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A B S T R A C T   

Lung disease is common throughout the world. These include chronic obstructive pulmonary disease, pneu-
monia, asthma, tuberculosis, fibrosis, etc. Timely diagnosis of lung disease is essential. Many image processing 
and machine learning models have been developed for this purpose. Different forms of existing deep learning 
techniques including convolutional neural network (CNN), vanilla neural network, visual geometry group based 
neural network (VGG), and capsule network are applied for lung disease prediction. The basic CNN has poor 
performance for rotated, tilted, or other abnormal image orientation. Therefore, we propose a new hybrid deep 
learning framework by combining VGG, data augmentation and spatial transformer network (STN) with CNN. 
This new hybrid method is termed here as VGG Data STN with CNN (VDSNet). As implementation tools, Jupyter 
Notebook, Tensorflow, and Keras are used. The new model is applied to NIH chest X-ray image dataset collected 
from Kaggle repository. Full and sample versions of the dataset are considered. For both full and sample datasets, 
VDSNet outperforms existing methods in terms of a number of metrics including precision, recall, F0.5 score and 
validation accuracy. For the case of full dataset, VDSNet exhibits a validation accuracy of 73%, while vanilla 
gray, vanilla RGB, hybrid CNN and VGG, and modified capsule network have accuracy values of 67.8%, 69%, 
69.5% and 63.8%, respectively. When sample dataset rather than full dataset is used, VDSNet requires much 
lower training time at the expense of a slightly lower validation accuracy. Hence, the proposed VDSNet 
framework will simplify the detection of lung disease for experts as well as for doctors.   

1. Introduction 

The affect of disease on health is rapidly increasing because of al-
terations to the environment, climate change, lifestyle, and other fac-
tors. This has increased the risk of ill health. Approximately 3.4 million 
people died in 2016 due to chronic obstructive pulmonary disease 
(COPD), affected generally by pollution and smoking, whereas 400,000 
people pass away from asthma [1,2]. 

The risk of lung diseases is enormous, especially in developing and 
low middle income countries, where millions of people are facing 
poverty and air pollution. According to the estimation of WHO, over 4 
million premature deaths occur annually from household air pollution- 
related diseases, including asthma, and pneumonia. Hence, it is neces-
sary to take necessary steps to reduce air pollution and carbon emission. 
It is also essential to implement efficient diagnostic systems which can 
assist in detecting lung diseases. Since late December 2019, a novel 
coronavirus disease 2019 (COVID-19) has been causing serious lung 
damage and breathing problems. In addition, pneumonia, a form of lung 
disease can be due to the causative virus of COVID-19 or may be caused 

by other viral or bacterial infection [3]. Hence, early detection of lung 
diseases has become more important than ever. Machine learning and 
deep learning can play a vital role for this purpose. Recently, digital 
technology has become more important worldwide. This research paper 
can provide doctors and other researchers a direction for detecting lung 
disease with the help of deep learning methodology. A large number of 
lung X-ray images are used as a dataset. The system presented herein can 
also assist to detect diseases more accurately, which can protect 
numerous vulnerable people and decrease the disease rate. The health 
scheme is not yet established due in part to population growth [3,4]. 

Many researchers have done investigations to relate machine 
learning schemes for prediction of X-ray image diagnostic information 
[5–7]. With the control of computers along with the huge volume of 
records being unrestricted to the public, this is a high time to resolve this 
complication. This solution can put up decreasing medical costs with the 
enlargement of computer science for health and medical science pro-
jects. For the implementation, the NIH chest X-ray image dataset is 
collected from Kaggle repository [8,9] and it is fully an open source 
platform. A new hybrid algorithm is introduced in this paper and this 
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algorithm is successfully applied on the above mentioned dataset to 
classify lung disease. The main contribution of this research is the 
development of this new hybrid deep learning algorithm suitable for 
predicting lung disease from X-ray images. 

The paper can be organized as follows: Section 2 describes some 
related works on lung X-ray image classification or lung nodule detec-
tion and classification. The problem statement of this research is pre-
sented in Section 3. A detailed analysis of the implemented dataset is 
presented in Section 4. The existing methods for disease classification 
are discussed in Section 5. The methodology of this research is discussed 
in Section 6. The results and associated discussion are provided in Sec-
tion 7, while Section 8 concludes the paper. 

2. Related works 

In spite of launching the first CAD system for detecting lung nodules 
or affected lung cells in the late 1980s, those efforts were not enough. 
This is because there were many inadequate computational resources for 
the implementation of advanced image processing techniques at that 
time. Lung disease detection using basic image processing techniques is 
also time consuming. After the successful invention of GPU and CNN, the 
performance of CAD (for lung disease diagnosing) and decision support 
arrangement got a high boost. Many studies [10–31] propose many deep 
learning models in order to detect lung cancer and other lung diseases. 
The work in Ref. [10] focuses on the detection of thorax diseases. A 3D 
deep CNN is proposed in Ref. [11] with multiscale prediction strategies 
in order to detect the lung nodules from segmented images. However, 
the work in Ref. [11] cannot classify disease types and the multiscale 
prediction approaches are applied for small nodules. A fully CNN is 
proposed in Ref. [12] for the reduction of false positive rate in classi-
fying the lung nodules. This method can only analyze the nature of the 
CT scan images in order to reduce the probability of wrong diagnosis. 
Luna 16 dataset is used in Ref. [12]. Faster R–CNN is used in Ref. [13] for 
detecting the affected lung nodules as well as reducing the FP rate. 
Faster R–CNN shows promising results for object detection. The fusion of 
deep CNN architecture and dual path network (DPN) is used in Ref. [14] 
for classifying and extracting the feature of the nodules. Multi patches 
arrangement with Frangi filter is used in Ref. [15] to boost the perfor-
mance of detecting the pulmonary nodule from lung X-ray images. 
However, their system produces sensitivity of 94% with an FP rate of 
15.1. 

The significance of artificial intelligence (AI) is offered in Ref. [16] 
with a state of art in the classification of chest X-ray and analysis. 
Furthermore, the work [16] describes this issue besides organizing a 
novel 108,948 front outlook database known as ChestX-ray8 where the 
32,717 X-ray images are of unique patients. The authors in Ref. [16] 
conduct deep CNNs to validate results on this lung data and so achieve 
promising results. The database of ChestX-ray8 is also adapted to be 
used for multi classification of lung diseases [15]. In Ref. [24], a 
framework for deep learning is proposed to predict lung cancer and 
pneumonia offering two deep learning methods. Initially they use 
modified AlexNet for diagnosis of chest X-ray. Moreover, in the modified 
AlexNet, SVM is implemented for the purpose of classification [24]. The 
authors use LIDC-IDRI and Chest X-ray dataset [24,25]. Chest X-ray 
dataset is also used in Ref. [26–31]. Comprehensive studies are 
described in Ref. [26] on the detection of consolidation according to 
DenseNet121 and VGG 16. This system is built on deep learning based 
computer aided diagnosis [24,27]. Deep learning based CAD system is 
used for the clinically significant detection of pulmonary masses/nod-
ules on chest X-ray images [27]. Moreover, deep learning method is also 
proposed in Ref. [28] where several transfer learning methods such as 
DenseNet121, AlexNet, Inception V3, etc., are used for pneumonia di-
agnoses. However, the parameter tuning for their implemented methods 
are very complex. The paper [17] describes that a dataset for big labeled 
is the point of achievement for classification tasks and prediction. The 
work in Ref. [17] offers a big dataset named CheXpert containing 224, 

316 radiographic chest images from 65,240 patients. The authors of [17] 
conduct CNNs to indicate labels to this dataset constructed on the 
prospect indicated by the model. This model uses lateral and frontal 
radiographs with observing the output. Moreover, a benchmark dataset 
is released in Ref. [17]. Further the availability of big datasets is 
extremely anticipated that images with all objects should be recognized 
lightly and segmentation. Therefore, various methods are needed that 
can perform both object detection and instance segmentation. Such 
powerful approaches are FCN and F-RCNN [18,19]. This extended 
F-RCNN network is known as Mask R–CNN as well as it is superior to 
F-RCNN according to accuracy and efficiency. The authors of [20] 
address Mask R–CNN method for segmentation and object detection. 
The study in Ref. [20] compares their algorithm with others and pro-
vides the best algorithm from COCO 2016 [21,22]. MixNet (Fusion of 
two or more networks) is applied in Ref. [23] for the detection of lung 
nodules where GBM is used in classification of two datasets such as 
LUNA16 and LIDC-IDRI. From the above study, it is clear that research is 
needed for the detection and classification of lung diseases for the case of 
large and new datasets. 

3. Problem statement 

In recent times, a big dataset of X-ray data is available in Kaggle 
repository [8,9]. In this paper, this dataset has been implemented using 
a novel deep learning method by combining CNN, VGG, data augmen-
tation and spatial transformer network (STN). This new hybrid method 
is termed here as hybrid CNN VGG Data STN (VDSNet). 

This paper applies the new VDSNet algorithm in analyzing lung 
disease dataset in order to predict lung disease in patients. For this, a 
binary classification is conducted using the input attribute of the dataset 
(such as age, X-ray images, gender, view position) where the output is 
the detection of diseases indicated by “Yes” or “No”. This dataset is very 
complex and is also a big data, so data processing is difficult. Moreover, 
it has a lot of noise and it does not have enough information for easily 
predicting illness. Therefore, processing this dataset is a challenging 
task. 

In this research, patients are classified by using CNN deep learning 
method on patients X-ray images. Capsule network (CapsNet) [35] can 
be considered as one of the strongest algorithms having generative and 
deterministic capabilities. But this network has been comparatively 
more sensitive to images than the simple CNN structures. CapsNet is 
capable of squeeze multiple convolutional layers in capsules. After that 
they are subject to nonlinearity. As CNN models have been popularly 
used in medical applications, CapsNet has been progressively engaged in 
some medical related works, for example, brain tumor segmentation and 
brain tumor classification [36]. As a result, we compare the performance 
of the new VDSNet method with that of CapsNet. It will be shown in 
Section 7 that VDSNet outperforms CapsNet, modified CapsNet and 
other existing deep learning techniques. Hence, the main contribution of 
this paper is the development of this new algorithm VDSNet which can 
predict lung disease in X-ray images at an accuracy greater than existing 
methods. 

4. Analysis of the chest X-Ray image dataset 

This section covers different aspects of the dataset including 
description, exploration, visualization and view position of the data 
samples. These are described in the following. 

4.1. Dataset description 

The sample of dataset [8] file contains a random sample (5%) of the 
full dataset:  

(i) It carries 5606 images where the resolution of each image is 1024 
� 1024 
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(ii) To create patient data and class labels for the complete dataset 
such as a comma separated values (.csv) file. 

The description of the class are as follows. There are 15 classes (one is 
“No findings” and another 14 diseases) in the complete dataset, but 
subsequently this is severely compact version of the complete dataset, 
various classes are scarce marked as “No findings”: Atelectasis-508 im-
ages, Pneumonia-62, Hernia-13 images, images, Edema-118 images, 
Emphysema-127 images, Cardiomegaly-141 images, Fibrosis-84 images, 
Pneumothorax-271 images, Consolidation-226 images, Pleural 
Thickening-176 images, Mass 284 images, Effusion - 644 images, Infil-
tration 967 images, Nodule-313 images, No Finding - 3044 images. 

The full dataset [9] contents can be summarized as follows. 

(i) It has 12 files accompanied by 112,120 total images with reso-
lution 1024 � 1024  

(ii) To create patient data and class labels for the complete dataset 
such as a (.csv) file. 

The description of the class is as follows. There are 15 classes (one is 
“No findings” and another14 diseases). Images can be categorized as one 
or more disease classes as “No findings”: Pneumothorax, Consolidation, 
Infiltration, Emphysema, Atelectasis, Effusion, Fibrosis, Pneumonia, 
Pleural_thickening, Hernia, Cardiomegaly, Nodule Mass, and Edema. 

This paper can contribute in building and analyzing a model based 
on this valuable dataset. The dataset covers valuable records for the 
model. In this paper, we will construct it as: age, patient data, gender, 
snapshot data and X-ray images. For analyzing from X-ray records, 
doctors can diagnose patient’s health and medical conditions. From the 
output data of X-ray chest images, the intelligent machine can help 
physicians to diagnose or analyze lung diseases. Some records on gender 
and age will improve the accuracy of this scheme. 

4.2. Dataset exploration 

A chest X-ray test is very common and is a cost-effective medical 
imaging technique. Lung or chest X-ray clinical diagnosis can be of high 
demand. However, sometimes it may be more problematic than lung 
diagnosis through computed tomography (CT) imaging for chest. There 
is a scarcity of resourceful public datasets. Therefore, it is very chal-
lenging to realize clinically relevant diagnosis and computer aided 
detection in various medical sites using chest or lung X-rays. One crucial 
obstacle in generating big chest X-ray datasets is the absence of prop-
erties for labeling numerous images. Before the emancipation of this 

data, Openi was the biggest in public available in Kaggle where the 4143 
chest or lung X-ray images are available. 

The chest X-ray image dataset in Ref. [9] consists of 112,120 chest or 
lung X-ray images using disease labels of 30,805 unique patients. For 
generating these labels, some authors conducted NLP to text-mine 
classifications of disease from the related radiological information. 
These labels are estimated to be greater than 90% accurate as well as 
appropriate for weakly-supervised learning. Wang et al. [10] localized 
some common thorax diseases using a small percentage of the dataset. In 
this data, 5606 chest images are included with resolution of 1024 �
1024. Fig. 1 shows two samples X-ray images from the full dataset [9] 
considered for this study. Fig. 2 presents the percentage of frequency 
versus diseases from the X-ray images that are within the dataset [9]. 

Patient data and class labels of the total dataset can be illustrated as 
follows:  

� Patient ID  
� Finding labels such as disease type  
� Image index  
� View position: X-ray orientation  
� Patient gender  
� Patient age  
� Original Image Height  
� Original Image Width  
� Original Image Pixel Spacing_x  
� Follow-up  
� Original Image Pixel Spacing_y 

The data encloses valuable records for the set of data constructed as: 
gender, age, snapshot data, view position as well as lung X-ray images. 
We will use this key information in order to train the CNN model. 

4.3. Visualization of the dataset 

At first, a sample data is analyzed in this study. Finally, full data is 
analyzed. 

In the following, a number of plots will provide some insights about 
the lung disease data. 

Fig. 3 and Fig. 4 show diseases with actual number of cases, for 
example, Fibrosis, Pneumonia, Hernia, and few many frequent lung 
diseases for example, Atelectasis, Effusion, Infiltration. Distribution of 
the diseases is actually uneven. In this dataset, the entire number of 
males is higher than the entire number of females, and the number of 
confirmed cases is greater than the number of males diagnosed through 

Fig. 1. Sample of dataset with resolution 1024 � 1024.  
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lung disease. Fig. 5 and Fig. 6 show the bar diagram of the distribution of 
patients in two types of view position for the sample and full datasets. 
The two positions are: anterior-posterior (AP) and posterior-anterior 
(AP). There are total of 112,120 images in the full dataset. 

4.4. View position  

(i) Posterior-anterior (PA) position: It is a standard position used for 
finding a regular mature chest radiograph. Patient attitudes 
standing with the anterior position of chest employed alongside 
the anterior of the film. The containers are replaced forward 
adequate to bit the film, confirming in which the scapulae do not 
make unclear any part of the lung area. The PA film is observed as 
if the lung disease patient is fixed in a position.  

(ii) Anterior-posterior (AP) position: It is conducted while the patient 
is immobilized, debilitated, or incapable to collaborate with the 
PA process. The heart is at a bigger space from the film. There-
fore, it seems more expanded than in a PA position. The scapulae 
are generally visible in the lung fields for the reason that they are 
not replaced out of the vision in a PA. These types can be realized 
in which these two categories of position will display the records 
in the chest X-ray inversely along with the topics specified. As a 
result, this is moreover an influential feature for the construction 
of the model. An example from an image having two types of 
position of the same patient is showed in Fig. 7. The difference 
can be clearly observed. 

Fig. 7 shows the view of posterior-anterior and anterior-posterior 
positions. Compared to young patients, middle-aged patients are more 
likely to develop lung diseases and thus aim for medical tests. Younger 
patients are likely to go for primary diagnosis. In order to distinguish 
whether a person is affected by lung disease or not, some important 
attributes have been chosen to build the model. The attributes are X-ray, 

X-ray view position, age, and gender. 

5. Description of the existing methods 

In this section, the existing algorithms, CNN and capsule network 
(CapsNet) are discussed. These two algorithms can combine the 
important features from not only image data, but also data on age, 
gender, etc. CNN can be considered as one of the most powerful deep 
learning based network that can contain multiple hidden layers. These 
hidden layers are very effective in performing convolution and sub-
sampling for the purpose of extracting low to high levels of features of 
the input data [32–34]. So, the performance of CNN is evaluated first for 
this dataset. 

CapsNet is proposed by Sabour et al., in 2017 [35]. One of the key 
features of this network is equivariance which keeps the spatial rela-
tionship of objects in an image without affecting the object’s orientation 
and size. CapsNet is also applied in Ref. [36] for the classification of 
brain tumors from brain MRI images. Reliable prediction accuracy and 
reduced feature map (feature size reduction) are achieved in Ref. [36] 
with CapsNet with changed parameters. CapsNet is also applied in 
Ref. [37] on medical image challenges. A basic CNN with three layers of 
ConvLayer is selected as the baseline model and the performance of 
CapsNet is compared with LeNet and the baseline model on four data-
sets. Their final result shows that CapsNet exhibits better performance 
than the other two networks for the case of a small and imbalanced 
dataset [37]. The performance of CapsNet for the case of the large 
dataset is observed and compared with the other models. The perfor-
mance capability of basic and modified CapsNet is also evaluated in 
terms of accuracy and training time calculation. So, a hybrid model is 
proposed in order to improve the training time and to detect the disease 
effectively with less number of tests. 

CNN has a number of advantages for example, it can extract 
important features from images at low computational complexity. In this 

Fig. 2. Adjusted frequency of diseases in patient group on the image dataset.  
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work, a number of aspects of CNN are considered. These are pre-
processing parameters which can be sufficient tuning, training param-
eters, and data enhancement in the system not only lung X-ray images. 

Using the influence to discriminate several objects from various 
perspectives, the capsule network can be suitable for the reason that our 
lung X-ray image data has two categories of view positions. In this paper, 
the capsule network is modified by tuning the training parameters. 

The benchmark model will be a model of vanilla CNN. In this pro-
posed work, “vanilla CNN for sample dataset” and “vanilla CNN for full 
dataset” have been used. To the best of our knowledge, no researchers 
constructed a complete deep learning based NN model for this lung X- 
ray image dataset. Customized mixed link based CNN is used in on LIDC- 
IDRI dataset for lung nodules detection [38], while STN is used in order 
to find the optimal model. The architecture or structure of the vanilla 
CNN model is described in Fig. 8. 

Fig. 8 shows a model of vanilla CNN where there are four convolu-
tional layers each followed by maximum pooling operation. The 
convolution layers are growing in depth. Next, is the flattening layer 
which is followed by a fully connected (FC) dense layer. Finally, the 
classification output is obtained. 

6. Methodology 

6.1. Data preprocessing 

The dataset consists of many X-ray images. Moreover, some addi-
tional information such as age or gender distribution can be obtained 
from the dataset. The preprocessing steps used in this work are 
mentioned in the following. 

Fig. 3. Visualization of the number of patients in terms of gender and having disease in the sample dataset, (a) for multiclass category (b) for binary category.  
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� For images:  
(i) At first rescale all images for the purpose of reducing size 

leading to faster training stage.  
(ii) All the images are transformed to RGB and gray, and are 

mutually conducted for various models.  
(iii) The numpy array uses for reading the images at that time is 

normalized by separating the image matrix using 255.  
� For additional information:  

(i) Redefine some of the specific features.  

(ii) Normalize the age field to the numeric system then along with 
the year, at that time normalization field.  

(iii) Eliminate the outliers in the age attribute.  
(iv) There are two essential attributes, this paper will conduct as 

‘view position’ and ‘patient gender’ in indiscriminate both 
datasets 

All image data when processing is put away for future use. This 
preprocessing process has the resulting modifiable parameters: resized 
images form. 

Fig. 4. Visualization of the number of patients in terms of sex and having disease in the full dataset, (a) for multiclass category (b) for binary category.  
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6.2. Metrics 

A number of performance metrics are considered in this research. 
These are recall, precision as well as Fβ scores (where βis 0.5) designed 

for binary classification. In this case, F score is superior to accuracy 
because binary classification is used for detection or finding diseases 
otherwise the programs are imbalanced. Consider a minor classifier 
which just predicts the class of majority in an imbalanced dataset. This 

Fig. 5. Distribution of patients for sample dataset.  

Fig. 6. Visualization of the amount of patients through view position and sex where full dataset is used.  

Fig. 7. (a) Posterior-anterior (b) Anterior-posterior position.  
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classifier will achieve a high accuracy when the training size is much 
greater than the testing size, while the accuracy will be low when the 
training size is comparable with the testing size. This work considers a 
number of metrics for the diagnosis of lung diseases. The metrics 
considered for this work are testing accuracy, precision, recall, and F 
score [39,40] which can be described with a number of terms including 
true positive (TP), true negative (TN), false negative (FN) and false 
positive (FP). In the context of this work, TP refers to the suspected lung 
patients that are correctly classified as having lung disease. The terms 
TN is the number of samples having normal condition of the lungs. The 
term FN refers to the suspected patients who actually have lung disease 
but remains undetected by the system. Moreover, FP is the number of 
patients who are wrongly detected to have lung diseases [40]. The 
metrics recall and precision can be calculated as follows [40]. 

Recall¼
TP

TPþ FN
(1)  

Precision¼
TP

TPþ FP
(2) 

Recall and precision can work on the number of affected patients. So 
it overcomes the skewness property of the data besides the significance 
of evaluating a patient’s illness. Precision denotes the proportion of 
patients who are correctly predicted as illin the entire number of pa-
tients who were predicted to be ill. Recall denotes the proportion of 
patients who are correctly predicted as ill on the entire number of pa-
tients truly ill. These parameters can play a significant role in predicting 
this lung disease. The fusion of precision and recall can be an important 
metric. The combination of recall and precision known as F score can be 
described in the following form: 

Fβ ¼ð1þ β2Þ
Recall� Precision

β2⋅Precisionþ Recall
(3) 

Various β will display the significance among various precision and 
recall values. There are two fundamental ideas for selecting the signif-
icance of recall and precision:  

(i) If the model shows good performance results, then it will be 
useful for detecting lung diseases in a practical scenario. It is 
highly significant, since it can be considered a system to support 
doctors using further diagnostic processes. As a result, low recall 
and high precision correlated with small β is needed. In this case, 
β ¼ 0.5 has been assumed for F-β score.  

(ii) The proposed models should keep away from mispronouncing 
sick people in order to avoid illness. Models should avoid missing 
patients at risk. This situation will prefer high recall and low 
precision values correlated with large β. In this case, β ¼ 2 has 
been assumed for F-β score. 

The proposed work will help doctors for detecting diseases quickly 

because in order to determine the disease, a patient needs many tests. 
The affected patient will be worried before getting additional test re-
sults. Therefore, this paper suggests F-0.5 score where β is 0.5. 

6.3. Implementation of VDSNet 

In this work, the algorithms are implemented using Jupyter Note-
book, Tensorflow, and Keras. The implementation processes are 
described below. This is the key scheme of this paper and can be realized 
on Jupiter Notebook as “VDSNet for sample dataset” and “VDSNet for 
full dataset”. Fig. 9 illustrates the full architecture of VDSNet. 

The structure contains three key layers in the ensuing order:  

� Spatial transformer layers  
(i) There are three layers.  

(ii) The first part is lambda λ to transfer the default routing [-0.5: 
0.5], which indicates that the features of the lung X-ray images 
have a normal value of 0.  

(iii) The second part is batch normalization.  
(iv) The third layer is spatial transformer, which is used to remove 

the maximum significant features for lung disease classification.  
� Extraction of features layers  

(i) VGG16 model has been pre-trained.  
(ii) VGG16 architecture has thirteen convolutional layers, five max 

pooling layers and three dense layers. So, the summation of total 
layers is 21, but it has only 16 wt layers.  

(iii) Five models are used on VGG16 as shown in Fig. 10. For 
example, model 3 consists of eight layers after the convolutional 
layers. The eight layers are: GAP layer, FC layer having 512 
neurons, dropout layer, second FC layer having 256 neurons, 
second dropout layer, third FC layer having 128 neurons, third 
dropout layer and a classification layer with a SoftMax activa-
tion function. In all the cases, the drop rate of the dropout layer 
is 50%.  

� Classification layers  
(i) In this case, the first layer is defined as the flattened layer as of 

the output of the VGG16 layers with additional 5 features such as 
‘Gender Female’, ‘Gender Male’, ‘Age’, ‘View position PA’, ‘View 
position AP’. These additional 5 features will similarly influence 
the sorting, such as this simulation has seen upon, therefore they 
are assembled to the following layers. Accordingly, this layer is 
called dropout layer.  

(ii) The last two layers are dense dropout layers, with a continuing 
reduction in depth. 

The sequence of steps in this process is described as follows: 

Fig. 8. Structural design for the model of vanilla CNN.  
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(i) Loading of the dataset has been managed into random access 
memory (RAM) and processing this data as previously where the 
images are stored in RGB lung X-ray image format.  

(ii) Implementing the network structure designed by the way of an 
architect. 

(iii) Implementing the metric function as well as precision score, bi-
nary accuracy through threshold, Fβ score using β with a 
threshold.  

(iv) Implementing data model generator, checkpoint, and loss of 
model function.  

(v) Training model using training parameters, validation loss with 
training/logging training/validation with accuracy.  

(vi) Testing the dataset. 

CNN and deep learning are employed by Keras where Tensorflow- 
gpu is used in the backend. By experimenting and changing with 
numerous image sizes, it is found that the 64 � 64 image size was good 
and slight enough for the classifier to the shape of the image capture. 
The spatial transformer is used and the front layer is supported as λlayer. 
A localization network “locnet” model is used in this STN layer. This 

helps separating key features from the images. Non-complementary 
dataset has been tested in various spaces on the structural design. The 
first layer can be considered the most suitable and pertinent. Adjustment 
as well as improvement of the thresholds of recall, precision, and Fβ 
score are necessary. The index of the dropout layer needs to be refined. 

6.4. Implementation of Modified CapsNet 

In this work, the CapsNet from the main Hinton architecture is 
modified to make it fit for the lung image dataset [35]. Fig. 11 shows a 
basic CapsNet architecture for lung X-ray images analysis. 

Main portions of this model can be summarized as follows.  

� Convolution layer with filters ¼ 256, strides ¼ 2, kernel_size ¼ 9, 
activation ¼ ‘relu’, padding ¼ ‘same’. This layer was improved as of 
the original classifier from strides ¼ 1 to strides ¼ 2, the image was 
28 � 28, as well as the data was 64 � 64, the output of this classifier 
will be considerably compacted. With strides ¼ 2, we will acquire 
less features than strides ¼ 1, subsequently we have improved the 
strings, consequently we consider that the output of lung images 
have been considerably concentrated.  
� Primary capsule with dim_capsule ¼ 8, strides ¼ 2, kernel_size ¼ 9, 

n_channels ¼ 32, padding ¼ ’same’, simply variations with Hinton’s 
structure in which the padding ‘valid’ is exchanged with ‘same’.  
� Diagnosis capsule (we change the similar name in which Hinton 

situates) with n_class ¼ num_capsule, dim_capsule ¼ 16, stable of the 
set routings. 

The process of setting the parameters of the capsule network can be 
described by the following algorithm 1. 

Algorithm 1. (Capsule Network Model) step 1: import numpy as np 
step 2: from keras import layers, models, optimizers 
step 3: from capsule layers import CapsuleLayer, PrimaryCap, 

Fig. 9. Full architecture of VDSNet.  

Fig. 10. Five-layer model of VGG16.  

Fig. 11. Capsule network for lung X-ray images prediction.  
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Length, Mask 
step 4: def CapsNet(input_shape, n_class, routings): 
step 5: p¼ layers.Input(shape¼input_shape)  

(i) Layer 1: A simple Conv2D layer conv1 ¼ layers.Conv2D (filters ¼
256, kernel_size ¼ 9, strides ¼ 1, padding ¼ ’valid’, activation ¼
’relu’, name ¼ ’conv10)(x)  

(ii) Layer 2: Conv2D layer with “squash” activation primarycaps ¼
PrimaryCap (conv1, dim_capsule ¼ 8, n_channels ¼ 32, kernel_-
size ¼ 9, strides ¼ 2, padding ¼ ’valid’) 

(iii) Layer 3: Capsule layer DiagnosisCaps ¼ CapsuleLayer (num_-
capsule ¼ n_class, dim_capsule ¼ 16, routings ¼ routings, name 
¼ ’DiagnosisCaps’)(primarycaps)  

(iv) Layer 4: Auxiliary layer to replace each capsule with its length 
Out_caps ¼ Length(name ¼ ’capsnet’)(DiagnosisCaps) 

As like CNN, the application steps are applied in this next step:  

� Loading of the dataset has been managed into RAM and processing 
this data as previously where the images are stored in RGB lung X-ray 
image format. 
� Implementing the network structure designed by the way of an ar-

chitect considered beyond with the parameters illustrated.  
� Implementing of the metric function containing precision score with 

threshold, binary accuracy, Fβ score with β and threshold, recall 
score with threshold. There is a minor modification from CNN to the 
output form (None, 2) in place of CNN with the output form (None, 
1).  
� Implementing data model generator, checkpoint, and model loss 

function.  
� Training model using training parameters, validation loss besides 

training/logging training/validation accuracy. 

The parameters selected for capsule network are: convolution layer 
with filters ¼ 256, strides ¼ 2, kernel_size ¼ 9, activation ¼ ‘relu’, 
padding ¼ ‘same’. This layer was improved as of the original classifier 
from strides ¼ 1 to strides ¼ 2, the image was 28 � 28, the reason 
creature that with the MNIST data Hinton tested capsule network, as 
well as the data was 64 � 64, the output of this classifier will be 
considerably compacted, with strides ¼ 2, we will acquire less features 
than strides ¼ 1, subsequently we have improved the strings conse-
quently the output of lung images have been considerably concentrated. 
Therefore, we vary the value of padding from ‘valid’ to ‘same’. 

The metric function containing precision score with threshold, bi-
nary accuracy, Fβ score with β and threshold, recall score with threshold 
are implemented. There is a minor modification from CNN to the output 
form (None, 2) in place of CNN with the output form (None, 1). The 
parameters for training are similarly offered to ensemble the machine 
configurations for example, learning rate, batch size ¼ 32. 

7. Results and discussion 

The performance results of the proposed model and existing models 
are presented in this section. Some abbreviations used for the models are 
described in the following.  

(i) Vanilla RGB: vanilla CNN model for RGB images  
(ii) Vanilla gray: vanilla CNN model for gray images  

(iii) Hybrid CNN and VGG: optimized CNN with VGG16 pre trained 
model  

(iv) Hybrid CNN, VGG, and data: VDSNet with VGG16 pre trained 
model and data augmentation  

(v) Hybrid CNN, VGG, data and STN: VDSNet with VGG16 pre 
trained model, data augmentation and spatial transformer  

(vi) Basic CapsNet: Capsule network with Hinton’s architecture  
(vii) Modified CapsNet: Capsule network with modified architecture 

7.1. Model validation and evaluation 

During improvement, a validation set was used to estimate the 
model. Fig. 12 is a graphical representation of the loss value against 
epoch. In the figures, ‘loss’ indicates training loss, while ‘val_loss” in-
dicates validation loss. Fig. 12(a) is for the case of vanilla CNN using 
sample dataset, while Fig. 12(b) is for the case of vanilla CNN using full 
dataset. Similarly, Fig. 12(c) and (d) are for capsule network for sample 
and full datasets, respectively. Furthermore, Fig. 12(e) and (f) are for 
VDSNet for sample and full datasets, respectively. 

From Fig. 12 it can be seen that the vanilla CNN exhibits the worst 
performance, it overfills too early and clogs because of the early stop-
ping checkpoint model. Capsule network shows better performance than 
vanilla CNN, although the convergence is very slow. VDSNet performs 
the best but it converges very slowly, possibly owing to very little data 
on the features of the large images. Additional data in the full dataset 
may improve the convergence time. 

We have found that the vanilla CNN stops and overfills by the model 
of early stopping of VDSNet. The convergence is fast as well as is still too 
useful convergence, will also have provided higher results if this paper 
train this model using more epoch. The performance of the capsule 
network is better than vanilla CNN, however it has slower convergence. 
From the plots of Fig. 12, it can be seen that VDSNet exhibits the best 
performance with some specific parameters as declared above. 

7.2. Justification 

Based on the accuracy of the approaches on the full dataset and the 
sample dataset, different models can be compared as shown in Table 1. 

From Table 1, it can be seen that the best model is VDSNet which is 
better than the benchmark vanilla CNN. It can also be seen that the F0.5 
score of VDSNet is 0.68. The training time is greater than vanilla CNN. 
However, VDSNet model can be improved by continuing training with 
more epochs. On the other hand, the capsule network model does not 
seem to work well; the number of parameters is only equivalent to 
VDSNet, but the training time is much longer. VDSNet has F0.5 score of 
68% with 73% validation accuracy. It still does not meet the require-
ment to use in hospitals, need more time and computer power to further 
analyze the data, improving the algorithm can meet the requirements. 
However, this is also a good first step, and this result is very good when 
the normalized dataset is public and there are many mistakes in labeling. 

There is a minimal scope of direct comparison with existing 
researcher works because the dataset used in this paper is entirely 
different and has several limitations compared to other datasets. Though 
it is not possible to make a direct comparison with the previous work. 
However, we have tried to make a comparison with some works. The 
work in Ref. [41] applied AlexNet, GoogLeNet, VGGNet-16 and 
ResNet-50 on eight common thoracic pathology classification using 
ChestX-ray8 database. But, we have not performed pathology localiza-
tion accuracy using our model. So, no direct comparison is possible with 
[41]. Tang et al. [42] achieved 62.7% AUC using U-Net autoencoder and 
73.7% using U-Net autoencoder and discriminator for the classification 
of normal and abnormal lung conditions. They used general adversarial 
networks which is complex compared to our proposed method. We have 
achieved 73% validation accuracy and 74% AUC using VDSNet. 
Choudhary et al. [44] achieved 83.67% accuracy using their proposed 
CNN model having six layers. The achieved accuracy of the proposed 
VDSNet is less than that reported in Ref. [43]. In future, the accuracy of 
VDSNet can be increased by inserting additional layers. The imple-
mentation of multi-label chest X-ray classification using the model in 
Ref. [44] will also be tried as future work. Different ResNet architectures 
are different from our benchmark model. It should be noted that Fibrosis 
can be found out from the chest X-ray image and can be evaluated in 
terms of confident score. So, it can play an important role in COVID-19 
detection. Our future target will be to find out a suitable model from the 
reference paper [3,41–44] in order to detect the lung diseases of 
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COVID-19 affected patients. 

7.3. Free-form visualization 

In this research, we test with twenty random instances, the surgeon, 
either a patient or a physician, just completed records about age, X-rays, 
view position, and gender. We have evaluated and detected the illness of 
a patients before moving forward with the investigation on more sig-
nificant trials. For the purpose of the prediction of diseases, we have 
calculated the Fβ score where β is 0.5. It means that we are determined 
the condition of a patient such as the condition of sadness and shock 
before formal diagnosis. Most of the results are exactly the same (Fig. 13 
(a, b)), but there are also some cases that are wrong (Fig. 13 (c)). The 
confident score for fibrosis finding case is 58.5842%. The confident 

score for Pneumothorax finding case is 48.33%. 
There are some demerits of the prediction that the ill person is not ill, 

as the system ignores shocking patients as well as requires more tests, 
before the doctor provides the ultimate diagnosis. The β of the F score is 
0.48 for the confidential cases which is proximate to the threshold. So, 
we have selected β as 0.5. It means that the chance of the illness is 
approximately half. 

7.4. Reflection 

We detect the lung disease using the patient’s lung X-ray data and 
extra records. The ideal solution of this paper is to have a hybrid CNN 
with the description of the data process as follows: 

Fig. 12. Change of loss in training algorithms.  
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(i) Research for support data, domain information, resolved issues, 
approaches, and solution data for similar paper. Some potential 
methods are investigated and listed.  

(ii) Dataset of a sample data is downloaded with metric selection, 
preprocessing, and analyzed.  

(iii) We have tested multiple structures, improved and tested on a 
sample lung dataset.  

(iv) Finally, we have used best architects for the purpose of testing the 
full lung dataset, continued improving. 

Table 1 
Comparison of recall, precision, Fβ score, validation accuracy and training time for different models.  

Dataset Structural design Recall Precision Fβ (0.5) score Validation Accuracy No. parameters Training time (seconds) 

Sample Dataset Vanilla gray 0.50 0.58 0.56 50.7% 321225 2 
Vanilla RGB 0.59 0.62 0.61 51.8% 322793 2 
Hybrid CNN VGG 0.56 0.65 0.63 68% 15252133 16 
VDSNet 0.64 0.62 0.64 70.8% 15488051 19 
Modified CapsNet 0.42 0.71 0.45 59% 12167424 37 
Basic CapsNet 0.60 0.62 0.62 57% 14788864 75 

Full Dataset Vanilla gray 0.58 0.68 0.66 67.8% 321225 51 
Vanilla RGB 0.61 0.68 0.66 69% 322793 53 
Hybrid CNN VGG 0.62 0.68 0.67 69.5% 15252133 384 
VDSNet 0.63 0.69 0.68 73% 15488051 431 
Modified CapsNet 0.48 0.61 0.58 63.8% 12167424 856 
Basic CapsNet 0.51 0.64 0.61 60.5% 14788864 1815  

Fig. 13. Analytical lung image dataset with finding.  
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7.5. Improvement 

As future work, this paper can be extended in a number of ways. 
Some of these are mentioned as follows.  

(i) The model needs testing in order to differentiate each type of lung 
diseases. As a result, the data problem can be explained for each 
disease which is very skew.  

(ii) The proposed model should be trained with a huge number of 
epochs with the change of a few parameters for getting fast 
convergence.  

(iii) The probability of getting significant features will be increased if 
the size of training shots can be increased. But this can increase 
the training time.  

(iv) Several pre-trained models can be experimented in order to 
implement CNN with the fusion of VGG. 

(v) Very complex “locnet” module has been used in order to imple-
ment hybrid CNN with the addition of a spatial transformer.  

(vi) In order to extract more features, CapsNet has been proposed 
after adding some more layers. However, it will lead to very long 
training time. 

Moreover, VDSNet can be useful for other application areas [3, 
45–47] as well. Particularly, VDSNet can be applied to X-ray images of 
suspected COVID-19 patients to predict whether patients have 
COVID-19 related pneumonia, or not [3]. 

8. Conclusion 

In this work, a new hybrid deep learning framework termed as 
VDSNet is proposed for detecting lung diseases from X-ray images. The 
new model is applied to NIH chest X-ray image dataset collected from 
Kaggle repository. For the case of full dataset, VDSNet shows the best 
validation accuracy of 73%, while vanilla gray, vanilla RGB, hybrid CNN 
VGG, basic CapsNet and modified CapsNet have accuracy values of 
67.8%, 69%, 69.5%, 60.5% and 63.8%, respectively. VDSNet exhibits a 
validation accuracy value of 73% which is better than the 70.8% accu-
racy value in case of sample dataset. On the other hand, VDSNet requires 
a training time of 431 s for the case of full dataset which is much higher 
than the 19 s time required for sample dataset. 

In order to make the proposed VDSNet useful in hospitals, additional 
progresses are required to enhance the precision of the model. Gener-
ally, basic CNN has poor performance for rotated, tilted or other 
abnormal image orientation. Therefore, hybrid systems have been 
executed in order to improve the accuracy without increasing the 
training time. The results described in the paper recommend that the 
deep learning models can be utilized to improve the diagnosis compared 
to the traditional methods. As a result, the quality of the affected pa-
tient’s treatment can be improved. Our hybrid approach can efficiently 
detect the inflammatory area in chest X-ray images. This research work 
faces some challenges at the time of handling the large scale dataset. 
Hence, the use of small datasets can provide good accuracy but it will 
not be effective in real applications. In future, we will apply modified 
VGG or other new transfer learning algorithms to the sample and full 
datasets and then make a hybrid algorithm with the fusion of GoogLe-
Net, AlexNet, and ResNet-152 architecture. We will also prepare a 
dataset by combining two or more chest X-ray datasets and then apply 
hybrid algorithms on the combined dataset for detecting various lung 
diseases. Future research scopes will also include the implementation of 
image data augmentation techniques such as color space augmentations, 
kernel filters, feature space augmentation, etc., in order to increase the 
accuracy in automated chest X-ray diagnosis system. In future, the 
proposed new VDSNet method can be applied to X-ray images of sus-
pected COVID-19 patients in order to predict whether those patients 
have COVID-19 related pneumonia, or not. 
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