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Abstract

Background: Bone marrow-derived mesenchymal stem cells (BM-MSCs) have shown therapeutic potential in
various in vitro and in vivo studies in cutaneous wound healing. Furthermore, there are ubiquitous studies
highlighting the pro-regenerative effects of BM-MSC extracellular vesicles (BM-MSC EVs). The similarities and
differences in BM-MSC EV cargo among potential healthy donors are not well understood. Variation in EV protein
cargo is important to understand, as it may be useful in identifying potential therapeutic applications in clinical
trials. We hypothesized that the donors would share both important similarities and differences in cargo relating to
cell proliferation, angiogenesis, Wnt signaling, and basement membrane formation—processes shown to be critical
for effective cutaneous wound healing.

Methods: We harvested BM-MSC EVs from four healthy human donors who underwent strict screening for whole
bone marrow donation and further Good Manufacturing Practices-grade cell culture expansion for candidate usage
in clinical trials. BM-MSC EV protein cargo was determined via mass spectrometry and Proteome Discoverer
software. Corresponding proteomic networks were analyzed via the UniProt Consortium and STRING consortium
databases.

Results: More than 3000 proteins were identified in each of the donors, sharing > 600 proteins among all donors.
Despite inter-donor variation in protein identities, there were striking similarities in numbers of proteins per
biological functional category. In terms of biologic function, the proteins were most associated with transport of
ions and proteins, transcription, and the cell cycle, relating to cell proliferation. The donors shared essential cargo
relating to angiogenesis, Wnt signaling, and basement membrane formation—essential processes in modulating
cutaneous wound repair.
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Conclusions: Healthy donors of BM-MSC EVs contain important similarities and differences among protein cargo
that may play important roles in their pro-regenerative functions. Further studies are needed to correlate proteomic
signatures to functional outcomes in cutaneous repair.
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Background
The relationship between the skin and other body tissues,
such as the bone marrow, is complex and relies on the
interaction and exchange of information and signals, in-
cluding secreted proteins. The bone marrow appears to
serve key roles in maintaining skin homeostasis. The rela-
tionship of the bone marrow to the skin is intricately con-
nected via its secretome—the totality of proteins produced
by the bone marrow that can serve functions in skin tis-
sues. In patients that have dysfunctional bone marrow, the
skin may be the first sign of an underlying pathology,
through, for example, development of chronic wounds [1],
changes in pigmentation, and infection. In subjects with
genetic mutations resulting in dermatologic phenotypes,
such as forms of epidermolysis bullosa, bone marrow
transplants have been shown to be effective in attenuating
skin pathology [2]. While bone marrow-derived mesen-
chymal cells (BM-MSCs) have been shown to be beneficial
in a variety of diseases, including wound healing [3–5],
but engraftment and survival into other tissues after trans-
plant is very low, the exact mechanisms as to how patients
experience benefit from cellular therapy remain to be fully
understood. We hypothesized that the secretome of the
bone marrow cells contains proteins important in skin
structure (ex. basement membrane components) and
function that may help explain, in part, the beneficial ef-
fects of bone marrow transplants and BM-MSC treatment
in patients with cutaneous disease. In this study, using
mass spectrometry, we analyzed the proteins in the secre-
tome that co-purified with extracellular vesicles secreted
by BM-MSCs from 4 healthy donors.

Methods
Bone marrow donors
Collection of primary human donor bone marrow was
under the approval of the University of Miami Institu-
tional Review Board (IRB) and in accordance with policies
of the Interdisciplinary Stem Cell Institute. All experi-
ments were performed in accordance with relevant guide-
lines and regulations and complied with the Declaration
of Helsinki. Informed consent was obtained for all human
subjects, and permission was given by all 4 human sub-
jects to publish results derived from the tissues and cells
and, if necessary, to publish any identifying information,
including images. The human donors of the bone marrow
were a 33-year-old male (donor 1), 33-year-old female
(donor 2), 28-year-old female (donor 3), and 28-year-old

male (donor 4). As is standard for bone marrow donors at
the Interdisciplinary Stem Cell Institute, all 4 donors
tested negative for anti-human immunodeficiency virus
(HIV)-1/HIV-2, anti-human lymphotrophic virus (HTLV)
I/II, anti-hepatitis C virus (HCV), HIV-1 nucleic acid test,
HCV nucleic acid test, hepatitis B surface antigen
(HBsAg), anti-HBc (core antigen) (IgG and IgM), anti-
cytomegalovirus (CMV), West Nile virus (WNV) nucleic
acid, T. cruzi ELISA (Chagas disease), rapid plasma regain
(RPR) for syphilis, and had no clinical/history/laboratory
evidence to suggest Creutzfeldt-Jakob disease. The bone
marrow (approximately 80 mL) was aspirated from the
posterior iliac crests as per standard practice of the Uni-
versity of Miami Bone Marrow (BM) Transplant Pro-
grams. The marrow was aspirated into heparinized
syringes, and labeled syringes were transported at room
temperature to the Good Manufacturing Practices (GMP)
facility at the Interdisciplinary Stem Cell Institute at the
University of Miami. BM was processed using Lympho-
cyte Separation Medium (LSM; specific gravity 1.077) to
prepare the density-enriched, mononuclear cells (MNCs).
Cells were diluted with Plasmalyte A or phosphate-
buffered saline (PBS) buffer and layered onto LSM using
conical tubes to isolate MNCs following established stan-
dardized operating procedures. The MNCs were washed
with Plasmalyte A or PBS buffer containing 1% human
serum albumin (HSA). The washed cells were sampled to
determine the total number of viable nucleated cells.
MSCs were initially cultured in Alpha-MEM media (Corn-
ing Cat. No 15-012-CV) supplemented with 2mM L-
glutamine, 20% fetal bovine serum (FBS), 100 units/ml
penicillin, and 100 μg/ml streptomycin. The expansion
was performed in T175 cm2 flasks (Corning Cat. No
431466) at 37°C, using a 5% CO2 humidified incubator.
MSCs were detached from the culture vessels using tryp-
sin exposure, passaged, and cryopreserved at passage three
prior to use in the following experiments. MSCs were
verified in the GMP as viable, CD105+, CD45– cells, ster-
ile, mycoplasma-free, and endotoxin-free. Our previous
work with MSCs of this nature revealed expression of
HLA-class 1, CD90, CD73, and CD105 while being nega-
tive for CD45, and contained differentiation capacity into
different lineages [6, 7].

Isolation of EVs
Passage three cells were taken from cryopreservation, re-
covered, and cultured in T75 cm2 flasks (Corning Cat.
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No 3276) until 80% confluency, at which time the MSCs
were washed several times with PBS, switched to serum-
free Alpha-MEM media for 24 h to allow for EV collec-
tion into the serum-free media, which was then isolated
and processed for downstream isolation using
ExoQuick-TC® ULTRA EV Isolation Kit for Tissue Cul-
ture Media (Cat # EQULTRA-20TC-1), according to the
manufacturer’s instructions. Dot blot was performed to
verify extracellular vesicles were isolated without cellular
contaminants (Exo-Check Exosome Antibody Arrays,
Cat # EXORAY200A-4, Cat #EXORAY210A-8) accord-
ing to the manufacturer’s instructions.

Processing of EV samples prior to mass spectrometry
analysis
Lysing the EVs were as follows (all reagents from Sigma,
unless otherwise stated). Isolated extracellular vesicles
were centrifuged for 10 min at 2000×g at 4°C. Samples
were speed vacuumed dry until the sample was dry. Fifty
microliters of 20 mM Tris-2% (sodium dodecyl sulfate)
SDS was added. The mixture was heated at 95°C for 30 s
and chilled for 30 s; this was cycled for a total of 5 min.
Samples were sonicated for 1 min. Proteins were precipi-
tated with cold acetone. Samples were speed vacuumed
until dry and resuspended in 100 μL ammonium bicar-
bonate. Eight micrograms of protein was added, centri-
fuged for 10 min, and speed vacuumed until the sample
was dry. Eight microliters of 50 mM ammonium bicar-
bonate (pH 7.8) was added to the samples. Samples
underwent denaturation with 15 μL of 10 M urea in 50
mM ammonium bicarbonate (pH 7.8). Samples were re-
duced using 2 μL of 125 dithiothreitol DTT in 50 mM
ammonium bicarbonate (pH 7.8). Samples were incu-
bated for 1 h at room temperature. Samples underwent
alkylation with 5 μl of 90 mM iodoacetamide in 50 mM
ammonium bicarbonate, pH (7.8) and incubated in room
temperature for 30 min. Samples were quenched with
3.33 μL of 125 mM DTT in 50 mM ammonium bicar-
bonate (pH 7.8). Samples were incubated at room
temperature for 1 h in the dark. Ammonium bicarbonate
(50 mM) was added to dilute urea to 1 molar concentra-
tion. Samples were digested with trypsin corresponding
to 1:30 w/w enzyme to protein and incubated overnight
at 37° for 18 h. Formic acid (50%) was added to stop
trypsin reaction (5:100 v/v formic acid to sample). Sam-
ples were desalted using the Pierce C18 Spin Tips
(Thermo Scientific). Trifluoroacetic acid (TFA) (2.5%)
was added to the sample to adjust TFA concentration to
0.05%; pH of less than 4 was verified. C18 Spin Tips
were used were placed into a spin adapter and the tip
was wetted with 0.1% TFA in 80% acetonitrile (ACN)
and centrifuged for 1 min. After discarding the flow
through, the sample was added to C18 spin tip and cen-
trifuged at 1000×g for 1 min; this process was repeated

until all sample was passed through the C18 Spin Tip.
The Spin Tip was then transferred to a fresh microcen-
trifuge tube. The sample was eluted by adding 20 μL of
0.1% TFA in 80% ACN and centrifuge at 1000×g for 1
min; this step was repeated again to further elute the
sample. The sample was speed vacuumed to dry. The
samples were reconstituted in 50 μL of 2% acetonitrile
in LC-MS grade water with 0.1% formic acid prior to
LC-MS/MS analysis.

High-performance liquid chromatography (HPLC) and
mass spectrometry
The following methods were performed as previously
described [8]. In brief, reversed-phase chromatographic
separation utilized an Easy-nLC 1000 system (Thermo)
with an Acclaim PepMap RSLC 75 μm × 15 cm, nanoVi-
per column (Thermo). The solvents were LC-MS grade
water and acetonitrile with 0.1% formic acid. Peptides
were analyzed using a Q Exactive mass spectrometer
(Thermo) with a heated electrospray ionization source
(HESI) operating in positive ion mode. Protein identifi-
cations from MS/MS data utilized the Proteome Discov-
erer 2.2 software (Thermo Fisher Scientific) using
Sequest HT search engines. The data was searched
against the Homo sapiens entries in Uniprot protein
sequence database. The search parameters included
precursor mass tolerance 10 ppm and 0.02 Da for frag-
ments, 2 missed trypsin cleavages, oxidation (Met) and
acetylation (protein N-term) as variable modifications,
and carbamidomethylation (Cys) as a static modification.
Percolator PSM validation was used with the following
parameters: strict false discover rate (FDR) of 0.01, re-
laxed FDR of 0.1, maximum ΔCn of 0.05, and validation
based on q-value. We obtained the high confidence pep-
tides and filtered out the low and medium confidence
peptides.

Results
The four donors each contained more than 3000 unique
proteins identified within their EV cargo (Fig. 1A). More
than 600 of these proteins were in common among all
four donors (Fig. 1A). In terms of biologic function, the
proteins among all donors had similar numbers of
unique proteins among each functional category (Fig.
1B). The most common functional categories were
proteins involved in transport (especially transport of
ions and other proteins), followed by transcription, cell
cycle, ubiquitin conjugation pathways, cell adhesion,
deoxyribonucleic acid (DNA) damage, immunity, lipid
metabolism, sensory transduction, host-virus interaction,
apoptosis, messenger ribonucleic acid (mRNA) process-
ing, neurogenesis, cilium biogenesis/degradation, protein
biosynthesis, endocytosis, ribosome biogenesis, Wnt
signaling, DNA replication, inflammatory response,
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translation regulation, autophagy, angiogenesis, exocyt-
osis, notch signaling, and keratinization (Fig. 1B). In
terms of the cellular component with which the proteins
were associated, the most common were proteins associ-
ated with the cell membrane, followed by the nucleus,
cytoplasm, cell projections, mitochondrion, endoplasmic
reticulum, cell junctions, golgi apparatus, microtubules,
chromosomes, endosomes, cytoplasmic vesicles,

lysosomes, dynein, peroxisomes, keratin, intermediate
filaments, DNA-directed RNA polymerase, and lipid
droplets (Fig. 1C).
Using the STRING consortium database, we visualized

the structural and functional networks among the com-
mon proteins involved in transport (Fig. 2A). Central
among the network were calcium transport-related pro-
teins, such as the Voltage-dependent T-type calcium

Fig. 1 BM-MSC EVs contain diverse protein cargo relevant to a wide variety of biologic functions. A Venn diagram across all 4 healthy human
donors. B Biologic functions and C cellular components of BM-MSC EVs across all 4 donors (# of unique proteins per category)

Fig. 2 BM-MSC EVs contain important proteins involved in the transport of biologically active proteins and ions. A Proteomic network involving
proteins in all four donors classified as protein or ion transporters. B Coexpression map based on STRING database aggregation of experimental
data in which proteins are known to be expressed together
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channel subunits alpha-1G (CACNA1G) and alpha-1H
(CACNA1H) (Fig. 2A), which mediate the entry of cal-
cium ions into cells and is involved in cell motility, cell
division, and gene expression [9, 10]. Closely related in
this hub was the voltage-dependent L-type calcium
channel subunit beta-2 (CACNB2) (Fig. 2A), which in-
creases the peak calcium current across cell membranes
[11]. Ryanodine receptor 1 (RYR1), another calcium
channel that is also expressed in epidermal keratinocytes
and associated with keratinocyte differentiation and epi-
dermal permeability barrier homeostasis [12], was de-
tected in all donor EVs (Fig. 2A). Calcium-transporting
ATPase type 2C member 1 (ATP2C1), a magnesium-
dependent enzyme that is critical in calcium homeostasis
and keratinocyte adhesion, was functionally connected
to the aforementioned proteins (Fig. 2A) [13]. Several
sodium-related channels were discovered in EVs. The

sodium channel proteins type 4 subunit alpha (SCN4A)
and type 10 subunit alpha (SCN10A) were present (Fig.
2A) [14]. Transient receptor potential cation channel
subfamily M member 2 (TRPM2), a voltage-independent
cation channel mediating both sodium and calcium in-
flux, was detected (Fig. 2A) [15]. The detected transport
proteins also included endosomal trafficking-related pro-
teins, such as DnaJ homolog subfamily C member 13
(DNAJC13) [16, 17] (Fig. 2A), which is involved in mem-
brane trafficking through early endosomes and impli-
cated in recycling epidermal growth factor receptor.
Coatomer subunit beta (COPB1) [18, 19] (Fig. 2A) is a
cytosolic protein that associates with vesicles from the
Golgi apparatus and mediating protein transport from
the endoplasmic reticulum. BM-MSC EV cargo con-
tained proteins involved in electron transport that have
been shown to be co-expressed together in independent

Fig. 3 BM-MSC EVs contain cargo important for transcriptional regulation. A Proteomic network involving proteins in all four donors classified as
transcriptional regulators. B List of gene ontology identifiers and corresponding color key as indicated (blue = histone H3-K4 trimethylation; green
= DNA duplex unwinding; yellow = DNA methylation; red = transcription, DNA-templated)
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experiments of human cells (Fig. 2B) (STRING database
analytics). NADH-ubiquinone oxidoreductase chain 4
(MT-ND4) [20], a core subunit of the mitochondrial
membrane respiratory chain NADH dehydrogenase,
which plays a critical role in the electron transport
chain, was co-expressed with cytochrome b (MT-CYB)
[21] (Fig. 2B), which is a component of the ubiquinol-
cytochrome c reductase complex, also a critical compo-
nent of the respiratory chain, ultimately contributing to
the synthesis of ATP needed for cellular processes.
Overall, the donors all shared BM-MSC EV cargo pro-
teins essential to ion, protein, and electron transport.
All donor BM-MSC EV cargo contained important

transcriptional regulators. DNA-directed RNA polymer-
ase II subunit RPB1 (POLR2A) [22] was central in the
network hub (Fig. 3A). POLR2A is the largest compo-
nent of RNA polymerase II and catalyzes the transcrip-
tion of DNA into RNA. AF4/FMR2 family member 4 is
a component of the super elongation complex (SEC),
which increases the catalytic rate of RNA polymerase II
transcription (Fig. 3A) [23]. Epigenetic modulators, such
as histone-lysine N-methyltransferases 2A and 2B
(KMT2A and KMT2B) (Fig. 3A) were present in all
donor EVs [24]. Also present were chromodomain-
helicase-DNA-binding proteins 1 and 3 (CHD1 and
CHD3) (Fig. 3A) [25]. CHD1 is an ATP-dependent
chromatin-remodeling protein associated with the

histone acetylation (HAT) complex regulating RNA poly-
merase transcription; CHD3 is a component of the histone
deacetylase NuRD complex involved in epigenetic regula-
tion. The helicase, SRCAP, belongs to the SNF2/RAD54
helicase family and mediates ATP-dependent histone
modification [26] (Fig. 3A). Jumonji (JARID2) (Fig. 3A) is
a regulator of histone methyltransferase by promoting re-
cruitment of histone methyltransferase complexes to their
target genes [27]. Bromodomain adjacent to zinc finger
domain proteins 2A and 1B (BAZ2A and BAZ1B) (Fig.
3A) were detected. BAZ2A is an essential component of
the nucleolar remodeling complex (NoRC) [28]. BAZ1B is
an atypical tyrosine-protein kinase that plays a central role
in chromatin remodeling as a component of the WICH
complex, which mobilizes nucleosomes and reconfigures
chromatin [29]. The enriched functions of the proteins de-
tected in all donors were concentrated in histone H3-K4
trimethylation, epigenetic gene regulation, DNA duplex
unwinding, and DNA methylation among others (Fig. 3B).
There were 19 cell cycle-related proteins that were

detected in all four donors (Fig. 4A). Most of these
proteins were associated with functions in the nucleus
(Fig. 4B). MCM7 (Fig. 4C) is a DNA replication licensing
factor which is a replicative helicase essential for DNA
replication [30]. Timeless (Fig. 4C) plays an important
role in DNA replication via maintenance of replication
fork and genome stability [31, 32]. Protein DBF4 (Fig.

Fig. 4 BM-MSC EVs contain cell cycle-related proteins. A Venn diagram of cell cycle-related proteins across donors. B Cell-associated components
of the cell cycle-related proteins. C Proteomic network of cell cycle-related proteins. D List of gene ontology identifiers and corresponding color
key as indicated (red = mitotic spindle assembly checkpoint; blue = regulation of chromosome segregation; green = cell division; yellow = cell
cycle G1/S phase transition; purple = G2/M transition of mitotic cell cycle)
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4C) plays a central role in DNA replication and cell pro-
liferation. Serine-protein kinase ATM (Fig. 4C) activates
checkpoint signaling upon DNA damage [33, 34]. RIF1
(Fig. 4C) is a telomere-associated protein that plays a
role in double-strand DNA breaks and promotes non-
homologous end joining-mediated repair [35–37]. Spe-
cific cyclins were conserved among the donors’ BM-
MSC EVs. Cyclin-A2 (CCNA2) (Fig. 4C) controls G1/S
and G2/M transition phases in the cell cycle and com-
plexes with cyclin-dependent protein kinases CDK1 and
CDK2 [38]. Cyclin-F (CCNF) (Fig. 4C) is a substrate rec-
ognition component of the SKP1-CUL-F-box protein E3
ubiquitin-protein ligase complex that mediates proteaso-
mal degradation to inhibit centrosome duplication. Cell
division cycle protein 23 homolog (CDC23) (Fig. 4C) is a
component of the anaphase promoting complex/cyclo-
some (APC/C), which is a cell cycle-regulated E3 ubiqui-
tin ligase that controls cell cycle progression [39].
Centromere protein F (CENPF) is required for kineto-
chore functions and segregation of chromosomes in mi-
tosis [40]. Abnormal spindle-like microcephaly-
associated protein (ASPM) (Fig. 4C) is involved in the
regulation of the mitotic spindle [41]. ECT2 (Fig. 4C) is
a guanine nucleotide exchange factor that acts on Rho
family members and plays roles in signal transduction
and cytokinesis [42]. Cytoskeleton-associated protein 5
(CKAP5) (Fig. 4C) binds to microtubules and regulates
the organization of microtubules [43].
We hypothesized that BM-MSC EVs would contain

angiogenesis-related cargo. Donor 1 and donor 2 shared
three angiogenesis-related proteins in common:
Neuropilin-1 (NRP1) [44–50], tumor necrosis factor
alpha-induced protein 2 (TNFAIP2) [51], and Sushi
repeat-containing protein (SRPX2) [52] (Fig. 5A), which
have all been demonstrated to be modulators of angio-
genesis. Donors 3 and 4 shared three angiogenesis-
related proteins in common (Fig. 5A): NOTCH1 func-
tions as a receptor for membrane-bound ligands
Jagged1, Jagged2, and Delta1 to regulate cell-fate and
modulate angiogenesis [53–55]; programmed cell death
protein 10 (PDCD10) promotes cell proliferation and
modulates apoptosis to regulated angiogenesis [56];
PARVA plays a role in sprouting angiogenesis and is re-
quired for normal adhesion of vascular smooth muscle
cells during blood vessel development [57]. Donors 1
and 4 both contained fibronectin 1 (FN1) (Fig. 5A),
which has been implicated in the modulation of angio-
genesis [58]. Donors 2, 3, and 4 contained three proteins
in common (Fig. 5A): disabled homolog 2-interacting
protein (DAB2IP) is a scaffold protein that regulates cell
migration and angiogenesis [59]; focal adhesion kinase
(PTK2) is a tyrosine kinase that regulates cell migration,
adhesion, and endothelial cell spreading [60]; endoribo-
nuclease ZC3H12A is involved in mRNA decay and

regulates many biologic processes, including angiogen-
esis [61]. Overall, donors showed wide variability in
angiogenesis-related proteins, with some conservation of
proteins among selected donors.
Wnt signaling activity has been demonstrated to be im-

portant in cutaneous wound healing. We hypothesized
that BM-MSC EVs would contain Wnt signaling modula-
tors. All donors’ BM-MSC EVs contained the tumor aden-
omatous polyposis coli (APC) protein (Fig. 6A), which
promotes rapid degradation of beta-catenin and conse-
quently regulates Wnt signaling activity [62]. Secreted
frizzled-related proteins 1 and 5 (SFRP1 and SFRP5) (Fig.
6A) were also present in all donor BM-MSC EVs. SFRPs
function as modulators of Wnt signaling via direct interac-
tions with Wnt ligands in the extracellular environment
[63]. Depending on the type of Wnt ligands they bind,

Fig. 5 BM-MSC EVs contain angiogenesis-related cargo. A Venn
diagram of angiogenesis-related proteins across donors. B Individual
proteomic network maps of angiogenesis-related proteins
across donors
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SFRPs can induce or inhibit canonical Wnt signaling,
which may have differing temporal effects on processes
such as angiogenesis and fibrosis during cutaneous wound
healing [64, 65]. Various Wnt ligands were expressed in
some, but not all, donors. For example, donors 2 and 3
EVs contained WNT8A, while donor 3 contained WNT11
and donor 4 contained WNT4 and WNT9A (Fig. 6B). We
found that Wnt receptors were present in BM-MSC EVs.
Frizzled (Fz) receptors were found in all donors (Fig. 6B).
Low-density lipoprotein receptor-related protein 6 (LRP6)
was present in donor 1 EVs, while LRP4 was present in
donors 1 and 3 (Fig. 6B). AXIN2, present in donors 1, 2,
and 3 (Fig. 6B), is a component of Wnt signaling that is in-
volved in beta-catenin degradation [66]. Overall, the BM-
MSC EVs exhibit both conserved cargo and significant
variation that may alter the balance of Wnt signaling.
Given our previous findings, we hypothesized that

BM-MSC EVs would contain important basement mem-
brane proteins. All donors’ EVs contained multiple

subunits of collagen IV and VII (Fig. 7A, B) [67–69],
which are critical in the formation of the skin basement
membrane. Donors 2, 3, and 4 contained laminin sub-
units A1 and A3 (LAMA1 and LAMA3) (Fig. 7A, B),
which are crucial in the formation of the basement
membrane. Thus, BM-MSC EVs could carry cargo pro-
teins to healing wounds in both damaged skin and in pa-
tients with genetic deficiencies.

Discussion
Our study finds that healthy donors of BM-MSC EVs
contain important similarities and differences that
should be considered in the development of EVs as ther-
apeutics. BM-MSC EVs carry functional cargo important
for a wide variety of biologic processes, including trans-
portation of proteins and ions, transcription, cell cycle,
and epigenetic processes, but this list is not exhaustive.
With relevance to cutaneous wound healing, BM-MSC

Fig. 6 BM-MSC EVs contain Wnt signaling-related proteins. A Venn
diagram of Wnt signaling-related proteins across donors. B
Individual proteomic network maps of Wnt signaling-related
proteins across donors

Fig. 7 BM-MSC EVs contain basement membrane proteins. A Venn
diagram of basement membrane-related proteins across donors. B
Individual proteomic network maps of basement membrane-related
proteins across donors
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EVs could play a key role in the promotion of repair and
regeneration via its modulation of cell proliferation and
angiogenesis and critical signaling pathways, such as
Wnt signaling. Furthermore, replenishment of basement
membrane proteins is critical to repair and regeneration.
An important future avenue of investigation would in-
volve comparing BM-MSC EVs from healthy donors and
patients with various diseases (such as chronic wound
healing or diabetes); however, we recognize the ethical
challenges in obtaining such bone marrow samples in
patients at risk for potential complications related to in-
vasive procedures. Additionally, it would be important
for screening to understand if there are key, circulating
biomarkers in the blood that could predict the relevant
cargo that might be contained in a donor’s BM-MSC
EVs, before isolating the bone marrow. Ideally, some of
the key protein cargo from the BM-MSCs identified as
useful in the promotion of cutaneous regeneration
would be available for detection in the circulation, allow-
ing for a more optimal screening strategy. One limitation
of our study is that we only assessed four healthy do-
nors; further studies on a larger number of donors,
across different age groups, in independent institutions
are needed to help validate cargo signatures in BM-MSC
EVs. Furthermore, efforts to correlate proteomic (and
genomic) signatures to functional outcomes (in in vitro
potency assays and clinical trials) are warranted. Given
the importance of stem cells in the development of ther-
apeutics, BM-MSC EVs may play an important role in
translational therapeutic development in cutaneous
wound repair and regeneration.

Conclusion
BM-MSCs contain important protein cargo that makes
them significant candidates for endogenous contributors
and therapeutic candidates for cutaneous wound repair
and regeneration. Donor screening for clinical trials is
warranted for ultimate application to examine the effects
of BM-MSCs on recipient wound healing in a variety of
disease conditions.
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methyltransferases 2A and 2B; HIV: Human immunodeficiency virus;
HPLC: High-performance liquid chromatography; HSA: Human serum
albumin; HTLV: Human T-lymphotrophic virus; JARID2: Jumonji; LAMA1 and
LAMA3: Laminin subunits A1 and A3; LC-MS: Liquid chromatography/mass
spectrometry; LSM: Lymphocyte separation media; MNCs: Mononuclear cells;
mRNA: Messenger ribonucleic acid; MT-ND4: NADH-ubiquinone
oxidoreductase chain 4; NRP1: Neuropilin-1; NoRC: Nucleolar remodeling
complex; PBS: Phosphate-buffered saline; PDCD10: Programmed cell death
protein 10; PTK2: Focal adhesion kinase; RPR: Rapid plasma reagin;
RYR1: Ryanodine receptor 1; SDS: Sodium dodecyl sulfate; SFRP1 and
SFRP5: Secreted frizzled-related proteins 1 and 5; SCN4A: Sodium channel
proteins type 4 subunit alpha; SRPX2: Sushi repeat-containing protein; TNFA
IP2: Tumor necrosis factor alpha-induced protein 2; TRPM2: Transient
receptor potential cation channel subfamily M member 2; CACNB2: Voltage-
dependent L-type calcium channel subunit beta-2; CACNA1G: Voltage-
dependent T-type calcium channel subunits alpha-1G; Wnt: Wingless-related
integration site; WNV: West Nile virus
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