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The novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV2) pandemic has spread rapidly across the world (Zhu
et al., 2020). The clinical manifestations of Covid-19 appear to be
extensive, encompassing asymptomatic infection, circulatory and
renal injury, mild upper respiratory tract illness, and severe viral
pneumonia with respiratory failure or death and poses a particular
risk to people living with preexisting conditions (Zhu et al., 2020).
The severity of Covid-19 results from a profound lymphopenia, the
downregulation of type I IFN-mediated antiviral defense, as well as
an excessive inflammatory response orchestrated by monocytes
and macrophages (Merad and Martin, 2020; Vabret et al., 2020).
The potent activation of inflammatory monocytes/macrophages
leads to a cytokine storm of IL-6, MCP-1, TNFα (Merad and Martin,
2020; Vabret et al., 2020). This uncontrolled release of cytokines
was previously reported during severe infections mediated by
other pathogenic human coronavirus as SARS-CoV and MERS-CoV,
which, contrary to SARS-CoV2, also triggered high levels of IL-1β
(Merad and Martin, 2020; Perlman and Dandekar, 2005).

The early innate immune evasion strategies used by SARS-CoV2
to circumvent type I signaling in order to gain a window of
opportunity for virus propagation, remains to be elucidated. SARS-
CoV2 could express some immune evasion proteins capable of
reducing the interferon regulatory factor 3 (IRF3) and IRF7
activation to limit the type I IFN stimulation (Figure 1), as
previously observed for SARS-CoV, and MERS-CoV. (Merad and
Martin, 2020; Perlman and Dandekar, 2005; Schäfer and Baric,
2017; Schulz and Mossman, 2016; Vabret et al., 2020). In addition,

the epigenetic control of type I IFN innate immune response by
SARS-CoV2 could be hypothesized, as MERS-CoV infection
mediates repressive histone modification in promoter regions of
interferon stimulating genes (ISG) for the shutdown of innate
immune signaling (Figure 1) (Merad and Martin, 2020; Perlman
and Dandekar, 2005; Schäfer and Baric, 2017; Vabret et al., 2020).
Moreover, the kinetics of the systemic and the local IFN responses,
an important parameter that determines SARS-CoV2 infection
outcomes, needs clinical and experimental clarification. Variations
in severity of infection and mortality by SARS-CoV2 are broadly
reported worldwide but remain unexplained up to now. One
hypothesis associated Covid-19 incidence and mortality with
Bacille Calmette-Guérin (BCG) vaccinations (Miller et al., 2020;
O’Neill and Netea, 2020). Countries maintaining long-standing
universal BCG vaccination policies, such as South Korea and Japan,
showed lower SARS-CoV2-associated fatalities than nations such
as Italy or USA, which interrupted global BCG vaccination
campaigns (Miller et al., 2020). BCG, a live attenuated vaccine
against tuberculosis (TB), is nowadays one of the most widely used
vaccines globally, covering more than 90% of newborns and infants.
Recent epidemiological and clinical findings suggested that, in
addition to TB-specific protection, BCG vaccinations trigger as well
non-specific effects through the ability to enhance immune
protection against other pathogens (Aaby and Benn, 2012; Aaby
et al., 2011; Anderson et al., 2012; Colditz et al., 1995; Stensballe
et al., 2005). Notably, randomized trials revealed that BCG
vaccinations of infants could reduce the risk of lethal respiratory
infections by 50% and these protective effects were clearly not
related only to tuberculosis prevention (Aaby and Benn, 2012; Aaby
et al., 2011). Protective effects of BCG- was evidenced for a wide
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irus viral titers and generated protective immunity against herpes
implex virus type 2 (HSV-2) (Covián et al., 2019; Moorlag et al.,
019).
Although the mechanisms of these BCG-induced immunomod-

latory effects remain to be fully elucidated, induction of innate
mmune memory appeared to be the most plausible explanation
Aaby and Benn, 2012). This T- and B-cell independent trained
mmunity results from epigenetic reprogramming of innate
mmune cells, specifically through histone modifications and
eading to upregulation of proinflammatory cytokine production
IL-1, IL-6, TNFα) (Figure 1) (Covián et al., 2019; Kleinnijenhuis
t al., 2014; Kleinnijenhuis et al., 2012; Moorlag et al., 2019).
otably, BCG vaccinations were shown to trigger H3K4me3
ariation in human peripheral blood monocytes (Covián et al.,
019; Kleinnijenhuis et al., 2014; Kleinnijenhuis et al., 2012;
oorlag et al., 2019). The epigenetic control of proinflammatory
ytokine gene expression by BCG is mainly dependent on the
ucleotide-binding oligomerization domain 2 receptor (NOD2)
ignaling in monocytes (Covián et al., 2019; Kleinnijenhuis et al.,
012) as evidenced by the following data: (1) ablation of TLR2,

dipeptide (MDP) from the mycobacterial cell wall (Covián et al.,
2019; Kleinnijenhuis et al., 2012). Of note, these epigenetic
modifications were shown to increase NOD2 expression (Figure
1). Virulent Mycobacterium tuberculosis strains induce expression
of type I IFN mediated by NOD2 together with cyclic GMP-AMP
synthase (cGAS) signaling (Moreira-Teixeira et al., 2018). Such type
I IFN responses were shown to downregulate proinflammatory
cytokines and impaired antibacterial Th1 responses (Moreira-
Teixeira et al., 2018). Interestingly, BCG is capable of eliciting type I
IFN expression in both human and mouse primary macrophages,
albeit to a significantly lesser degree than pathogenic M.
tuberculosis (Moreira-Teixeira et al., 2018).

Based on these data, we speculate that BCG-trained innate
immunity could similarly control SARS-CoV2 infection by appro-
priate control of type I IFN and proinflammatory cytokine
responses (Figure 2). According to the critical role of NOD2 in
BCG-induced innate memory, we hypothesize that NOD2 signaling
in macrophages/monocytes could be determinant to tune innate
immune responses against SARS-CoV2 (Figure 1).

The role of NOD2 signaling in SARS-CoV2 infection remains

igure 1. NOD2-dependent BCG-induced trained immunity may be determinant for the control of SARS-CoV2 infection. SARS-CoV2 could adopt different strategies (immune
vasion protein expression and epigenetic changes) to delay or fully inhibit host type I interferon (IFN) antiviral defenses, resulting in the development of pulmonary hyper-
flammation in severe Covid-19. We suggest that NOD2 signaling following BCG vaccinations could trigger epigenetic reprogramming of innate immune responses in
acrophages/monocytes to prevent the cytokine storm. Abbreviation; CCL2, CC chemokine ligand 2, IRF, interferon regulatory factors, NOD2, nucleotide-binding
ligomerization domain-containing protein 2, NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells, MAVS, mitochondrial antiviral-signaling protein, PRR,
attern recognition receptor, TRAF, tumor necrosis factor receptor (TNFR)-associated factor, TBK 1, serine/threonine-protein kinase 1, TRF3, telomere binding protein 3.
LR4 or Dectin-1 signaling did not abolish cross-protection
nduced by BCG (Kleinnijenhuis et al., 2012); (2) homozygous
022insC frameshift mutation leading to complete NOD2 deficien-
y, abolished BCG-induced cytokine upregulation in human
onocytes (Kleinnijenhuis et al., 2012); (3). The training effects
licited by BCG could be reproduced with NOD2 agonist muramyl
5

altogether unknown up to now. However, NOD2 was reported to
sense ssRNA from viruses as Respiratory Syncytial Virus (RSV),
Vesicular Stomatitis Virus (VSV), Parainfluenza, Influenza A, or
Foot-and-mouth disease virus (FMDV) to stimulate type I IFNs
responses through the mitochondrial membrane-anchored CARD
protein (MAVS)/IRF3/IRF7 signaling (Keestra-Gounder and Tsolis,
3
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2017; Moreira and Zamboni, 2012; Sabbah et al., 2009). Interest-
ingly, MERS-CoV is capable of decreasing NOD2 expression in
macrophages (Kim et al., 2019).

We thus propose that BCG vaccinations, through the induction
of NOD2-dependent epigenetic reprogramming, inhibit SARS-
CoV2 evasion strategies and prevent excessive accumulation of
monocytes, macrophages, and neutrophils in the lungs and
consequently the cytokine storm induction (Figure 1). Particularly,
BCG could early elicit type I IFN expression by NOD2 signaling
(Figure 2). This early antiviral response would be critical for the
control of SARS-CoV2 propagation as delayed IFN-I production is
associated with the pathology of Covid-19 (Acharya et al., 2020;
Schulz and Mossman, 2016) (Figure 2). The in-depth characteriza-
tion of the molecular crosstalk between type-I IFN and proin-
flammatory cytokine signaling together with epigenetic changes
associated with SARS-CoV2 infection will be decisive to clearly
measure the potential of BCG-trained innate memory for the
control of Covid-19. Results from large clinical trials (ClincialTrials.
gov identifiers NCT04328441 and NCT04327206) currently under-
way will be influential in recommending BCG vaccinations to
prevent Covid-19. Together with the extensive characterization of
innate immune activation by SARS-CoV2, several key unanswered
research questions need to be addressed: What is the role of NOD2
in SARS-CoV2 infection? Could BCG-induced trained immunity
positively influence NOD2 signaling for the early induction of IFN-I
inflammatory responses? What are the epigenetic changes
triggered by SARS-CoV2 in innate immune cells? Could the
epigenetic reprogramming by BCG vaccinations interfere with
epigenetic changes modulated by SARS-CoV2? Is BCG-trained
immunity in the context of Covid-19 dependent on the type of BCG
vaccine strains? As Covid-19 progresses to severe disease,
particularly in elderly patients, is the strength of BCG-induced
memory age-dependent?

BCG represents an elegant platform as well for the development
of recombinant vaccines, including auto-adjuvant capacities
(Covián et al., 2019). Consequently, vaccine candidates based on
recombinant BCG expressing SARS-CoV2 antigens could simulta-

strengthen antiviral defenses to prevent any future episode of
coronavirus pandemics.

Innate immunity, acting as the first element of defense, can
represent, together with other mechanisms, a promising target for
the treatment of patients or at least to better understand the
pathogenesis of the disease.
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