood flow by sickled erythrocytes and is characterised by
painful hepatomegaly, anaemia and reticulocytosis.56 Treatment
is supportive, with fluids and analgesia along with early red cell
exchange transfusions.57

ISCHAEMIC STROKES AND SILENT INFARCTS
SCD confers a higher risk of childhood stroke than any other
paediatric disease. In all, 11% of patients with SCD develop an
overt stroke by the age of 20 years, increasing to 24% by the
age of 45 years. The risk of first stroke is highest in the first
decade of life, being 1.02% per year between 2 and 5 years.58

Two-thirds of children with a history of stroke will develop a
second stroke within the first 2–3 years of an initial event.59

The risk of stroke can be determined by measuring blood veloci-
ties in the middle cerebral and internal carotid arteries by tran-
scranial Doppler (TCD) ultrasonography. In the Stroke
Prevention in Sickle Cell Anaemia (STOP) trial, the risk of
stroke among children with high TCD velocities was reduced by
90% by maintaining HbS concentrations at <30% through
regular blood transfusions.60 Children developed further strokes
when transfusion therapy was stopped61 or treatment was
switched to hydroxycarbamide,62 highlighting the need for life-
long transfusion in this patient group. Silent cerebral infarcts
(SCIs) on MRI scanning are common in asymptomatic patients
with SCD and are associated with neurocognitive impairment,
reduced academic achievement and stroke progression. Regular
blood transfusion in children with SCI has recently been shown
to reduce the incidence of SCI63 and monitoring for worsening
intellectual abilities is important.64

GIRDLE SYNDROME AND PRIAPISM
Severe abdominal pain, often unresponsive to analgesia and
associated with intestinal ileus and acute ischaemic colitis, is
termed ‘girdle syndrome’ owing to the circumferential distribu-
tion of pain. A high index of suspicion and early implementa-
tion of supportive therapy (including emergency red cell
exchange transfusion, analgesia and fluids) may prevent irrevers-
ible ischaemic damage to the gut.65 Priapism, defined as pro-
longed penile erection lasting >4 h, is a urological emergency
and can result in fibrosis of the corpora cavernosa and perman-
ent erectile dysfunction if not treated early. SCD is the common-
est cause of priapism in children and is thought to be caused by
chronic nitric oxide depletion within the penile vasculature due

to chronic intravascular haemolysis, aberrant G-protein signal-
ling, smooth muscle hypoxia, acidosis and impaired smooth
muscle contraction.66 Early intervention in the form of red cell
exchange transfusion and surgical decompression of the corpora
is essential. Recurrent, ‘stuttering’ priapism may be treated by
hydroxycarbamide, chronic red cell exchange transfusions or
sildenafil.67

STANDARDS OF TREATMENT
Universal or targeted newborn screening programmes, imple-
mentation of simple treatments such as vaccination and anti-
biotic prophylaxis, regular follow-up in specialist clinics and
improved parental education have together led to major reduc-
tions in the early mortality from SCD in high- and
middle-income countries. For example, simply teaching parents
how to palpate their children’s spleens led to a 90% reduction
in mortality from splenic sequestration crises in Jamaica.55

Nevertheless, despite such encouraging advances, the overall
outcome of patients with SCD remains poor. The recent UK
National Confidential Enquiry into Patient Outcome and Death
for haemoglobinopathies68 revealed a significant inequity of spe-
cialist care in the country and the lack of adequate knowledge
of haemoglobinopathies within the medical community, and
recommended the establishment of a national database to
capture information regarding prevalence, therapy and adverse
events of SCD.

A programme of universal screening for SCD was implemen-
ted in England in 2001 and was subsequently rolled out to
Scotland and Wales28 through which approximately 300 births
and 17 000 carriers are detected each year.69 The UK National
Standards for the Treatment of SCD in Children70 highlights
the need for coordinating care between the screening service,
primary care and local and specialist haemoglobinopathy teams,
and mandates the prescription of penicillin to children by
6 months of age along with additional polysaccharide antigen
vaccination for S. pneumoniae, and the provision of annual
TCD monitoring to children over 2 years.

Adequate and prompt management of the acute complications
of SCD remains the mainstay of clinical care. While the treat-
ments of common complications are summarised in table 1,
pain relief, hydration, aggressive treatment of sepsis and blood
transfusions remain central to acute management.

SPECIFIC THERAPIES FOR SCD
Hydroxycarbamide
Hydroxycarbamide (or hydroxyurea) remains the only agent
that has been proven to reduce the number of episodes of
painful crises, ACS and hospitalisations in randomised control
trials in adults,71 school-age children72 and infants73 with SCD.
Despite its well known beneficial effects and excellent long-term
toxicity profile,74 utilisation remains suboptimal due to user-
and prescriber-related uncertainties regarding toxicities, moni-
toring and efficacy.75

Blood transfusion
A number of observational and randomised controlled trials
have established the pivotal role of transfusion therapy in the
management of SCD, most notably in primary stroke preven-
tion60 61 and through improved oxygenation in ACS.76

Secondary analysis of two large paediatric randomised control
trials, namely, the Stroke Prevention (STOP) and Stoke With
Transfusions Changing to Hydroxyurea (SWiTCH) trials, indi-
cated that transfusion therapy was more effective in reducing
the incidence of painful crises and ACS than either standard
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supportive care or hydroxycarbamide.77 78 Nevertheless, despite
its well-recognised benefits, chronic transfusion therapy can
result in iron overload (leading to organ damage and requiring
additional iron chelation therapy), alloimmunsation,
transfusion-acquired infections, venous access-related issues such
as thrombosis and line-related sepsis and loss of work and
schooling.79 Coupled with the fact that the total economic costs
of chronic transfusion therapy far exceeds those of hydroxycar-
bamide treatment,80 81 transfusion therapy is mainly reserved
for specific indications such as stroke risk reduction, renal
failure or recurrent painful crises that are less responsive to
treatment with hydroxycarbamide.

Allogeneic HSCT and gene therapy
Allogeneic haemopoietic stem cell transplant (HSCT) is the only
curative treatment for SCD and is successful in 85%–90% of
patients.82 Transplantation offers disease-free survival and stabil-
isation of neurological lesions. Nevertheless, the fine balance
between the benefits and risks of treatment, including long-term
toxicities such as infertility and endocrinopathies,83 the variable
and unpredictable severity of SCD and the low availability of
specialist services mean that HSCT is generally reserved for the
most seriously affected patients. Table 2 outlines current indica-
tions for HSCT in SCD in the UK. Gene therapy has been in

development for a number of years and aims to abrogate
SCD-related symptoms by manipulation of haemopoietic stem
cells, either by viral vector-mediated insertion of a functional β
globin gene or by various gene-editing techniques that reduce
intracellular sickling by enhanced production of HbF. Phase I
studies of gene therapy have recently begun in several centres in
the USA and Europe.84 85

FUTURE PERSPECTIVES
In the short term, refining the indications for access to known
effective treatments is a major priority; for example, the accu-
mulated data on hydroxycarbamide suggest that the benefits of
the drug outweigh the risks in the vast majority of patients and
that access to hydroxycarbamide therapy should be available to
all who want it. At the same time, new therapies targeting spe-
cific mechanisms of HbF induction, endothelial dysfunction,
pain management, organ damage and gene therapy are under
intense research scrutiny.86 Nevertheless, improving the profile
of SCD as a major health problem in Africa and India, including
the introduction of newborn screening programmes and the
improved provision of even the most basic of medical care, will
benefit the greatest number of patients with SCD worldwide. A
good starting point would be the collection of more detailed
and up-to-date data regarding the expected birth frequencies

Table 1 Common clinical presentations of SCD

Clinical
presentation Symptoms Laboratory findings Treatment

Painful crisis Pain, localised swelling, fever Low Hb, high reticulocyte count, high
LDH, high bilirubin, high CRP

Hydration
Analgesia
Antibiotics

Acute chest
syndrome

Chest pain, fever, hypoxia, cough; may
progress from painful crisis elsewhere

Low Hb, high reticulocyte count, high
LDH, pulmonary infiltrates on CXR

Respiratory support, antibiotics, red cell exchange transfusion

Bacterial sepsis Pain, localised swelling, fever Low Hb, high reticulocyte count, high
LDH, high CRP, positive cultures

Hydration
Analgesia
Antibiotics

Sequestration
crisis

Pain, severe pallor, hepatomegaly or
splenomegaly

Low Hb, high reticulocyte count Urgent red cell transfusion, pain relief

Aplastic crisis Pallor Low Hb, low reticulocyte count,
parvovirus B19 +ve

Urgent red cell transfusion

Acute ischaemic
stroke

Hemiplegia, altered consciousness,
seizures

MRI brain with characteristic findings Urgent red cell exchange transfusion aim to reduce HbS to
<30%

Girdle syndrome Abdominal pain and distension, reduced
or absent bowel sounds, pallor, fever

AXR may show dilated bowel loops. Low
Hb, high reticulocyte count, high CRP

Nil by mouth, NG tube on free drainage, broad spectrum
antibiotics with anaerobic cover, red cell exchange transfusion,
surgical review

Priapism Painful, persistent erection Hydration, pain relief, urgent urology review and intervention:
red cell exchange transfusion

AXR, abdominal x-ray; CRP, C-reactive protein; CXR, chest x-ray; Hb, haemoglobin; HbS, sickle haemoglobin; LDH, lactate dehydrogenase; MRI, magnetic resonance imaging;
NG, naso-gastric; SCD, sickle cell disease.

Table 2 HSCT indications in SCD (ebmt.org/Contents/Resources/Library/EBMTESHhandbook)

One of: Neurological deficit due to stroke or subarachnoid haemorrhage
Recurrent acute chest syndrome not responding to 6-month course of hydroxycarbamide
Recurrent vaso-occlusive crises not responding to 6-month course of hydroxycarbamide

AND <16 years
AND HLA-identical matched related donor available
Candidates who may be considered for HSCT in special circumstances: ▸ Problems relating to future medical care e.g. unavailability of adequately screened blood products

▸ SCD relapsing after previous HSCT
▸ Transfusion-dependent S/β0 thalassaemia
▸ Adults aged 17–35 years (as part of clinical trial)

HLA, human leukocyte antigen; HSCT, haemopoietic stem cell transplant; SCD, sickle cell disease.
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and outcomes of SCD in these regions at scales that will be
meaningful to health planners responsible for making such deci-
sions, while estimates of the economic costs and benefits of
improved care are also needed. Such data will be most influen-
tial if the end-users are involved from the outset. At the same
time, improved advocacy for SCD is needed at every level
including increased education about SCD in schools and col-
leges in affected communities, increased involvement of patient-
support groups and influential groups such as celebrities, politi-
cians, funders and health agencies internationally. Finally, the
development of cheap, reliable point of care methods for the
diagnosis of SCD, akin to those developed for other diseases of
poverty such as HIV and malaria, could be transformative at
many different levels. Translation of research findings to clinical
practice in improving patient outcomes worldwide remains the
greatest challenge.
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