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The innate immune system is the first line of defense specialized in the clearing of invaders
whether foreign elements like microbes or self-elements that accumulate abnormally
including cellular debris. Inflammasomes are master regulators of the innate immune
system, especially in macrophages, and are key sensors involved in maintaining cellular
health in response to cytolytic pathogens or stress signals. Inflammasomes are
cytoplasmic complexes typically composed of a sensor molecule such as NOD-Like
Receptors (NLRs), an adaptor protein including ASC and an effector protein such as
caspase 1. Upon stimulation, inflammasome complex components associate to promote
the cleavage of the pro-caspase 1 into active caspase-1 and the subsequent activation of
pro-inflammatory cytokines including IL-18 and IL-1b. Deficiency or overactivation of such
important sensors leads to critical diseases including Alzheimer diseases, chronic
inflammatory diseases, cancers, acute liver diseases, and cardiometabolic diseases.
Inflammasomes are tightly controlled by a two-step activation regulatory process
consisting in a priming step, which activates the transcription of inflammasome
components, and an activation step which leads to the inflammasome complex
formation and the subsequent cleavage of pro-IL1 cytokines. Apart from the NF-kB
pathway, nuclear receptors have recently been proposed as additional regulators of this
pathway. This review will discuss the role of nuclear receptors in the control of the NLRP3
inflammasome and the putative beneficial effect of new modulators of inflammasomes in
the treatment of inflammatory diseases including colitis, fulminant hepatitis, cardiac
ischemia–reperfusion and brain diseases.

Keywords: nuclear receptors, inflammasome, inflammatory disease, circadian rhythm, NLRP3, therapeutic
strategy, inflammation and innate immunity
INTRODUCTION: THE INNATE IMMUNE SYSTEM

Any living organism has to adapt to a specific environment and share common resources with
others. To this purpose, organisms may collaborate in a reciprocal relationship from which each one
of them benefits for its own survival. On the other hand, organisms may also be subject to threats
from pathogenic offenders or from the environment itself, against which they have to defend
themselves. The immune system is fundamental to anticipate and to preserve organisms from these
threats. For that purpose, a specific system has been developed to allow the detection of two major
classes of molecular signals, the pathogen-associated-molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs) (1). PAMP and DAMP classification appears to be based on
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their biological sources rather than their chemical structures (1).
PAMPs derive from pathogens including microbes and their
products, while DAMPs originate from environmental
disturbances such as the abnormal accumulation of
endogenous compounds and cellular or subcellular damage. A
common sensor system, defined as pattern-recognition receptors
(PRRs), is able to detect both PAMPs and DAMPs. PRRs which
are encoded by innate immune cells such as resident
macrophages thus serve as sentinels of environmental changes
including the presence of microbes and sterile tissue injury. In
addition to PRRs, DAMPs are also detected by non-PRR
receptors including receptor for advanced glycation end
products (RAGEs), triggering receptors expressed in myeloid
cells (TREMs), G-protein-coupled receptors (GPCRs), and ion
channel (2). This allows the innate immune system to integrate
various deleterious environmental changes to deliver the
appropriate response according to nature of the threat (1).

PRRs can be distinguished based on their cellular location and
the chemical nature of their ligand. Five main classes have been
described: membrane-bound Toll-Like Receptors (TLRs) and C-
Lectin Receptors (CLRs), cytoplasmic NOD-like receptors (NLR)
and Retinoid acid-inducible gene I (RIG-1)-like receptors (RLRs),
and multiple intracellular DNA sensors (CDSs) including cyclic
GMP-AMP synthase (cGAS) and absent in melanoma 2 (AIM2)
(2). Although TLRs were known to be activated by bacterial wall
components such as LPS or proteoglycans, DAMPs including
nucleic acids released from damaged cells are able to activate
TLR3, TLR7, and TLR9 for instance, while intracellular proteins
and extracellular matrix components released after tissue damage
are able to induce a TLR2 or a TLR4-dependent signaling cascade
(2). In addition, CLRs, usually known to be activated by fungi, are
also able to detect lectin-derived compounds such as dendritic cell
natural killer lectin group receptor 1 (DNGR1), macrophage-
inducible C-type lectin (MINCLE), and Dectin-1 (2). RLRs are
able to detect non-self RNA from microbial origin but also
inappropriately masked self 5′ppp-RNA such as RNA generated
during the unfolded protein response (2). CDSs are able to detect
cytoplasmic (cGAS and AIM2) and damaged DNA in the nucleus
(AIM2 only) (2). Finally, NLRs, which recognize bacterial
compounds such as flagellin, are also able to detect crystals,
ATP, amyloid fibers, glucose, or mitochondrial DNA.
Therefore, PRRs and non-PPRs are able to sense extracellular
and intracellular DAMPs, thus allowing a thorough surveillance
of potential threats. Importantly, extracellular signals are
considered as low-threat and resolvable problems, while
cytosolic signals represent high-threat encounters that may
induce pyroptosis, known as an interleukin (IL)-1b and IL-18-
triggered cell death program induced by cytosolic PRRs only,
mainly inflammasomes (1). When activated by DAMPs, PRRs
and non-PRRs then trigger a so-called sterile inflammation, i.e.
not induced by microbes. Therefore, a sustained activation of
these receptors leads to inflammatory diseases including
ischemia–reperfusion injury, colit is , systemic lupus
erythematous, gout, neurodegenerative diseases, diabetes,
atherosclerosis, hepatitis, rheumatoid arthritis, cancer, lung
diseases, and gut diseases (2).
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Inflammation is characterized by the production of a plethora
of secreted immunomodulatory signaling molecules such as
histamine, cytokines, chemokines, and lipid derivatives (1).
The IL-1 cytokine family is a major cytokine family that
includes IL-1a, IL-1b, IL-18, IL-33, IL-36a, IL-36b and IL-36g.
Except for IL-1a, IL-1 cytokines are produced as inactive pro-
cytokines and require maturation to biologically active forms by
enzymatic cleavage. For instance, pro-IL-1b and pro-IL-18, the
most studied IL-1 family members, are processed by the
proteolytic activity of Caspase 1, the predominant IL-1
processing protease. Caspase 1 activity is tightly controlled by
cytosol ic PRR-const i tuted inflammasome complex .
Inflammasomes form the main class of cytosolic PPRs that are
activated by diverse exogenous signals including anthrax lethal
toxin (NLRP1), bacterial flagellin (NLRC4), double stranded
DNA (AIM2), toxin-induced modifications of Rho-GTPase
(Pyrin). Unlike other inflammasomes, the nucleotide-binding
domain (NOD)-, Leucine-rich repeat (LRR)- and pyrin domain
containing protein 3 (NLRP3) inflammasome is not only
activated by microbial and environmental molecules but also
by several metabolic products including ATP, cholesterol crystals
and b amyloid fibers. In this regard, NLRP3 is unique because it
is able to sense a wide range of threats. NLRP3 is therefore a
central PAMPs and DAMPs sensor whose erratic activation leads
to numerous NLRP3-driven diseases.
THE NLRP3 INFLAMMASOME

The NLRP3 inflammasome was first identified in the cryopyrin-
associated periodic syndrome (CAPS) and was later recognized
to be involved in many other inflammatory/metabolic diseases
including gout, atherosclerosis, type 2 diabetes, non-alcoholic
fatty liver diseases (NAFLD), colitis, and neurodegenerative
diseases such as Alzheimer and Parkinson diseases. The
NLRP3 inflammasome is not only expressed by leucocytes
(macrophages, dendritic cells, neutrophils) but also by
hepatocytes, neurons, endothelial cells, cardiomyocytes, and
pancreatic beta cells (3).

Structure
The NLRP3 inflammasome is a supramolecular organizing
center (SMOC) which consists of a sensor (NLRP3), an
adaptor (Apoptosis-associated speck-like protein containing a
Caspase recruitment domain (ASC) encoded by PYCARD), and
an effector (Caspase 1) (4). NLPR3 contains an amino terminal
pyrin domain (PYD) involved in protein–protein interaction, a
central oligomerization domain (NOD, nucleotide-binding and
oligomerization domain, NACHT) with an ATPase activity
involved in the self-association and function of NLRP3 and a
carboxy terminal leucin-rich repeat (LRR) domain inducing the
autoinhibition of NLRP3 by folding back onto the NACHT
domain (4). Apart from an Nter PYD domain, ASC also
includes a Cter caspase recruitment domain (CARD) that plays
a role of adaptor platform for the pro-Caspase 1 protein through
a CARD–CARD domain interaction. Caspase 1 structure also
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includes a central catalytic domain (p20) and a Cter small
catalytic subunit (p10) (4).

Function
Upon stimulation, NLRP3 oligomerizes through homotypic
interactions between NACHT domains of two NLRP3 proteins
and the subsequent recruitment of ASC through PYD-PYD
interactions (Figure 1). Then, helical ASC filaments nucleate
and associate to form macromolecular ASC specks (5–7) (Figure
1). Finally, assembled ASC recruits pro-caspase 1 in a CARD-
dependent manner that enables the proximity-driven self-
cleavage of pro-caspase 1 to generate p33 (comprising the
CARD and the p20 domains) and p10, which remains bound
to ASC and becomes proteolytically active (Figure 1). Further
processing then triggers the release of the p20 and p20–p10
complex from ASC. The p20–p10 complex is unstable in the
cells, thus terminating its protease activity (8). Beyond the
classical representation of NLRP3 inflammasome assembly, it
has recently been demonstrated that the NIMA-related kinase 7
(NEK7) oligomerizes with the LRR domain of NLRP3 into a
complex by bridging the gaps between adjacent NLRP3 subunits
to mediate NLRP3 oligomerization that is essential for ASC
speck formation and caspase 1 activation (9, 10) (Figure 1).
Strikingly, NEK7 is specific to NLRP3 and does not interact with
other inflammasomes such as NLRC4 (11). Regulation of NEK7-
Frontiers in Endocrinology | www.frontiersin.org 3
NLRP3 assembly is induced by ATP-driven potassium efflux (12)
but also in a K+-efflux independent manner (13) and by reactive
oxygen species (ROS) production (9). Activated-Caspase 1 is
then able to process pro-IL-1b and pro-IL-18 into mature and
functional IL-1b and IL-18 (Figure 1).

In addition to the regulation of pro-inflammatory cytokine
maturation, the NLRP3 inflammasome is also involved in the
control of pyroptosis, defined as a rapid and inflammatory form
of programmed cell death. Pyroptosis actually results from the
cleavage of Gasdermin D (GSDMD) by inflammatory caspases
including caspases 1, 4, 5, or 11 (14–16) (Figure 1). GSDMD
possesses an Nter cell death domain (GSDMDNTerm), a central
short region, which links to a Cter auto-inhibition domain.
Caspase 1 cleaves pro-GSDMD, thereby removing the auto-
inhibition domain, thus alleviating the inhibition on the cell
death domain (Figure 1). GSDMDNTerm then binds to
phosphatidylinositol phosphate and phosphatidylserine in the
inner leaflet of the cell membrane, oligomerizes, and inserts into
the plasma membrane, thus forming a pore of 16 symmetrical
protomers that kill the cell (17).

Activation of the NLRP3 Inflammasome
The activation of the NLRP3 inflammasome, as most
inflammasomes, is tightly controlled by a two-step process (4)
(Figure 1). A priming step is required to increase gene and
FIGURE 1 | Regulatory activities of nuclear receptors on the NLRP3 inflammasome priming and activation steps. The priming (first step) of the NLRP3
inflammasome requires the binding and activation of PRRs (TLRs,…) by PAMPs such as LPS, cytokines or ox-LDL, resulting in the transcription of the NLRP3
inflammasome components. Its activation (second step) is the result of recognition of PAMPs (such as the bacterial pore-forming toxin nigericin) or DAMPs which are
released by damaged or dying cells (such as ATP) following injury or metabolic imbalance (such as mtROS), or accumulate in tissues (such as crystals). These lead to
lysosomal damage, mitochondrial damages (exposition of cardiolipin, mtDNA) which ultimately modify ion (K+, Ca2+) fluxes. Upon this two-step process, the NLRP3
inflammasome assembles, caspase 1 is activated, Gasdermin-D and pro-IL-1b and pro-IL-18 are cleaved, leading to mature cytokines secretion and cell death by
pyroptosis. The activity of nuclear receptors on each step is indicated when appropriate. ASC, apoptosis-associated speck-like protein containing a CARD domain;
ATP, adenosine triphosphate; BRCC3, Lys-63-specific deubiquitinase BRCC36; casp, caspase; CLIC, chloride intracellular channels; DAMPs, damage-associated
molecular patterns; GSDMD, gasdermin-D; IL, interleukin; IL1R, interleukin-1 receptor; LPS, lipopolysaccharide; MAM, Mitochondria-associated ER membranes;
mtoxDNA, mitochondrial oxidized DNA; NFkB, nuclear factor-kappa B; NLRP3, nucleotide-binding, LRR and PYD domains-containing protein 3; Ox-LDL, oxidized
low-density lipoproteins; P, Phosphate; PAMPs, pathogen-associated molecular patterns; Panx1, Pannexin-1; PRRs, Pattern Recognition Receptors; ROS, reactive
oxygen species; P2X7, purinergic receptor P2X7; TLR, Toll-like receptor; TNF, tumor necrosis factor; TNFR, tumor necrosis factor receptor; TWIK2, two-pore
domain weak inwardly rectifying K+ channel; TXNIP, Thioredoxin-interacting protein Ub, ubiquitin. (+): activates; (−): inhibits.
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protein expression of its components in order to sense stimuli
and become activated. Once the cytoplasmic levels of NLRP3
mRNA reach an activating threshold, inflammasome assembly
can be triggered by a secondary signal. This activation step
initiates the NLRP3 SMOC assembly that promotes Caspase 1
autocatalytic activity and its subsequent maturation.

Priming the NLRP3 Inflammasome
The priming step has two main purposes: the transcriptional
induction of the inflammasome complex components NLRP3,
Caspase 1, IL-1b, and IL-18 and the induction of post-
translational modifications of NLRP3 (Figure 1). The first one
can be induced through the recognition of various PAMPs and
DAMPs by PRRs such as TLRs and NLRs including NOD1 and
NOD2 or cytokine receptors (e.g. TNFR) whose activation
promotes nuclear factor kB (NF-kB) transcriptional factor
activation and the subsequent induction of Nlrp3 and Il1b gene
transcription (Figure 1).

In addition to classical TLR ligands, disruption of metabolic
homeostasis has also been involved in the NLRP3 inflammasome
priming. For instance, NLRP3 mediates trained immunity
following western diet feeding (18), suggesting that a lipid-rich
diet potentializes the NLRP3-mediated response to pro-
inflammatory stimuli. Accordingly, oxidized LDL (oxLDL), but
also islet amyloid polypeptide (IAPP) and Alzheimer Disease
beta amyloid peptides (Ab1–42), induce Nlrp3 and Il1b gene
expression, and thus the priming of this pathway in a CD36-
TLR2-TLR4 heterotrimer-dependent manner in bone marrow-
derived macrophages (BMDM) (19, 20) (Figure 1). Finally,
cholesterol crystal-induced release of Neutrophils Extracellular
Traps (NETs) from neutrophils is also able to prime NLRP3 in
macrophages through the activation of several TLRs (21).

In addition to transcriptional regulation, the stability of
mRNA of inflammasome components such as NLRP3, Casp1,
and Casp8 can be controlled at the post-transcriptional level by
miRNA [see (22) for review]. For instance, miR-223-3p
negatively regulates the NLRP3 inflammasome by targeting the
3′-untranslated region (UTR)-binding sites of NLRP3 mRNA in
myeloid cells (23). In addition, miRNAs can also target the
mRNA of upstream regulators of the NLRP3 inflammasome
including TXNIP, TRAF6, and SOD2 (11). As an example, miR-
17-5p decreases TXNIP mRNA stability and NLRP3 activation
in insulin producing cells and in the brain, thus inhibiting
NLRP3 pathway activation (24, 25) (Figure 1). Accordingly,
altered expression of several miRNAs is associated with the
development of numerous NLRP3-driven diseases such as
rheumatoid arthritis (26), multiple sclerosis (27), and systemic
lupus erythematosus (28, 29).

While this transcriptional priming allows the production of
NLRP3 pathway components, additional mechanisms are
necessary to maintain NLRP3 in an inactive but poised
configuration to rapidly respond to an activation signal. The
second function of priming is then the induction of rapid
transcription-independent mechanisms that regulate NLRP3
stability in order to rapidly progress from this poised state to an
active one. Such non-transcriptional mechanisms are mainly
classical post-translational modifications including ubiquitination,
Frontiers in Endocrinology | www.frontiersin.org 4
phosphorylation and SUMOylation (Figure 1) [see for review (30)].
For instance, ubiquitination of NLRP3 by FBXL12, TRIM1, ARIH2
or the dopamine-induced E3 ligase MARCH7 promotes the
proteasomal degradation of NLRP3 in resting macrophages (30),
whereas deubiquitylation of NLRP3 LRR domain on K63 by
BRCC3 triggers ASC oligomerization and inflammasome
activation (31, 32) (Figure 1).

Activation
The NLRP3 inflammasome is unique as it can assemble in
response to a wide range of stimuli with various chemical
properties. These include exogenous molecules of various
origins such as environmental particulates (silica crystals) or
pathogens. In addition, many endogenous molecules that
abnormally accumulate are able to activate the NLRP3
inflammasome. This abnormal accumulation usually reflects
tissue damage or metabolic dysfunction, which are thus sensed
by NLRP3. For instance, under physiological conditions, LDLs
normally circulate in blood. When LDL level abnormally
increases in the context of dyslipidemia and when the vascular
endothelium is damaged, LDLs infiltrate into the vascular wall,
are eventually oxidized and trigger macrophage recruitment as
seen in atherogenesis. CD36-mediated uptake of oxLDLs by
macrophages contributes to the formation of intracellular
cholesterol crystals and leads to the subsequent activation of
NLRP3 (19) (Figure 1). Likewise, while normal extracellular
ATP levels are harmless, tissue damage or cell death increases
extracellular ATP levels acting as NLRP3-activating DAMPs.
NLRP3 activation is often due to cellular stress resulting in
lysosomal destabilization, ion flux imbalance, and redox
potential alteration.

Lysosomal Damage
Crystals (cholesterol, urea, hydroxyapatite crystals) or fibrillar
protein aggregates (b-amyloid, IAPP) can be phagocytosed by
immune cells and then traffic toward lysosomes. These crystals
often lead to lysosomal damage resulting in the release of
proteases such as cathepsins (Figure 1). Although lysosomal
disruption appears as a critical step for NLRP3 activation (33),
downstream mechanisms between lysosome alteration and
activation of the NLRP3 inflammasome still need to be
unequivocally identified. Lysosome-released cathepsin B was
considered for long as an essential trigger of NLRP3 activation
(33). Nevertheless, the use of a broad spectrum of cathepsin
inhibitors and individual knock-out experiments of several
cathepsins confirmed that NLRP3 activation however, relies on
several cathepsins that may exert redundant activities (34, 35).
Importantly, Leu-Leu-OMe-induced lysosomal damage
enhances K+ and Ca2+ efflux that may account for lysosomal
damage-controlled NLRP3 activation (36).

Ion Fluxes
Ion fluxes are important regulators of NLRP3 inflammasome
activation. Changes in ion homeostasis such as increased
intracellular Ca2+ levels as well as decreased intracellular K+

and Cl− levels also appear to play a pivotal role in NLRP3
activation (Figure 1). Lower extracellular concentrations of K+
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compared to intracellular K+ concentrations are sufficient to
induce K+ efflux and to promote NLRP3 activation while high
levels of extracellular K+ prevent its activation in THP1 cells and
BMDM (37, 38). In addition, nigericin, a K+ ionophore, as well as
the ATP-mediated activation of P2X purinoceptor 7 (P2rx7), a
ligand-gated ion channel, promotes K+ efflux-dependent IL-1b
maturation (39–41) (Figure 1). Interestingly, P2rx7 does not
directly control K+ efflux, but instead, promotes Ca2+ and Na2+

influx after ATP stimulation and coordinates with the K+

channel two-pore domain weak inwardly rectifying K+ channel
(TWIK2), which mediates K+ efflux (42) (Figure 1).

Interestingly, K+ efflux must be associated with Ca2+ influx to
promote mitochondrial-mediated ROS production (43), where
Ca2+ influx appears critical for NLRP3 activation (44, 45) (Figure
1). At the molecular level, CHOP, a transcription factor activated
during ER stress, promotes Ca2+ release from the ER, thus
stimulating the calcium-sensing receptor (CASR) and
promoting NLRP3 assembly (44). K+ efflux also controls Ca2+

release from the ER demonstrating the interconnection between
the different activating signals (43, 44).

In addition to K+ efflux and Ca2+ influx, Cl- flux has also been
demonstrated to activate NLRP3 (Figure 1). Indeed, while low
extracellular Cl− enhances ATP-induced IL-1b secretion, high
extracellular Cl− concentration or Cl− channel blockers inhibit
NLRP3 activation (46, 47). Two recent reports demonstrated that
chloride intracellular channels (CLICs), especially CLIC1 and
CLIC4 mediate NLRP3 activation by promoting Cl− efflux
downstream nigericin-induced K+ efflux and mitochondrial
ROS production, which promotes CLIC translocation to the
plasma membrane (46, 47) (Figure 1). Interestingly, K+ seems
to drive NLRP3 oligomerization, probably in a NEK7-dependent
manner (12, 48), while Cl− efflux is prone to induce ASC
polymerization (48). Finally, although ion fluxes were shown
to control NLRP3 assembly and activation, the link between ion
fluxes and the inflammasome activation remains to be identified.

ROS Production and Mitochondrial Dysfunction
Since ROS scavengers attenuate NLRP3 activation, the generation
of ROS was considered a common cellular response critical for
NLRP3 activation (49). Although the source of NLRP3-activating
ROS was controversial, the inhibition of the lysosomal NADPH
oxidase did not alter NLRP3 activation in mouse and human cells,
thus suggesting an alternative source of NLRP3-activating ROS,
likely the mitochondria (33, 50, 51). After stimulation with various
NLRP3 activators, mitochondrial ROS (mtROS) altogether with
Ca2+, contribute to the rapid release ofmtDNA into the cytosol (52)
where it is eventually oxidized (53). Oxidized mtDNA then
specifically interacts with NLRP3 and activates the inflammasome
(53) (Figure 1). In addition, mtROS promotes Thioredoxin-
interacting protein (TXNIP)-NLRP3 interaction involved in
NLRP3 expression (54) (Figure 1).

Notably, NLRP3 is mainly localized at the membrane surface
of ER in unstimulated cells (49). However, in the presence of
MSU, nigericin or alum, mtROS production leads to the rapid
relocation of NLRP3 and cardiolipin at the mitochondria outer
membrane and promotes K+ efflux (49). Then, the ASC adaptor
accumulates at Mitochondria-associated ER membranes
Frontiers in Endocrinology | www.frontiersin.org 5
(MAMs) where the NLRP3-ACS complex is formed (49). In
addition, NLRP3 may also interact with mitochondrial antiviral-
signaling protein (MAVS), which is another mitochondrial outer
MAM (55–57). In this context, mitofusin 2 can also be found in
the outer mitochondrial membrane, the ER and MAM.
Mitofusin 2 plays an important role in NLRP3 activation
during RNA viral infections since it interacts with MAVS to
support the relocation of NLRP3 to the mitochondria (58)
(Figure 1).

Alternative Inflammasome Activation and
Non-Canonical NLRP3 Activation
In addition to the classical/canonical NLRP3 inflammasome
activation, an alternative NLRP3 activation process has been
identified in which LPS alone is sufficient to induce
inflammasome activation without the involvement of another
second activator (59). This signaling pathway relies on a cascade
involving TLR4, TIR domain-containing adapter molecule 1
(TRIF), RIPK1, FADD and caspase 8 that finally promotes
NLRP3 activation. Interestingly, in addition to LPS, the pro-
atherogenic apolipoprotein ApoC3 is able to trigger TLR2 and
TLR4 heterodimerization and promotes the alternative
activation of NLRP3 (60), thus mirroring the effect of oxLDL
in the canonical activation of NLRP3. Strikingly, the alternative
inflammasome activation is characterized by its independency
on K+ efflux and the absence of pyroptosome formation and
pyroptosis. Then, this pathway is likely involved in the control of
cytokine secretion without affecting cell viability.

In addition to caspase 1, cytosolic gram negative bacteria-
derived LPS may also be sensed independently of TLR4 signaling
by human caspases 4 and 5, and mouse caspase 11, to induce the
non-canonical NLRP3 inflammasome (61, 62). In this pathway,
Caspase-4/5/11 promote pyroptosis by processing pro-GSDMD
and pannexin-1, a protein channel that releases ATP from the
cell. This extracellular ATP then activates P2xr7 to promote K+

efflux and NLRP3 activation (63, 64).
NUCLEAR RECEPTORS

In addition to the above-described regulators, priming and
activation processes are also controlled by nuclear receptors
(NRs), a subclass of transcription factors. Although numerous
studies have reported this alternative activation pathway, such
regulatory processes are rarely mentioned. We provide here the
first review of the literature describing how these lipid-regulated
receptors control both priming and activation processes in the
context of different NLRP3-driven diseases. We will also describe
in which pathophysiological contexts this regulation has been
reported and how the pharmacological modulation of these NRs
prevents the progression of NLRP3-driven diseases. Finally, we
will discuss also the role of NLRP3 in NR regulation.

Nuclear Receptors: Generalities
Discovered in the mid-80s, NRs represent a superfamily of
structurally conserved ligand-dependent transcription factors
that regulate gene expression (65–67). The nuclear receptor
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superfamily can be sub-divided into four classes based on their
ligand- and DNA-binding properties and on the nature of their
partner (68). NRs usually work as homo- or heterodimers, which
bind to a specific response element composed of two AGGTCA
half-sites separated by one to four nucleotides in the promoter of
target genes (Figure 2). These half-sites are organized either as a
palindromic sequence or a direct repeat. The first class, mostly
classical steroid hormone receptors, is probably the best
characterized and consists of nuclear hormone receptors such
as Androgen Receptor (AR), Glucocorticoid receptor (GR),
Estrogen receptors (ERs: ERa, ERb), Mineralocorticoid
Receptor (MR), Progesterone Receptor (PR). These NRs work
as homodimers and are recruited to a palindromic arrangement
of core recognition motifs. The second class consists of so-called
adopted receptors that were initially identified as orphan
receptors meaning without known ligands, but subsequent
studies characterized naturally occurring ligands and
determined their physiological roles. Its members encompass
eicosanoid and fatty acid receptors Peroxisome Proliferator-
Activated Receptors (PPARs: PPARa, PPARb/d, PPARg), the
oxysterol receptors Liver X Receptors (LXRs: LXRa and LXRb),
Thyroid hormone Receptors (TRs: TRa, TRb), the Retinoic Acid
Receptors (RARs: RARa, RARb, RARg), the Vitamin D3
Receptors (VDR), the xenobiotic receptor Pregnane X Peceptor
(PXR). NRs from class II heterodimerize with one of the Retinoid
X Receptors (RXRs: RXRa, RXRb or RXRg) and are recruited to
a response element organized in two-half sites in tandem repeat
(69–71). The third NR class is composed of adopted receptors
such as RXRs, the heme receptors Rev-erb (Rev-erba and Rev-
Frontiers in Endocrinology | www.frontiersin.org 6
erbb), fatty acid receptor Human Nuclear Factor 4 (HNF4a,
HNF4g) and orphan receptors such as Chicken Ovalbumin
Upstream Promoter Transcription Factor (COUP-TFI, COUP-
TFII). The NRs from this third class act as monomers or
homodimers bound on direct repeat response elements.
Finally, the fourth class is made of orphan nuclear receptors
such as Estrogen Related Receptors (ERRa, ERRb, ERRg),
Retinoid-related Orphan Receptors (RORa, RORb, RORg),
Nurr1, NOR1, Nurr77 and the steroidogenic factor 1 SF-1.
Therefore , NRs represent a crucial superfamily of
transcriptional factors whose transcriptional activity may be
modulated by specific natural or synthetic ligands, identifying
NRs as promising therapeutical targets in numerous diseases,
and especially in NLRP3-driven diseases as described below.

Structure and Molecular Functions of Nuclear
Receptors
NRs consist of modular domains, including a variable amino N-
terminal activation domain (AF-1), a highly conserved DNA-
binding domain (DBD), a conserved hinge region linking the
DBD with the conserved ligand-binding domain (LBD) (72)
(Figure 2A). The DBD mediates the specific recruitment of NR
monomers, homodimers, heterodimers to their DNA response
element and is involved in the dimerization of NRs with their
partner altogether with the hinge region and the LBD. In
addition, the LBD mediates ligand-dependent interactions with
transcriptional co-activators such as p300/CBP or co-repressors
such as NCoR or SMRT (Figure 2). These interactions are
controlled, at the structural level, by ligand-dependent
A

B

FIGURE 2 | Structure and function of nuclear receptors. (A) Canonical structures of nuclear receptors. Nuclear receptors are composed of a N terminal activation
function domain whose activity is independent of ligand binding, a DNA binding domain (DBD), a hinge region (Hr) and a ligand binding domain (LBD). Their
respective activity is mentioned accordingly. Dimer: dimerization (B) Nuclear receptors work as homo or heterodimers which bind a response element present in the
promoter of their target genes. Response elements are composed of two AGGTCA half-sites separated by one to four nucleotides (X). In the absence of ligand, NRs
(except class I) preferentially bind co-repressor and inhibit gene transcription. In the presence of a ligand, co-repressors are degraded by the proteasome and co-
activators are recruited, which then allows the binding of a mediator complex and the ARN polymerase II.
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conformational changes in the last a-helix 12 (aH12) of the LBD
known as AF2 (73). In the absence of a ligand, co-repressors are
preferentially bound to NRs, especially those of class II, while
ligand binding induces a conformational change of the aH12
helix which then triggers the release of co-repressors, allowing
co-activator binding (Figure 2B). If several NRs, especially those
of the class II including PPARs, LXRs, RARs are then able to bind
target genes in the absence of a ligand and recruit co-repressors
to actively repress gene expression, class I steroid hormone
receptors are usually sequestered into the cytoplasm in the
absence of ligands and are translocated into the nucleus to bind
their target genes in the presence of a ligand. Finally, the Rev-erb
subfamily, Rev-erba and Rev-erbb, lacks the aH12, which then
prevents the recruitment of co-activators (74, 75). Instead, although
Rev-erbs are able to recruit co-repressors and actively repress gene
expression in the absence of a ligand, ligand binding enhances co-
repressor recruitment and the transcriptional activity ofRev-erbs to
further inhibit the expression of their target genes (74, 75). Their
transcriptional activity might be regulated by post-translational
modifications including phosphorylation, ubiquitination, and
SUMOylation (76–85).

Nuclear Receptors and the Innate Immune System
NRs are involved in the control of numerous physiological activities
includingmetabolism (86, 87), reproduction (88, 89), cell cycle (90),
vasculature (91, 92), brain activity (93, 94), circadian rhythm (95–
97) and immunity (98–103). NRs have then beenwidely implicated
in the control of inflammatory processes and the control of immune
cell activity (99). In macrophages, many NRs display anti-
inflammatory activities by quenching the NF-kB dimer into the
cytoplasm (99). For instance, GR inhibits the expression of TNFa
and COX2. In addition, iNOS expression is inhibited by both
PPARg and GR, while TLR4 expression is dampened by Rev-erba
and PPARg (78, 104). In the same manner, IL-6 expression is
reduced by bothGR andRev-erba (99, 105). Interestingly, LXRa is
able to induce TLR4 in humanmacrophages only, emphasizing the
species-specificity of such regulatory pathway and also induces its
own negative regulatory loop by enhancing Rev-erba expression to
avoid TLR4 lasting expression (106). In addition, nuclear receptors
such as PPARg (107), LXRa (101, 108, 109),Nurr77 (110) andRev-
erba (104, 111) also control the skewing of pro-inflammatory
macrophages toward anti-inflammatory macrophages. Finally,
nuclear receptors including LXR (112), GR (113), and Rev-erb
(105, 114) regulate macrophage recruitment by controlling the
production of adhesion molecules or the secretion of chemokines
such as Monocyte Chemoattractant Protein 1 (MCP1).
NUCLEAR RECEPTORS IN THE PRIMING
OF NLRP3

Nuclear Receptors Control NF-kB-
Dependent Regulation of NLRP3
Inflammasome
Many NRs have been shown to interact with the NF-kB complex
and to inhibit this pathway either by directly interacting with the
Frontiers in Endocrinology | www.frontiersin.org 7
NF-kB complex in the cytoplasm, a mechanism known as
quenching (98, 99), or by preventing the polyubiquitination of
the IKK complex, which then promotes NF-kB inhibition (98).
However, although these regulatory processes are known, only
few studies demonstrate the direct link between NR-controlled
NF-kB pathway and NLRP3 priming. For instance,
dexamethasone, a GR synthetic ligand, and cortisol treatments
in human THP1 macrophages and in BMDMs induce the
expression of NLRP3 mRNA and proteins in a GR-dependent
manner but not those of Casp1 and Il1b (115) (Figure 1).
Nevertheless, glucocorticoids enhance the secretion of mature
IL-1b by these cells (115), thus demonstrating the ability of
glucocorticoids to set up an active NLRP3 inflammasome
pathway. Although the molecular mechanisms involved therein
were not investigated in this report, this regulatory effect may be
due, at least partially, to the activation of the NF-kB pathway.
Indeed, dexamethasone as well as chronic stress, which triggers
the production of cortisol, induce the NF-kB pathway in
hippocampal neuroinflammation and depression-like behavior
(116). In addition to GR, PXR agonists altogether with PXR
overexpression induce NLRP3 and NLRP2 mRNA levels in
endothelial HUVEC cells (117) (Figure 1). Interestingly,
oxLDL has been shown to induce NLRP3 expression in a
LOX1- and NF-kB-dependent manner (118). LOX1 is the
main endothelial oxLDL receptor, whose stimulation by oxLDL
induces NF-kB pathway (119), a mechanism reminiscent to the
CD36-dependent one in macrophages (19). Interestingly, statins
inhibit the activated NF-kB pathway and NLRP3 inflammasome
by oxLDL in vascular endothelial cells through a PXR-dependent
mechanism as well (118). Intriguingly, PXR blocks NF-kB
binding in oxLDL-primed HUVEC, thus suggesting that PXR
activation inhibits NLRP3 activation (118). Furthermore,
epleronone-mediated inhibition of MR suppresses the
expression of NLRP3 and Caspase 1 both in the liver and
epididymal white adipose tissue (eWAT) (120) (Figure 1).
However, whether these epleronone-mediated effects on
NLRP3 pathway are dependent on MR remain to be
confirmed. For instance, it is unknown whether MR-response
elements are present in the promoter of inflammasome
component coding genes. Accordingly, MR knock-down
impairs aldosterone regulatory effect on IL-1b expression in
LPS-stimulated BMDM, but this effect was likely due to an
inhibition of NF-kB phosphorylation instead of a direct effect
on NLRP3 gene expression (120). It is noteworthy that increased
MR expression is associated with an increase in NLRP3
expression and altered microglia phenotype in hippocampus
from spontaneously hypertensive rats (121). However, the
actual functional impact of MR in this process needs further
investigation to prove the implication of MR in this context.
Furthermore, NRs such as RXRs and RAR are activated by
retinoic acids including 9-cis-retinoic acid (9-cis-RA) and all-
trans-retinoic acid (ATRA). Interestingly, human LPS-primed
macrophages treated with ATRA exhibit elevated NLRP3 RNA
and protein levels associated with an increase in caspase 1 and
pro-IL-1b maturation. At the molecular level, ATRA alone
induces NLRP3 expression and enhances LPS-induced NRLP3
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and IL-1b mRNA levels by upregulating the phosphorylation of
IkB, ERK, and p38 (122). Therefore, stimulation of GR, MR,
PXR, and RAR induces NLRP3 priming. Besides, PPARg also
controls the NF-kB-dependent NLRP3 priming in different
contexts including astrocytes and retinal ischemia/reperfusion
(123, 124). Here, IL4-activated PPARg inhibits NLRP3 protein
levels in an NF-kB-dependent manner in High Mobility Group
Box-1 (HMGB-1)-stimulated astrocytes (124), while treatment
with pioglitazone, a PPARg agonist, ameliorates retinal
ischemia/reperfusion-mediated inflammatory response by
suppressing NLRP3 activation in an NF-kB-dependent
manner (123) (Figure 1). Furthermore, GW4004-mediated
activation of FXR also inhibits the expression of TLR4 and
Myd88 in ileum (125). The gene expression of the NLRP3
inflammasome pathway components was altered accordingly,
although the direct impact of GW4004 on NF-kB activation
was not reported in this context (125). Finally, in addition to
PPARg, Rev-erba may also inhibit NLRP3 priming, at least
partially, via the inhibition of p65 expression in mouse
RAW264.7 macrophage cell line (126). Accordingly,
modulation of Rev-erb activity revealed that Rev-erbs may
inhibit p65 and IkB phosphorylation in RAW264.7 cells thus
inhibiting NF-kB activity (127). Together these data indicate
that PPARg and Rev-erba may inhibit NK-kB-dependent
NLRP3 priming (Figure 1). Overall, as many NRs including
the Constitutive Androstane Receptor (CAR) (128, 129) and
PPARa (130, 131), have been demonstrated to control the NF-
kB pathway (103), it could be anticipated that they may also be
involved in NF-kB-dependent NLRP3 priming processes,
although this still needs to be proven.

Nuclear Receptors Directly Regulate
NLRP3 Priming
NRs are also able to directly control NLRP3 transcription. For
instance, Rev-erba, a transcriptional repressor, is directly
recruited to four distinct Rev-erb Response Elements (RevRE)
into the Nlrp3 gene promoter and actively inhibits Nlrp3
expression in both human and mouse primary macrophages
(132) (Figure 1). Furthermore, the deletion of RORg or the use
of a RORg inverse agonist decreases NLRP3 mRNA and
protein levels, which is associated with a reduction of IL-1b
secretion in LPS-primed BMDM (133). ROR and Rev-erb share
the same consensus sequence allowing them to bind the same
RORE/RevRE response elements (Figure 1). Accordingly,
RORg was found to be recruited to the same Rev-erba sites
in the Nlrp3 promoter (132, 133). Finally, although poorly
invest igated, NRs also control Nlrp3 mRNA post-
transcriptional stability through the regulation of miRNA.
Indeed, the PPARb/d agonist, GW0742, significantly reduces
the number of activated pro-inflammatory microglial cells after
hypoxia–ischemia in neonatal rat brain (134). This effect is
mainly due to a decrease in TXNIP, NLRP3, IL-6 and TNFa
(134). At the molecular level, the PPARb/d antagonist GSK3787
and the miR-17-5p inhibitor abolish GW0742 effect, thus
demonstrating the dependency of GW0742 on the PPARb/d-
miR-17-5p axis (134) (Figure 1). However, the identification of
Frontiers in Endocrinology | www.frontiersin.org 8
the precise mechanisms by which PPARb/d controls the
regulation of miR-17-5-p still needs further investigations. It
is not excluded either that other NRs may regulate miRNA
expression implicated in the post-transcriptional regulation of
Nlrp3 mRNA stability.
NUCLEAR RECEPTORS REGULATE THE
NLRP3 ACTIVATION STEP

In addition to NLRP3 priming, nuclear receptors are also able to
control NLRP3 activation, ie the second step of NLRP3 regulation.
For instance, deletion of Rev-erba increases nigericin- and ATP-
induced ASC speck formation in mouse primary macrophages,
thus suggesting that Rev-erba prevents NLRP3 inflammasome
assembly and its activation (132). However, the underlying
mechanisms still need to be uncovered, and it cannot be
excluded that this effect on NLRP3 activation reflects only the
increase of Nlrp3 gene expression triggered after Rev-erba
deficiency. However, because Rev-erba regulates mitochondrial
function and autophagy processes in skeletal muscle (135), we may
speculate that the inhibition of NLRP3 assembly by Rev-erba
could be mediated by a decrease in ROS production and an
enhancement of mitochondrial function.

Interestingly, the bile acid receptor FXR is also able to
physically interact with NLRP3 and Caspase1 thus inhibiting
NLRP3 activity (136) (Figure 1). In addition, bile acids behave
as DAMPs and inhibit the priming and activation of the NRLP3
inflammasome in the context of cholestatic and septic mice (136).
At the molecular level, bile acids induce a prolonged Ca2+ influx
and activate NLRP3 synergistically with ATP administration
(136). It is noteworthy that these effects are independent of ROS
production and K+ efflux (136). In this context, FXR deletion
increases endotoxemia sensitivity while FXR overexpression
increases mice resistance to endotoxemia, thus suggesting an
FXR-independent effect of bile acids action in sepsis (136). Such
FXR-independent effect of bile acid on NLRP3 inflammasome
may be mediated by the membrane receptor Takeda G coupled
Receptor 5 (TGR5), another bile acid receptor. Indeed, treatment
of BMDM with bile acids suppresses LPS/Nigericin-mediated
NLRP3 activation in a TGR5-cAMP-PKA dependent by
inducing NLRP3 ubiquitination and phosphorylation (137–140).

Furthermore, vitamin D enhances VDR-mediated inhibition
of NLRP3 activation (141). Indeed, vitamin D3 (VitD3) inhibits
NLRP3 activation in LPS-primed mouse peritoneal macrophages
in the presence of nigericin, MSU or alum (142). In addition,
vitD3 dampens ASC speck formation by preventing the NLRP3/
NEK7 interaction (142). Interestingly, vitD3 also promotes
NLRP3 ubiquitination. Indeed, the LBD of VDR is able to
physically interact with the NACHT-LRR domain of NLRP3
thus inhibiting the association of NLRP3 with BRCC3 and
preventing NLRP3 deubiquitination (141) (Figure 1).
Particularly, VDR has been shown to prevent NLRP3
modification on K63 and its subsequent activation (141).
Finally, vitD3 also increases VDR-controlled UCP2 expression
thus inhibiting ROS accumulation in LPS-primed peritoneal
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macrophages (141). Altogether, VDR inhibits NLRP3
inflammasome by favoring NLRP3 ubiquitination, preventing
NLRP3 assembly and reducing ROS-mediated NLRP3 activation.

LXRs have also been shown to modulate the NLRP3 pathway.
In colon cancer cells for instance, LXRb activates NLRP3
inflammasome by inducing Pannexin1-dependent ATP release
and autocrine P2x7R activation, which in turn leads to anti-
tumoral effect of LXR agonists (143) (Figure 1). By contrast,
LXRs have also been shown to inhibit Casp1, IL-1b and IL-18
expression through a direct DNA-dependent mechanism in
human and mouse primary macrophages (109). In addition,
LXRs enhance expression of IL-18BP, the decoy receptor of IL-
18, through an indirect IRF8-dependent mechanism (101, 108,
109). In this study, LXRs did not appear to control Nlrp3 mRNA
levels in macrophages. Instead, they inhibit the expression of
other inflammasome components such as pro-casp1, pro-IL18
and pro-IL1b and they induce the expression of inhibitory factor
including IL18BP. On the contrary, LXRa was recently shown to
decrease NLRP3 mRNA and protein levels in renal cell
carcinomas metastasis in vivo and in vitro, thus resulting in the
reduction of pro-IL1b and pro-caspase1 protein levels and the
inhibition of IL1b secretion (144). Finally, lysosomal acid lipase
(LIPA)-mediated 25- and 27-hydroxycholesterol (OHC)
production, two LXR natural agonists, decreases efferocytosis
and metabolic inflammation by activating LXR and by inhibiting
NLRP3 in THP1 human macrophages (145). However, the
interdependency of each pathway needs further investigations
as results from Viaud et al. suggest that 25-OHC dampens
inflammasome function independently from LXR activation
(145) (Figure 1). Instead, it may be due to reduced MAM-
dependent mitochondrial repurposing leading to NLRP3
inhibition (145). Therefore, it seems that LXR activity on the
NLRP3 inflammasome depends on the cellular and tissular
context, underlying cell-specific and context-specific
mechanisms that still need to be explained. Interestingly,
ERRa and PPARb/d increase Mitofusin 2 expression (146,
147). Although the link between the regulation of MAM and
NLRP3 has not been established yet, we may anticipate that both
NR may be involved in NLRP3 activation.

Epleronone is an antagonist of MR while aldosterone is a MR
activator. Interestingly, epleronone-mediated inhibition of MR
inhibits IL-1b secretion from eWAT (120). At the molecular
level, epleronone treatment prevents ROS production and ATP-
or nigericin-induced IL-1b secretion in LPS-primed BMDM,
thus suggesting an effect on NLRP3 activation (120).
Accordingly, aldosterone induced renal tubular cell injury by
activating NLRP3 in a mtROS-dependent manner. Aldosterone-
induced IL-1b and IL-18 maturation was then inhibited by
NLRP3 knock-down or epleronone-mediated MR inhibition.
Epleronone abolishes aldosterone-induced NLRP3, ASC,
Casp1, and IL-18 maturation in mouse kidney, but the
mechanism is still uncovered (148).

PXR activation with xenobiotics also induces Caspase1
maturation and IL-1b secretion in human THP1 and mouse
primary macrophages (149). At the molecular level, PXR
promotes rapid ATP release thus acting as an activation signal
Frontiers in Endocrinology | www.frontiersin.org 9
2 (149). In this context, SRC kinase (SFK) promotes Pannexin1
phosphorylation thus triggering rapid ATP release (149) (Figure
1). It is, however, uncertain whether PXR controls Pannexin1
and SFK at the genomic or non-genomic levels (149). However,
since the release of ATP occurs only 15 seconds after PXR
agonist stimulation, this effect is unlikely transcriptional but
instead it may be due to post-translational modification,
advocating for a non-genomic effect of PXR in the regulation
of NLRP3 activation step.

Finally, glycolysis and metabolic intermediates were shown to
impact NLRP3 activation and ROS production (150).
Interestingly, ATRA treatment induces hexokinase 2 expression
in human LPS-primed monocyte-derived macrophages, thus
shifting the metabolism of macrophages toward glycolysis and
activating the NLRP3 inflammasome (122). Imbalance of
metabolic homeostasis then appears to be directly linked to the
NLRP3 inflammasome activity and the innate immune system
thus emphasizing the importance of metabolic sensors in the
control of inflammatory pathway. As exemplified here, NRs play
an important role in such regulatory processes by bridging
metabolism sensing and immunity.
NLRP3 IN THE REGULATION OF
NR ACTIVITY

Until now, we have reviewed the regulatory effect of NRs onNLRP3.
Interestingly, the NLRP3 pathway can also control the activity of
NRs. For instance, the NLRP3/Caspase1 complex is able to cleave
GR, thus impairing glucocorticoid activity in acute lymphoblastic
leukemia (ALL) patients (151). Two cleavage sites of caspase 1,
LLID and IKQE, have been identified in GR. Accordingly, increase
in caspase 1 induced GR cleavage, decreased GR transcriptional
activity and promoted glucocorticoid resistance (151). Interestingly,
the comparison of NLRP3 and Caspase 1 expression between
glucocorticoid sensitive and resistant primary leukemia cells
isolated from 444 patients shows that high expression of Caspase
1 and NLRP3 is associated with an increase in glucocorticoid
resistance (151). It is noteworthy that the higher expression of
NRLP3 and Caspase 1 observed in glucocorticoid-resistant cells is
likely due to lower somatic methylation of their respective promoter
(151). Conversely, inhibition of Caspase 1 restores glucocorticoid
sensitivity. Similar mechanisms were observed for AR (152).

Finally, the 17-oxo-DHA is a bioactive electrophilic a,b-
unsaturated keto-derivative of the w3 fatty acid docosahexaenoic
acid (DHA) that is endogenously generated by COX2 in activated
macrophages (153). The nuclear factor erythroid 2-related factor 2
(Nrf2) is a transcription factor that binds antioxidant response
element (ARE) to control antioxidant and detoxifying enzyme
transcription including heme oxygenase 1 (HO-1) and glutathione
S-transferase (GST). 17-oxo-DHA displays anti-inflammatory and
cytoprotective activities by inducing Nrf2-dependent anti-oxidant
response and by suppressing NF-kB-dependent inflammatory
reactions. Interestingly, 17-oxo-DHA inhibits nigericin-induced
ASC speck formation in human THP-1 macrophage cell line. In
the context of cigarette smoke-driven chronic obstructive
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pulmonary disease (COPD), the 17-oxo-DHA compound
prevents inflammasome-dependent GR degradation in human
peripheral blood mononuclear cells (PBMCs) (153). Although
the underlying mechanisms are uncovered, we may speculate that
17-oxo-DHA controls Caspase 1 activity.
REGULATORY FUNCTION OF NR IN
NLRP3-DRIVEN DISEASES AND THEIR
THERAPEUTIC POTENTIAL

NLRP3 inflammasome upregulation is involved in numerous
inflammatory diseases including joint, intestinal, respiratory,
brain, hepatic, kidney, sexual organ and cardiometabolic
diseases. Strikingly, NRs were widely involved in the regulation
of these diseases through the control of NLRP3 (Table 1). It is
then not surprising that the modulation of NR activity by specific
agonists or antagonists regulates NLRP3 priming or activation
and improves or worsens such diseases depending on
the context.

Brain Diseases
Cerebral ischemia is a particular condition promoting
neuroinflammation (154, 155). The 17b-Estradiol (E2), an ER
agonist, display neuroprotective effect in the context of global
cerebral ischemia, a well-known condition in which NLRP3
pathway components are induced (154). In this context, E2
inhibits the expression of NLRP3 inflammasome components
and NLRP3 activation by decreasing P2xr7 expression in protein
and proline-glutamic acid and leucine-rich protein 1 (PELP1)-
dependent manner (154) (Table 1). Accordingly, nicotine
attenuates ERb action on inflammasome activity and
exacerbates ischemic brain damage (155). Indeed, nicotine
inhibits ERb protein levels in hippocampus and cortex while it
increases ASC, IL1-b and Caspase 1 protein levels in brain of
female rats (155). However, further investigations are needed to
demonstrate whether nicotine regulatory effects on the NLRP3
pathway are mediated by ERb and NLRP3 instead of a direct
activation of the non-canonical or alternative pathway. In
addition to ERs, a PPARb/d agonist significantly reduces
neuroinflammation after hypoxia–ischemia by inhibiting the
expression of TXNIP and NLRP3 (134). Furthermore,
temporal lobe epilepsy (TLE) is characterized by spontaneous
recurrent seizures leading to neuroinflammation features such as
astrocytosis associated with microglia activation and
inflammatory cytokine production (156) (Table 1). In the
context of human and mouse TLE, the Rev-erb ligand, SR9009,
prevents neuroinflammation by inhibiting NLRP3 mRNA and
protein levels, reducing astrocytes and microglial activation and
decreasing apoptosis, which then preserves neurons and provides
neuroprotection (156). Finally, glucocorticoids induce NLRP3 in
an NF-kB-dependent manner in hippocampal microglial cells,
which mediates chronic stress-induced depressive-like behavior
in rats (116) (Table 1). Altogether, these data demonstrate that
NRs such as ERs, Rev-erbs, and GR play a regulatory role on
NLRP3-induced brain disease such as cerebral ischemia, epilepsy
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and depressiveness. As such, the modulation of their activity with
ligands may dampen the severity and the progression of
such diseases.

Intestinal Diseases
Colitis is an inflammatory disease of the colon whose causes are
still uncertain. We may differentiate acute ulcerative colitis from
chronic Crohn’s disease. Strikingly, NLRP3 inflammasome is
induced in dextran sulfate sodium (DSS)-induced colitis mouse
model. Numerous NRs have then been shown to control DSS-
induced colitis severity by modulating NRLP3 inflammasome
pathway. For instance, the FXR agonist GW4064 exerts mild
effect on colitis reduction by decreasing NLRP3 expression in
LPS-induced ileum injury (125) (Table 1). However, GW4064
rapidly dampens both canonical and non-canonical NLRP3
activation in an FXR-independent manner, thus questioning
the underlying mechanism involved in this fast response (171).
Nevertheless, it is not excluded that FXR mediates GW4064
effect after a prolonged exposure to the agonist in this context
(172). In obese patients, VDR polymorphisms were associated
with increased inflammasome component expression, pro-
inflammatory cytokine secretion and gut permeability, or
dysbiosis, raising circulating LPS (173). Additionally, VitD3-
activated VDR and SR9009-activated Rev-erbs also protect from
DSS-induced colitis (126, 142), which then emphasizes the use of
such NR-targeted approaches to control inflammatory bowel
diseases (Table 1). It is noteworthy that numerous compounds
derived from Chinese medicine are able to control the
inflammasome pathway. For instance, Berberine, isolated from
Rhizoma Coptidis, has been used for centuries in Chinese
medicine to treat gastrointestinal disorders. Intriguingly,
Berberine inhibits NLRP3 activation in DSS-induced colitis in
a Rev-erba-dependent manner (174). Naringin is a flavonoid
extracted from grapefruit, sour orange and citrus seed that
display anti-inflammatory properties (175). Interestingly,
PPARg mediates the anti-inflammatory effects of Naringin on
DSS - i n du c e d u l c e r a t i v e c o l i t i s ( 1 7 5 ) . Whe th e r
thiazolidinediones, a PPARg agonist class, prevent colitis
progression as well remains to be determined (Table 1).
Finally, LXRb activates NLRP3 inflammasome in colon cancer
cells leading to anti-tumoral effect of LXR agonists (143)
(Table 1).

Kidney Diseases
Podocytes are important glomerular cell types playing a key role
in blood filtration by the kidney. Aldosterone, a MR agonist,
drives NLRP3-dependent podocyte dysfunction in vivo and in
vitro by inducing oxidative stress (158) (Table 1). Remarkably,
eplerenone, that inhibits MR, protects podocytes from
aldosterone-induced injury (158). However, the dependency of
MR in this context still needs to be addressed. In addition to
podocytes, aldosterone also induces renal tubular cell injury.
These cells play a pivotal role in the absorption of glucose, amino
acids and ions by the renal tubule. In this context, aldosterone
promotes mtROS production and subsequent NLRP3 activation
(159). Strikingly, aldosterone induces NLRP3, IL1b, IL18 and
CASP1 expression in human immortalized normal kidney cells
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isolated from proximal tubules (HK-2 cells) in a dose- and time-
dependent manner, thus inducing a phenotypic switch from HK-
2 to fibroblast/pericyte cells in a MR and NLRP3-dependent
manner (159). Accordingly, eplerenone abolishes these
aldosterone-mediated effects. In addition, NLRP3 deletion in
Frontiers in Endocrinology | www.frontiersin.org 11
mice attenuates aldosterone-induced renal injury by protecting
cells from apoptosis/pyroptosis and by preventing this
phenotypic switch (159). Finally, aldosterone also induces
tubulointerstitial fibrosis leading to kidney failure (148). As
above, eplerenone abolishes aldosterone-induced macrophage
TABLE 1 | Activity of NRs in NLRP3-driven diseases.

Diseases NR Compounds Effect on
inflammasome

Effect on disease Mechanism Reference

Brain diseases
Cerebral ischemia ER 17b-Estradiol Inhibition Neuroprotection Decreases P2xr7 154, 155

PPARb/d GW0742 Inhibition Decrease
neuroinflammation

Decreases TXNIP and NLRP3 134

Depression GR dexamethasone Activation Increase depressive-like
behavior

NF-kB-dependent ROS production 116

Temporal lobe
epilepsy

Rev-erb-a, -b SR9009 Inhibition Preserve neurons Decreases NLRP3 156

Intestinal diseases
Colitis FXR GW4064 Inhibition Protection FXR-independent? Inhibition of NF-kB? 125

PPARg n/a Inhibition Protection PPARg mediates naringinin protection 157
VDR VitD3 Inhibition Protection Inhibits NEK7-mediated NLRP3 activation 142
Rev-erb-a, -b SR9009 Inhibition Protection Decreases NLRP3 in a NF-kB-dependent

and independent manner
126

Colon cancer LXRb T091317, GW3945,
25OH-Chst

Activation Anti-tumoral effect Interaction with Pannexin-1 and ATP
release

143

Kidney diseases
MR aldosterone Activation Podocyte dysfunction mitROS production-mediated NLRP3

activation
148, 158,

159
PPARg pioglitazone Inhibition Protects renal tubular cells Inhibits NLRP3 and IL-1b transcription 157

Respiratory
diseases
Acute lung injury Rev-erb-a, -b SR8278 (antagonist) Activation Increases lung water

content
Rev-erb inhibition induces NLRP3
inflammasome pathway

127

P. aeruginosa
infection

PPARa n/a Inhibition Induces complications Increases NLRP3, ASC, Casp1, and p65
protein level

160

Cardiometabolic
diseases
Atherosclerosis LXR GW3965 Activation Human study: not defined IL1-b increases, HIF1a-dependent NLRP3

activation (?)
161

I/R Rev-erb SR9009 Inhibition Prevents heart failure Inhibits CCL2 and NLRP3 expression 162
Diabetic
hypertension

MR aldosterone Activation Increases hypertension
and fibrosis

Induces mitROS-mediated NLRP3
activation

163

Diabetic
retinopathy

PPARa Fenofibrate Inhibition Improves retinopathy Nrf2-dependent NLRP3 inhibition 164

Nurr1 n/a Inhibition Inhibits Müller glia cells NF-kB-dependent NLRP3 activation 165
Hepatic diseases
Fulminant hepatitis Rev-erb-a, -b SR9009 Inhibition Decreases Fulminant

hepatitis
Inhibits CCL2/MCP1, NLRP3, IL-18, and
IL-1b expression

132

RORg SR1555, SR2211 Inhibition Decreases Fulminant
hepatitis

Inhibits NLRP3 and IL-1b expression 133

Cholestasis FXR GW4064 (?) Inhibition Improves cholestasis-
potentiated sepsis

Physically interacts with NLRP3 136

VDR Calcipotrion Inhibition Alleviates cholestatic liver
injury

Inhibits NLRP3 pathway and hepatic
stellate cell activation

166

NASH PPARb/d GW501516 Inhibition Prevents NASH
pathogenesis

Inhibits NLRP3, NLRP6, NLRP10, Casp1
and IL-1b expression

167

I/R Rev-erb-a, -b SR9009 inhibition alleviates hI/R-induced
hepatic damage

Inhibits NLRP3 and IL-1b expression 168

Sexual organ
diseases
Endometriosis ERb n/a Activation Activate cellular

proliferation and adhesion
Inhibits TNF-driven apoptosis and activates
NLRP3

169

Endometrial
cancer

ERb Estrogen Activation Progression of endometrial
cancer

Enhances NLRP3 and IL-1b expression 170
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infiltration, tubulointerstitial fibrosis in a MCP1- and ICAM1-
dependent manner (148). Precisely, macrophage inflammasome
was required to induce renal fibrosis and kidney dysfunction
after aldosterone administration, whereas renal cells were
involved in MCP1 expression, showing a cell-specific
aldosterone action in renal failure. However, the dependency
on MR in renal fibrosis is still elusive (148). Finally, PPARg
activation with pioglitazone inhibits MSU-induced NLRP3 and
IL-1b mRNA and protein levels in HK-2 cells (157) (Table 1).
Intriguingly, MSU and LPS were able to induce PPARg
expression in HK-2 cells after a short exposure, but not a long
exposure, thus suggesting that PPARg sets up a negative feedback
loop to inhibit NLRP3 activation (157).

Respiratory Diseases
Acute lung injury is a severe IL-1b-associated complication that
occurs after pulmonary inflammation and increases the mortality
rate in patients. In mice, the Rev-erb antagonist SR8278
exacerbates LPS-induced lung permeability, which increases
lung water contents (127) (Table 1). In this context, SR8278
increases macrophage recruitment in the lung and enhances IL-
1b production in bronchioalveolar lavage fluid (127). In
addition, PPARa ablation in mice increases NLRP3, ASC,
Caspase 1 and p65 protein levels in the lung after infection
with Pseudomonas aeruginosa (PA), which then promotes lung
complications and subsequently worsens the pathophysiology of
PA lung diseases (160) (Table 1).

Cardiometabolic Diseases
Cardiometabolic diseases include hypertension, diabetes, non-
alcoholic fatty liver diseases, vascular dysfunction, and heart
failure. They share common inflammatory features including
NLRP3 inflammasome activation. We may distinguish
atherosclerosis, heart ischemia–reperfusion, obesity, type 2
diabetes, and diabetic retinopathy. Atherosclerosis is a lipid-
driven inflammatory disease of the vascular wall during which
infiltrating LDLs are eventually modified, triggering their uptake
by macrophages. Oxidized LDLs are indeed internalized and
promote both priming and cholesterol crystals-mediated
activation of NLRP3 in a CD36-dependent manner (19, 20).
Accordingly, ablation of the NLRP3 inflammasome pathway
decreases atherosclerosis progression (176, 177). Numerous
NRs have been shown to be involved in atherosclerosis
development including PPARs, Rev-erba, LXRs, and Nur77 (3,
86, 108, 178). Interestingly, an LXR agonist has lately been shown
to increase IL-1b protein levels in an HIF1a-dependent manner
in human atherosclerotic lesions. It is however unknown
whether it relies on an LXR-dependent mechanism (161)
(Table 1). However, as HIF1a induces NLRP3 inflammasome
activation (179–181), such regulatory mechanism may then
account for LXR-dependent activation of IL1-b production in
hypoxic atherosclerotic lesions.

Diabetes and hypertension are common coexisting diseases
that accelerate micro and macrovascular complication occurrence.
Different groups evidenced that aldosterone-activated MR
increases hypertension and fibrosis through mtROS-mediated
NLRP3 activation (163). In a model of obese diabetic db/db
Frontiers in Endocrinology | www.frontiersin.org 12
mice, spironolactone-mediated MR inhibition ablates
inflammasome activation in mesenteric arteries (163) (Table 1).
In addition, spironolactone treatment ameliorates glucose
homeostasis without affecting body mass and mesenteric artery
KCl-induced contraction. However, spironolactone ameliorates
acetylcholine-activated vasorelaxation in phenylephrine-
contracted mesenteric artery ex vivo (163). Accordingly, the
NLRP3 inhibitor MCC950 mimics spironolactone effect in this
vasoreactivity model, then suggesting that NLRP3 controls
vasoreactivity in a MR-dependent manner (163). Diabetic
retinopathy is a common neurovascular complication of diabetes
that represents the most frequent cause of vision loss and
blindness worldwide. In early non-proliferative stages,
hyperglycemia causes glucotoxicity and damages retinal small
vessels. As the disease progresses, alteration of small vessels
triggers hypoxia and the development of small, fragile neovessels
that can bleed, clot, and alter the retina. Because of cell death,
diabetic retinopathy may also be considered as a chronic low-
grade inflammatory disease in which the NLRP3 inflammasome is
activated (54, 182). Strikingly, treatment with the PPARa ligand
fenofibrate (FF) ameliorates diabetic retinopathy by inducing Nrf2
signaling and inhibiting NLR3 inflammasome (164) (Table 1). FF
inhibits Nrf2 expression in mouse retinal Müller glial cells and
attenuates gliosis in diabetic retina (164). However, it is uncertain
whether FF effect is mediated by PPARa activation. Finally, Nurr1
deficiency promotes high glucose-induced Müller glial cell
activation by inducing NF-kB and the NLRP3 inflammasome
axis (165) (Table 1).

Post-ischemia reperfusion (I/R), after a heart ischemic episode,
triggers a profound inflammatory response called reperfusion
injury, which provokes adverse cardiac remodeling and heart
failure. Consistently, MCC950-mediated NLRP3 inhibition lowers
infarct size and areas at risk (183). Remarkably, administration of
SR9009 Rev-erb agonist, one day after myocardial I/R, prevents
heart failure by targeting cardiomyocyte inflammasome in a Rev-
erb-dependent manner (162) (Table 1). In addition, Rev-erb
activation inhibits CCL2 secretion and leucocyte recruitment at
ischemic sites, thus lowering cardiac inflammation that would
prevent cardiac remodeling (162).

Hepatic Diseases
Cholestasis is a common liver complication in patients with
extrahepatic infection or sepsis and consists in bile acid
accumulation in liver and serum. Intriguingly, on the one hand,
BAs behave as DAMPs which activate both priming and activation
of NLRP3, while on the other hand, the BA receptor FXR inhibits
NLRP3 activation by physically interacting with NLRP3 (136)
(Table 1). However, because the GW4064 compound may
modulate NLRP3 activity in an FXR-independent manner (171),
wemay anticipate that BA effects onNLRP3 in cholestatic mice may
also occur in an FXR-independent manner, thus explaining this
apparent discrepancy. However, as FXR expression is down-
regulated in endotoxic mice, FXR synthetic ligands display a poor
effect on cholestasis (136), thus advocating for the identification of
an alternative therapeutic strategy such as promoting the increase of
FXR expression. Finally, the VDR agonist calcipotriol is also able to
alleviate cholestatic liver injury and fibrosis by inhibiting the NLRP3
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inflammasome pathway involved in inflammation, and hepatic
stellate cells activation likely responsible of fibrosis (166) (Table 1).

Non-alcoholic fatty liver diseases (NAFLD) are common chronic
liver diseases, ranging from hepatic steatosis to non-alcoholic
steatohepatitis (NASH), which is characterized by lipid
accumulation, inflammation, and fibrosis (184). NASH may
eventually progress to irreversible cirrhosis and hepatocarcinoma
(184). Remarkably, inhibition of the NLRP3 inflammasome
pathway reduces liver inflammation and fibrosis in an
experimental mouse NASH model (185). Interestingly, the dual
PPARa and PPARb/d agonist GFT505/Elafibranor displays
hepatoprotective effects in different rodent models of NASH by
reducing fibrosis and cytokine secretion including IL-1b (167).
Consistently, administration of the PPARb/d agonist GW501516
inhibits Caspase 1 and IL-1b hepatic mRNA levels in mice fed a
high fat diet (HFD) and co-treated with LPS (186) (Table 1). In
human hepatic hepG2 cell line, palmitic acid and LPS co-treatment
induces the expression of NLRP3, NLRP6 and NLRP10 as well as
Caspase 1 and IL-1b (186). Consistently with in vivo data,
GW501516 prevents palmitate/LPS-induced inflammasome
component gene expression (186). Intriguingly, although
GW501516 accordingly impairs Caspase 1 maturation, it does not
control IL-1b secretion (186).

Fulminant hepatitis (FH) is a life-threatening condition
characterized by fast evolving hepatic dysfunction associated with
tissue necrosis, inflammation and hepatic encephalopathy (187).
Albeit numerous factors including fungi intoxication, viral infection,
and metabolic diseases trigger FH, the main cause of FH nowadays
is drug overdose with acetaminophen as the main one (187).
Acetaminophen accumulation induces P450-mediated
overproduction of toxic metabolites leading to oxidative stress,
mitochondrial membrane potential loss and hepatocellular death.
Tissue necrosis is then responsible of the release of DAMPs such as
ATP and subsequent NLRP3 inflammasome activation (188, 189).
Strikingly, Rev-erba-deficiency aggravates FH in a mouse model of
LPS-galactosamine (GalN)-induced liver injury. This occurred in an
NLRP3-dependent manner by alleviating its inhibitory effect on
Caspase 1 activity and on IL-1b expression and secretion (132)
(Table 1). As Rev-erba also impairs CCL2/MCP1 chemokine
expression, ablation of Rev-erba worsened neutrophils and
monocytes infiltration in LPS/GalN-challenged mice, thus
contributing to increased liver injury (132). Consistently, pre-
treatment with the Rev-erb agonist SR9009 prevents LPS/GalN-
induced FH pathogenesis by inhibiting the NLRP3 inflammasome
pathway and CCL2 expression, thereby delaying death and
improving the survival rate from 10% in the control to 70% in
the SR9009-treated mice (132). Finally, the RORg inverse agonists
SR1555 and SR2211 reduce the expression and secretion of IL-1b in
LPS/GalN-induced FH and exert a hepatoprotective effect that
improves the survival rate of treated FH mice (133) (Table
1). However, whether RORg mediates SR1555 and SR2211 effect
on NLRP3 pathway and FH protection still needs to be
proven. Nevertheless, RORg deletion in LPS-primed BMDM
inhibits NLRP3 and IL-1b secretion, which is consistent with a
RORg-inhibiting effect of SR1555 and SR2211 on these
processes (133).
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Rev-erb-a has also been highlighted lately in the context of
hepatic ischemia–reperfusion (hI/R). hI/R is a complex
phenomenon during which hepatocyte damage hits when
blood supply returns into the ischemic liver after a liver
transplantation, hepatectomy, and ischemic shock (190).
Inflammatory responses play an important role in hI/R injury
during which activated Kupffer cells release ROS and pro-
inflammatory cytokines including IL-1b. Consistently, NLRP3
deficiency protects against liver I/R injury in mice (191).
Accordingly, Rev-erba deletion sensitizes mice to hI/R and is
accompanied by exacerbated NLRP3 activation and pro-
inflammatory cytokine secretion (168). On the contrary,
SR9009 treatment alleviates hI/R-induced hepatic damage by
inhibiting IL-1b expression (168). In conclusion, Rev-erbs,
RORg, VDR, PPARb/d, and FXR then exhibit hepatoprotective
effects in acute liver inflammatory diseases by dampening the
NLRP3 inflammasome activity.

Sexual Organ Diseases
Endometriosis is a sexual organ disease originating from
abnormal deposition of endometrial cells that grow outside
from the uterine cavity. It affects 6–10% of reproductive-aged
women. Endometriosis causes pelvic pain in 50% of cases and
fertility problem in 40–50% of cases (169). Endometriosis is
likely due to high production levels of 17b-estradiol that could
play a role in the proliferation of endometriotic tissues (169)
(Table 1). Compared to ERa, ERb expression is significantly
higher in endometriotic tissue than in normal uterine
endometrium in human. In addition, the role and the specific
expression of ERa in endometriotic tissues are controversial
(169). Interestingly similar patterns were observed in the mouse
(169). Interestingly, NLRP3−/− mice exhibit smaller ectopic
lesions compared to wild type mice, thus suggesting that
NLRP3 induces endometriosis (169). Strikingly, ERb inhibits
TNFa-driven apoptosis and activates NLRP3 in endometriotic
tissues (169). Accordingly, ERb then increases IL-1b secretion,
which enhances cellular adhesion and proliferation (169).
Consistently, NLRP3 inflammasome activation has been shown
to promote the progression of human endometrial cancer in an
ERb-dependent manner (170) (Table 1). At the molecular level,
ERb interacts with the NLRP3 inflammasome in the cytoplasm
(169). However, the exact regulatory mechanism still needs to
be investigated.
NR-DEPENDENT CONTROL OF NLRP3
CIRCADIAN RHYTHMICITY AND
CHRONOTHERAPY

Our ability to anticipate environmental changes imposed by the
rotation of the Earth is controlled by the circadian clock, which
properly gates many, if not all, physiological processes to the
most appropriate time window (192). Among these physiological
pathways, immune functions vary according to the time of day
(3, 193), a process described as circadian immunity, in which
innate immune cells such as macrophages harbor an intrinsic
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clockwork that drives circadian transcription of genes involved
in the response to bacterial challenge (105, 194, 195). Pioneer
studies have demonstrated that important features of the
immune system such as trafficking and abundance of blood
leucocytes, their recruitment to tissue, their ability to respond to
pathogens and to secrete immune molecules vary in a circadian
manner (196, 197). At the molecular level, the biological clock is
a complex network of transcription factors and interlocked
transcriptional feedback loops that orchestrate cellular circadian
rhythms. Among the core clock components, the ligand-activated
nuclear receptors Rev-erbs and RORs participate in the circadian
control of the immune system (104, 106), whereas pharmacological
activation of Rev-erba and ROR modulates the expression and
release of key pro-inflammatory cytokines (105, 133). It is
noteworthy that Rev-erb nuclear receptors, altogether with RORa
are the only core clock components whose activity may be directly
modulated by a synthetic compound, thus representing an
interesting therapeutical approach to directly modulate immune
circadian behavior (198).

Over the past 100 years of global industrialization, mankind
underwent some important changes in its lifestyle including its food
habits, the ease of travel, the increase in shift work and social
demands, and erratic exposure to artificial light from luminescent
screens, which have dramatically altered circadian rhythms. It is
now well-recognized that disruption of the intrinsic molecular clock
impedes a proper immune response (199) and has severe
repercussions on health. Indeed, numerous clinical studies have
demonstrated that disruption of circadian rhythms in human
represents an additional risk factor for neurological, metabolic
and chronic inflammatory disorders (200–202) such as asthma,
rheumatoid arthritis, atherosclerosis, type 2 diabetes or Alzheimer
Disease (193, 202). Most of the clock-driven diseases demonstrate a
chronic inflammatory component, either infiltration of
macrophages in the vascular wall due to an accumulation of non-
infectious DAMPs such as cholesterol crystal causing
atherosclerosis, hydroxyapatite in joints leading to rheumatoid
arthritis or the deposit of b-amyloid fibers, which activates
microglial cells in Alzheimer disease (197).

Remarkably, clock disruption alters NLRP3 circadian
oscillations in a mouse model of jetlag or in genetic and
pharmacological models of clock alteration, thus modulating
the progression of inflammatory diseases (3) including colitis
(126), myocardial infarction/ischemia–reperfusion injury (162),
lung injury (127) and fulminant hepatitis (132, 133). At the
molecular level, NLRP3 expression altogether with IL-1b and IL-
18 mRNA levels oscillate in a daily manner under the control of
Rev-erba in vivo and in vitro (132). Indeed, Rev-erba ablation
abolishes circadian oscillations in Nlrp3 gene expression in
peritoneal macrophages and in serum shock-synchronized
human and mouse primary macrophages, with functional
repercussions on IL-1b and IL-18 oscillatory secretion (132).
In vitro, Rev-erba deletion promotes elevated expression of
Nlrp3, Il1b and Il18, which is accompanied by an increase in
IL-1b and IL-18 secretion (132). By contrast, activation of Rev-
erbs with heme, their natural ligand, or with synthetic ligands
reduces the secretion of these cytokines by inhibiting the
Frontiers in Endocrinology | www.frontiersin.org 14
expression of NLRP3 inflammasome component genes (132).
Strikingly, the susceptibility to fulminant hepatitis and hepatic
ischemia reperfusion injury is time-of-day dependent, upon the
control of the molecular clock with Rev-erba as an important
regulator of the inflammasome (132, 168). Remarkably,
pharmacological activation of both Rev-erbs and ROR reduces
liver injury and improves the survival time and rate in a NLRP3-
dependent manner in treated mice (132, 133). Consistently, time
of cardiac ischemia/reperfusion and subsequent SR9009
treatment affect heart function recovery, the best response
being obtained when Rev-erb expression is at its highest, ie
when NLRP3 expression is at its lowest (162). Interestingly, the
NF-kB-driven long non-coding RNA Lnc-UC has lately been
shown to be induced by the core clock component Bmal1,
thereby generating circadian expression of Lnc-UC (203).
Then, Lnc-UC physically interacts with Cbx1 protein to reduce
its gene silencing activity via H3K9me3, thereby enhancing Rev-
erba expression in an epigenetic manner (203). Then, by
inducing Rev-erba expression, Lnc-UC ablates NF-kB signaling
and NLRP3 inflammasome signaling in macrophages (203).
Consistently, Lnc-UC deletion disrupts clock gene expression,
sensitizes mice to DSS-induced colitis and disrupts the diurnal
rhythmicity in disease severity (203). Additionally, Rev-erba-
mediated effect of Berberine on DSS-induced colitis shows better
effect when administered at ZT10 (late resting phase) compared
to ZT2 (early resting phase), thus acknowledging the rationale to
target core clock components in the control of NLRP3-driven
diseases (174). Such circadian effect of drug efficiency might be
explained by the lower severity of colitis at ZT10, which
coincides with the maximum expression of Rev-erba. In
conclusion, circadian pharmacological effects of compounds on
different diseases likely result from diurnal rhythms of both
disease severity and daily oscillations of the drug target
expression. Altogether, these observations advocate for
chronotherapeutic practice on NLRP3-driven diseases.
CONCLUDING REMARKS

NLRP3 inflammasome deregulation drives numerous diseases.
Inhibition of NLRP3 using MCC950 demonstrates beneficial
effects in fulminant hepatitis and in myocardial ischemia
reperfusion (3). However, MCC950 displays hepatotoxic
properties advocating for the development of alternative
NLRP3 inhibitory strategies (3). Here, we provide the first
extensive review showing the close links between nuclear
receptors and the NLRP3 inflammasome pathway. Indeed, NRs
are able to either activate the NLRP3 inflammasome or inhibit
both priming and activation steps of the NLRP3 inflammasome
pathways, acting at different levels, which offers numerous
possibilities to modulate NLRP3-driven disorders. Indeed, the
activity of NRs can be modulated by a plethora of synthetic, but
also natural ligands. As such, NRs should be considered as
sensors of environment changes including metabolic
alterations, hormonal signal, pollutions and circadian
rhythmicity. As NRs are able to control similar processes, we
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may consider that the entire NR family integrate these different
environmental modifications, that may occur simultaneously, to
deliver the best response. We may then anticipate that depending
on their environment, NRs cooperate to appropriately modulate
the NLRP3 inflammasome. NRs would then allow the adaptation
of the innate immune system and the NLRP3 inflammasome to
adjust its response from cytokine secretion to pyroptosis-induced
cell death. Finally, nuclear receptors, including Rev-erb and ROR,
control the circadian expressionofNLRP3.As such,NLRP3protein
amounts are not equal across the day, thereby emphasizing the
necessity of a chronotherapeutic approach. In the case of clock
disruption as observed in shift workers or in elderlies for instance,
targeting clock components to re-entrain the molecular clock and
sustain circadian amplitude of NLRP3 expression may also be
considered as an alternative or an additional approach.
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