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Environmental drivers of 
spatiotemporal foraging intensity 
in fruit bats and implications for 
Hendra virus ecology
John R. Giles  1,2, Peggy Eby3, Hazel Parry4, Alison J. Peel  1, Raina K. Plowright5,  
David A. Westcott6 & Hamish McCallum1

In the Australian subtropics, flying-foxes (family Pteropididae) play a fundamental ecological role as 
forest pollinators. Flying-foxes are also reservoirs of the fatal zoonosis, Hendra virus. Understanding 
flying fox foraging ecology, particularly in agricultural areas during winter, is critical to determine 
their role in transmitting Hendra virus to horses and humans. We developed a spatiotemporal model 
of flying-fox foraging intensity based on foraging patterns of 37 grey-headed flying-foxes (Pteropus 
poliocephalus) using GPS tracking devices and boosted regression trees. We validated the model 
with independent population counts and summarized temporal patterns in terms of spatial resource 
concentration. We found that spatial resource concentration was highest in late-summer and lowest 
in winter, with lowest values in winter 2011, the same year an unprecedented cluster of spillover 
events occurred in Queensland and New South Wales. Spatial resource concentration was positively 
correlated with El Niño Southern Oscillation at 3–8 month time lags. Based on shared foraging traits 
with the primary reservoir of Hendra virus (Pteropus alecto), we used our results to develop hypotheses 
on how regional climatic history, eucalypt phenology, and foraging behaviour may contribute to the 
predominance of winter spillovers, and how these phenomena connote foraging habitat conservation 
as a public health intervention.

In 1930, frustration with the depredations of flying-foxes on commercial orchards led the Australian Government 
to commission an English researcher, Francis Ratcliffe, to undertake the first systematic investigation into the 
biology and ecology of pteropod bats [colloquially known as ‘flying-foxes’1]. Equipped with a motorbike, Francis 
Ratcliffe traveled thousands of miles across eastern Australia in an attempt to understand the nature and distri-
bution of Australia’s four flying-fox species (Pteropus scapulatus, P. conspiculatus, P. alecto, and P. poliocephalus). 
At the time, virtually nothing was known about these pteropids except for anecdotal observations that they were 
numerous, volant, noisy, and often consumed agricultural fruit crops. Perceived as pests, management typically 
included destroying bats and roosts2. Motivated by these antagonistic interactions, Ratcliffe sought to understand 
flying-fox ecology in order to direct better-informed management strategies at that time. Our position is anal-
ogous to Ratcliffe’s 80 years ago, albeit with a few additional circumstances and tools. Competition for habitat 
between bats and humans continues, with the human footprint having engulfed considerable portions of bat 
foraging habitat3, leading to an increasing presence of flying-foxes in urban areas4. Human responses still include 
antagonistic control measures such as culling and dispersal, and ecologists are still working to understand the 
underlying ecology to direct better-informed conservation efforts.

In this context, understanding the foraging ecology of flying-foxes is critical. Hence, we focus on charac-
terizing the observed foraging patterns of P. poliocephalus (colloquially known as the grey-headed flying-fox; 
hereafter GHFF). The GHFF is distributed along coastal habitat in eastern Australia, where it can form large 
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colonies numbering into the hundreds of thousands4,5. They are highly mobile; populations disperse and coalesce 
quickly and dramatically in response to the availability of nectar and pollen produced by Eucalyptus trees (family 
Myrtaceae) in woodlands and open forests6,7. The best habitat for GHFF occurs in alluvial flats and riparian areas, 
where Eucalypt trees flower and produce nectar regularly during winter-spring; however, these areas have been 
largely cleared for agriculture8. The GHFF is listed as vulnerable in the IUCN Red List of Threatened Species due 
to population decline and winter-spring foraging habitat destruction. Although we focus on GHFF here, our 
study is timely given the negative impacts of anthropogenic change and poor management that affect a growing 
proportion of chiropterans around the world9,10.

GHFF foraging ecology is important because it plays a central ecological role in the health of eucalypt for-
ests and in patterns of bat-borne disease dynamics, which are both major concerns for conservation strategies. 
Pteropids throughout the Old World pollinate numerous species of hardwood trees11. This role is especially cru-
cial in Australia because eucalypt forests have considerable economic value as timber and they are primarily 
animal pollinated [i.e. mammals, birds, and insects12]. In contrast to this important ecosystem service, Australian 
flying-foxes are known reservoirs of Hendra virus. Hendra virus is transmitted from flying-foxes to horses when 
they forage in peri-urban landscapes. The virus is transmitted to humans after amplification within horses. Often 
lethal, Hendra virus infection causes severe neurological and respiratory disease in both horses and humans. 
flying-fox ecology drives the epidemiological dynamics of Hendra virus in bat populations and risk of spillover 
to horses13 through foraging behaviour and resulting population distribution14. Although, P. alecto (the black 
flying-fox; henceforth BFF) is thought to be the most significant source of viral excretion that leads to spillover, 
but foraging data is only available for GHFFs. GHFF exhibit seropositivity against Hendra virus15 and they share 
some foraging traits with BFFs such as the preference for nectar when it is available and reliance on anthropogenic 
food when nectar is not available16,17. Therefore, our results can be used to develop hypotheses about the links 
between eucalypt phenology, foraging behavior, and Hendra virus spillover, which is essential to assess conserva-
tion strategies in terms of both ecosystem and public health.

A major challenge to characterizing food resource availability for GHFF is the complex phenology of eucalypt 
forests. The GHFF preferentially seeks the highly-variable nectar and pollen of flowering eucalypts16,18. Many of 
these eucalypt species rely on subtle climate triggers to synchronize flowering among conspecifics8,12,19. The cli-
mate in eastern Australia can range from monsoon to extreme drought, depending on the inter-annual cycles of 
El Niño and La Niña, which are associated with sustained negative and positive values of the Southern Oscillation 
Index (SOI) respectively [collectively referred to as ENSO20]. As a result, eucalypt forests within the range of 
GHFF can exhibit variable spatiotemporal patterns in phenology depending on local species richness, climate, 
and environment.

When nectar resources across a landscape are poor (reduced abundance or patchy distribution), the GHFF 
adopts nomadic foraging behavior to search the landscape, visiting additional foraging areas to compensate for 
lower nectar availability21. In this manner, the GHFF exhibits a combined aggregation-dispersion foraging econ-
omy, where aggregation occurs during resource abundance, and dispersion occurs during resource shortage22,23. 
This occurs at multiple spatial and temporal scales. For example, an individual GHFF may visit a few highly pro-
ductive foraging areas during some periods, but visit many less-productive foraging areas during other periods21. 
On a larger scale, many sub-populations of GHFF migrate long-distances when a high-quality flowering event 
occurs. This is observed when large numbers of GHFF converge in southern New South Wales for the prolific 
flowering events of Corymbia maculata (spotted gum), which occur every 3–4 years5. Such flexible population 
structure presents a considerable challenge to habitat conservation for flying-foxes because their foraging habitat 
and populations are constantly shifting over a large landscape24. Elucidating the spatiotemporal patterns of forag-
ing activity in response to food resource phenology is, therefore, an important step to properly framing effective 
conservation efforts.

Previous research has shown that regional climate patterns in eastern Australia are connected to ENSO cycles20 
and that flowering phenology in eucalypts depends on preceding climatic factors8. Therefore, we hypothesize that 
nectar foraging in flying-foxes is driven by eucalypt flowering events that respond to broader climatic patterns 
and we predict that models built with time-lagged spatial covariates representing these climatic patterns can 
characterize the spatial and temporal distribution of foraging areas. To explore this hypothesis, we present mod-
els and data of GHFF foraging intensity (defined as counts of foraging stops per unit area and time) around two 
roosting sites in southeastern Queensland. We use GPS collars and employ boosted regression trees to determine 
the environmental correlates of observed foraging events and summarize temporal changes in foraging intensity 
within the study area. Although the spatiotemporal variability in bat distribution and foraging habitat has been 
acknowledged as a major challenge to conservation23–25, to our knowledge, this is the first study to investigate the 
environmental drivers of flying-fox foraging activity and quantitatively describe its spatiotemporal patterns. We 
further explore spatial concentration of foraging intensity in comparison with independent population counts of 
Pteropus poliocephalus, the SOI, and the timing of Hendra virus spillover events.

Results
Data filtering and spatiotemporal aggregation of foraging areas used by our 37 GHFFs rendered 385 unique 
counts of foraging stops per 700 m grid cell within the study area from June 2013–Feb 2015 (Fig. 1). These count 
data represent counts of foraging stops per unit area and time, which we refer to as a measure of ‘foraging activ-
ity’ or ‘foraging intensity’. Model selection criteria based on performance within the 5-fold spatial cross valida-
tion structure returned 27 models giving the mean Poisson deviance and Mean Squared Error (MSE) (Table 1). 
The selected model (tree complexity (tc) = 9, learning rate (lr) = 0.001, bagging fraction (bf) = 0.6, number 
trees = 3400) had the lowest mean Poisson deviance (2.54) and MSE (4.11) while fitting >1000 trees. When the 
selected model was refitted with all data, it fitted 5100 trees. The final boosted regression tree model provided a 
valid fit to the data with evenly distributed residuals and an R2 value of 0.48 (Fig. 2).



www.nature.com/scientificreports/

3SCIENTIFIC REpoRts | (2018) 8:9555 | DOI:10.1038/s41598-018-27859-3

Distance to roost was the most influential covariate in the model with a Relative Influence (RI) of 13.99% 
(Table 2). Other covariates with high RI include short-term changes in temperature and eucalypt vegetation 
indices such as ECARR_3mo (5.85%), AVGtmn_1mo (5.12%), ANOMtmn_1mo (4.23%), and EWDI1 (4.2%) 
(Tables 3 and 2). Partial dependence plots (Fig. 3) show that the fitted function is 1–2 standard deviations higher 
for foraging areas within 25 km of the home roost. Predicted foraging intensity in response to all vegetation 
indices (EWDI1, ECBRR, and ECARR; green plots in Fig. 3) was one standard deviation below the mean fitted 
response when the difference in the vegetation index over 9 or 12 month time-lags was negative, but the fitted 
response was one standard deviation above the mean when the indices were positive, indicating an increase in 
photosynthetic activity or tree canopy density over these longer time-lags. Over shorter time intervals (3-month 
time-lags and the current month), the fitted response was up to 2 standard deviations above the mean when the 
difference in vegetation indices was negative, indicating that decreases in vegetation indices over the preceding 
1–3 months are associated with a higher level of foraging intensity.

In terms of climatic conditions, temperature variables (red plots in Fig. 3) show that predicted foraging inten-
sity falls dramatically when average minimum temperature (AVGtmn_1mo) rises above 20 °C, but it increases 
when the minimum temperature anomaly (ANOMtmn_1mo) is negative (representing an especially cool 
month). Precipitation variables (blue plots in Fig. 3) show that severe decreases in precipitation over 6 months 
(PREC_1mo_6mo) are not associated with foraging activity, and high values (>1000 mm) of cumulative rain-
fall over the preceding 9 months (PREC_9mo) coincide with a dramatic decrease in predicted foraging activity. 
Interactions between environmental variables provide further description of the fitted function. Specifically, the 
highest levels of foraging activity are fitted when both of the following conditions are met: 1) monthly precip-
itation is significantly less than the prior year and <200 mm of rainfall in the preceding 3 months, and 2) the 
minimum temperature anomaly of the preceding 9 months is low and coincides with a decrease in ECARR over 
3 months (Fig. 4). In general, the partial dependence plots and interactions indicate that foraging activity is 
more intense when summer and autumn conditions are cooler than average with relatively reduced precipitation 
compared with previous months, and photosynthetic productivity in eucalypts diminishes. This emphasizes the 
importance of past conditions (3–12 months previous) that are warmer and wetter, suggesting that a moderate 
transition from warm/wet to cool/dry is a primary environmental driver of eucalypt flowering and flying-fox 
foraging intensity within our study area.

When the final model is projected across the study area, foraging intensity exhibits a patchy spatial distribu-
tion that is qualitatively consistent with typical heterogeneous patterns of eucalypt flowering (Fig. 5). Similarly, 
when plotted as a time series and aggregated by year (Figs 6 and 7 respectively), model predictions also display 
interannual variability. Model predictions summarized by month for foraging areas within 30 km of the Canungra 
roost show that the measure of spatial resource concentration (QVC) is typically higher in mid-summer and early 
autumn (Dec–Mar; Fig. 7). Beyond seasonal patterns, foraging areas around Canungra exhibit some interannual 
variation also, with mid-summer months in 2010 and 2015 being particularly high (9). We found that independ-
ent monthly population counts of Pteropus poliocephalus observed at Canungra from 2008–2014 were signifi-
cantly correlated with predicted values of monthly foraging intensity (r = 0.74, 95% CI = 0.28, 0.92, p = 0.006, 

Figure 1. Study area of analysis, defined by the maximum observed foraging radius (46 km for Boonah and 
30 km for Canungra), is plotted with unfiltered foraging areas (red points). Location of the roosts at Boonah 
and Canungra are shown as a green triangle and square respectively. The four black exes indicate foraging 
areas that were deemed outliers based on their proximity to different roosting sites. The black line represents 
the maximum foraging radius for Pteropus poliocephalus and the black triangles show locations of additional 
roosting sites. The background shows the distribution of the Eucalypt Chlorophyll a Reflectance Ratio (ECARR) 
which indicates areas with dense vegetation as light yellow and areas of less-dense vegetation as light blue. This 
map was generated using ESRI ArcGIS Desktop: Release 10 (www.esri.com).

http://www.esri.com


www.nature.com/scientificreports/

4SCIENTIFIC REpoRts | (2018) 8:9555 | DOI:10.1038/s41598-018-27859-3

n = 12; Fig. 7), giving strong validation that the fitted model adequately captures seasonal trends in foraging 
intensity. Comparison of the model to population counts across years did not show a significant correlation 
(r = 0.31, 95% CI = −0.58, 0.86, p = 0.5, n = 5). However, from 2008–2014, the model predicts the highest for-
aging intensity in 2010 and 2013, the same years in which median population counts are highest. More broadly, 
time-lagged cross correlation reveals that model predictions are significant and positively correlated with the SOI 
values 3–8 months previous (n = 120; Fig. 10), as seen by slightly lagged alignment of peaks in predicted foraging 
intensity with peaks in SOI values (Fig. 11).

Tree 
complexity

Learning 
rate

Bagging 
fraction

No. 
trees

mean 
deviance MSE

5 0.005 0.5 850 2.96 4.68

5 0.005 0.6 950 2.68 4.38

5 0.005 0.7 1200 2.62 4.35

5 0.001 0.5 4450 2.79 4.46

5 0.001 0.6 5000 2.74 4.42

5 0.001 0.7 5200 2.81 4.55

5 0.0005 0.5 8850 3.13 4.90

5 0.0005 0.6 10000 3.06 4.84

5 0.0005 0.7 9150 3.06 4.88

7 0.005 0.5 650 2.78 4.40

7 0.005 0.6 950 2.55 4.18

7 0.005 0.7 700 2.67 4.33

7 0.001 0.5 3200 2.74 4.36

7 0.001 0.6 4400 2.68 4.30

7 0.001 0.7 4000 2.61 4.24

7 0.0005 0.5 5600 2.95 4.60

7 0.0005 0.6 8200 2.72 4.34

7 0.0005 0.7 7200 2.70 4.34

9 0.005 0.5 350 3.03 4.68

9 0.005 0.6 600 2.68 4.28

9 0.005 0.7 650 2.51 4.09

9 0.001 0.5 2200 2.83 4.42

9 0.001 0.6 3400 2.54 4.11

9 0.001 0.7 3600 2.54 4.13

9 0.0005 0.5 4550 2.96 4.58

9 0.0005 0.6 6750 2.59 4.15

9 0.0005 0.7 7000 2.57 4.16

Table 1. Performance of BRT models within the 5-fold gridded cross validation structure using different 
combinations of meta-parameters: tree complexity (tc), learning rate (lr), and bagging fraction (bf). 
Performance measures reported are mean Poisson deviance and mean squared error (MSE) of the model across 
the 5-folds. The meta-parameter combination with the lowest mean deviance and MSE, and >1000 fitted trees is 
shown in bold.

Figure 2. Standard model validation plots with fitted values versus model residuals on the left, and observed 
counts versus fitted values on the right. Both plots show adequate model fit with an R2 value of 0.48.
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To explore our model of spatial resource concentration in the context of Hendra virus ecology, we plotted our 
model results along with existing data of Hendra virus prevalence at the Boonah roosting site26 and spillover events 
in horses27 that allowed comparison of seasonal trends among the three phenomena (Fig. 8). The Generalized 
Additive Model (GAM) that we fit to QVC values (n = 120, P-value of smooth term (month) = 3.7 × 10−9, 
deviance explained = 31.4%) shows that the QVC is highest in late-summer and lowest in winter (Fig. 8a). The 
GAM fitted to Hendra virus prevalence data (n = 40, P-value of smooth term (month) = 1.2 × 10−4, deviance 
explained = 45.4%) showed a peak in prevalence during winter (Jun–Aug; Fig. 8b). When we plotted the total 
counts of Hendra virus spillover incidents, all three distance thresholds (25, 50, and 100 km) showed the same 
seasonal pattern with the highest count occurring in June with decreasing counts in subsequent months. Within 
25 km of our study roost sites there have been a total of: 3 spillover incidents which have occurred within 25 km 
during Jun–Jul, 7 spillover incidents within 50 km during Jun–Oct, and 20 spillover incidents within 100 km 
during Jun–Nov (Fig. 8c).

Discussion
We developed a spatiotemporal model of flying-fox foraging intensity that is validated by independent data of 
seasonal bat population counts and provides a quantitative link between bat foraging dynamics and cycles of the 
ENSO. Specifically, increased rainfall and minimum temperatures (typical of La Niña events and favorable for 
the growth of eucalypts) in preceding seasons drive flowering and spatially concentrated foraging intensity in the 
following autumn. We also found that in the same region as our study area, both observed prevalence of Hendra 
virus in bat populations, and occurrence of spillover to horses, align with seasonal and annual periods when our 
model indicates a low concentration of nectar-based resources (Fig. 8). Nectar scarcity may drive bats to feed in 
proximity to horses or may modulate bat immune status leading to virus shedding13,14. Further, future climate 
changes will likely alter climatic conditions during important growth phases of eucalypts28, affecting the spatio-
temporal distribution of nectar-based foraging resources for flying-foxes, which could have implications for both 
Hendra virus ecological dynamics and strategies for habitat conservation.

Previous research into the movement ecology of bats has shown important aspects of mobility and habitat 
preference. Telemetry and GPS tracking studies have looked at the scale of movement29–33, habitat preference34,35, 
and seasonal differences in foraging behavior between wet and dry seasons36 in several species of flying-fox, 
which emphasize that mobility and generalist foraging behavior allow population redistribution in response to 
food resources. Previous studies have also modeled the spatial extent of bat habitat using roost locations37–39. 
However, models based on roost locations are limited when describing foraging habitat. Giles et al.40 modeled 
population occupancy and abundance at day roosts with proxies of eucalypt flowering. They addressed the dis-
crepancy between roosting and foraging habitat by taking a spatially weighted sample of model predictors within 

Predictor Description
Relative 
influence (%)

DFR Distance from roost 13.99

ECARR_3mo Change in ECARR over 3 months 5.85

AVGtmn_1mo Average minimum temperature of preceding month 5.12

ANOMtmn_1mo Cumulative minimum temperature anomaly over preceding month 4.23

EWDI1 Eucalypt Wetness Difference Index 1 4.20

ECBRR_6mo Change in ECBRR over 6 months 3.70

PREC_1mo_6mo Change in PREC_1mo over 6 months 3.29

EWDI1_3mo Change in EWDI1 over 3 months 3.08

EWDI1_12mo Change in EWDI1 over 12 months 3.08

PREC_9mo Cumulative precipitation of the preceding 9 months 2.99

PREC_12mo Cumulative precipitation of the preceding 12 months 2.92

EWDI2_1mo Change in EWDI2 over 1 month 2.70

ECBRR_12mo Change in ECBRR over 12 months 2.63

EWDI1_9mo Change in EWDI1 over 9 months 2.54

ANOMtmx_9mo Cumulative maximum temperature anomaly over preceding 9 months 2.44

ECARR_12mo Change in ECARR over 12 months 2.40

ECBRR Eucalypt Chlorophyll b Reflectance Ratio 2.26

ECBRR_9mo Change in ECBRR over 9 months 2.12

EWDI2_6mo Change in EWDI2 over 6 months 2.10

AVGtmx_1mo Average maximum temperature of preceding month 2.10

PREC_1mo Cumulative precipitation of the preceding month 1.96

ANOMtmn_3mo Cumulative minimum temperature anomaly over preceding 3 months 1.84

PREC_1mo_12mo Change in PREC_1mo over 12 months 1.57

ECARR_9mo Change in ECARR over 9 months 1.57

Table 2. The 24 most influential variables as determined by the boosted regression tree model, shown in order 
of relative influence. Predictors plotted in Fig. 3 are indicated in bold.
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areas known to contain diet species of bats. However, robust models of foraging habitat require explicit data of 
occupied foraging areas. The high-resolution tracking data collected in Westcott et al.4 allowed us to identify 
these foraging areas with high confidence. When combined with spatial proxy variables of eucalypt phenology 
from Giles et al.40 we built a model of foraging intensity at the regional scale, which serves as a starting point for 
developing landscape scale models.

Environmental variables that predict bat foraging intensity are consistent with known climatic triggers of 
eucalypt flowering. We found that, in our study area, high predicted values of foraging intensity were associated 
with long-term increases (9–12 months) but short-term decreases (1–3 months) in eucalypt vegetation indices 
(green plots in Fig. 3). This suggests that there is a sequence of key seasonal time periods prior to foraging when 
phenological changes in eucalypts occur (e.g. growth phase, bud production, anthesis), leading to flowering and 
nectar availability in the following months. We propose then, that a slowing of vegetative growth in the eucalypt 
canopy is an important precursor to foraging activity, which is consistent with the reproductive phenology of 
eucalypts. Generally, growth and flowering are separate processes, where vegetative growth is suppressed in favor 
of bud development and floral initiation41,42. In many species, these changes from one phenological stage to the 

Name Description Formula

ECARR Eucalypt Chlorophyll a Reflectance Ratio 0.0161 × [Band2/(Band4 × Band1)]0.7784

ECARR_3mo Change in ECARR over 3 months ECARRt − ECARRt−3months

ECARR_6mo Change in ECARR over 6 months ECARRt − ECARRt−6months

ECARR_9mo Change in ECARR over 9 months ECARRt − ECARRt−9months

ECARR_12mo Change in ECARR over 12 months ECARRt − ECARRt−12months

ECBRR Eucalypt Chlorophyll b Reflectance Ratio 0.0337 × (Band1/Band4)1.8695

ECBRR_3mo Change in ECBRR over 3 months ECBRRt − ECBRRt−3months

ECBRR_6mo Change in ECBRR over 6 months ECBRRt − ECBRRt−6months

ECBRR_9mo Change in ECBRR over 9 months ECBRRt − ECBRRt−9months

ECBRR_12mo Change in ECBRR over 12 months ECBRRt − ECBRRt−12months

EWDI1 Eucalypt Wetness Difference Index 1 0.08 × [(Band2 − Band7)/
(Band2 − Band6)] − 0.052

EWDI1_3mo Change in EWDI1 over 3 months EWDI1t − EWDI1t−3months

EWDI1_6mo Change in EWDI1 over 6 months EWDI1t − EWDI1t−6months

EWDI1_9mo Change in EWDI1 over 9 months EWDI1t − EWDI1t−9months

EWDI1_12mo Change in EWDI1 over 12 months EWDI1t − EWDI1t−12months

EWDI2 Eucalypt Wetness Difference Index 2 0.045 × [(Band2 − Band6)/
(Band2 − Band7)] − 0.014

EWDI2_3mo Change in EWDI2 over 3 months EWDI2t − EWDI2t−3months

EWDI2_6mo Change in EWDI2 over 6 months EWDI2t − EWDI2t−6months

EWDI2_9mo Change in EWDI2 over 9 months EWDI2t − EWDI2t−9months

EWDI2_12mo Change in EWDI2 over 12 months EWDI2t − EWDI2t−12months

ANOMtmn_1mo Cumulative minimum temperature anomaly over preceding month

ANOMtmn_3mo Cumulative minimum temperature anomaly over preceding 3 months

ANOMtmn_6mo Cumulative minimum temperature anomaly over preceding 6 months

ANOMtmn_9mo Cumulative minimum temperature anomaly over preceding 9 months

ANOMtmn_12mo Cumulative minimum temperature anomaly over preceding 12 months

ANOMtmx_1mo Cumulative maximum temperature anomaly over preceding month

ANOMtmx_3mo Cumulative maximum temperature anomaly over preceding 3 months

ANOMtmx_6mo Cumulative maximum temperature anomaly over preceding 6 months

ANOMtmx_9mo Cumulative maximum temperature anomaly over preceding 9 months

ANOMtmx_12mo Cumulative maximum temperature anomaly over preceding 12 months

AVGtmn_1mo Average minimum temperature of preceding month

AVGtmx_1mo Average maximum temperature of preceding month

PREC_1mo Cumulative precipitation of the preceding month

PREC_3mo Cumulative precipitation of the preceding 3 months

PREC_6mo Cumulative precipitation of the preceding 6 months

PREC_9mo Cumulative precipitation of the preceding 9 months

PREC_12mo Cumulative precipitation of the preceding 12 months

PREC_1mo_3mo Change in PREC_1mo over 3 months PREC_1mot − PREC_1mot−3months

PREC_1mo_6mo Change in PREC_1mo over 6 months PREC_1mot − PREC_1mot−6months

PREC_1mo_9mo Change in PREC_1mo over 9 months PREC_1mot − PREC_1mot−9months

PREC_1mo_12mo Change in PREC_1mo over 12 months PREC_1mot − PREC_1mot−12months

Table 3. A complete list of all environmental variables explored in the model.
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Figure 3. Partial dependence plots for 12 selected variables shown in order of importance. Scaled values 
on the x-axis show the standard deviation from the mean fitted response, and the range of each covariate is 
plotted on the x-axis. The black line shows the relative change in the fitted function over the range of each 
covariate. Histograms show the distribution of covariate values observed in the data, and the colors indicate the 
environmental variable type. Vegetation indices such as the Eucalypt Chlorophyll a Reflectance Ratio (ECARR), 
Eucalypt Chlorophyll b Reflectance Ratio (ECBRR), and Eucalypt Wetness Difference Index 1 (EWDI1) or 
plotted as green histograms. Temperature variables such as the average minimum temperature (AVGtmn) and 
minimum temperature anomaly (ANOMtmn) are plotted as red histograms, and precipitation variables such as 
the cumulative precipitation (PREC) and change in average monthly precipitation (PREC_1mo) are plotted as 
blue histograms. The percent relative influence (RI) is printed at the top of each plot.

Figure 4. The two most influential interactions fitted by the boosted regression tree model. Left: Fitted values 
are plotted as a function of the change in monthly precipitation over 12 months (PREC_1mo_12mo) and the 
cumulative precipitation over the preceding 3 months (PREC_3mo). The plot shows higher levels of foraging 
when decreases compared with the previous year and cumulative amounts of rainfall remain below 200 mm in 
the preceding 3 months. Right: Fitted values plotted as a function of the minimum temperature anomaly of the 
preceding 9 months (ANOMtmn_9mo) and the change in the Eucalypt Chlorophyll a Reflectance Ratio over 
3 months (ECARR_3mo). Here, highest fitted values correspond with low minimum temperature in the past 9 
months and decrease in photosynthetic productivity over 3 months.
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next (i.e. growth to flowering) are initiated by cooler temperatures [as documented for Eucalyptus regnans, E. 
maculata, and E. acmenoides43,44].

In terms of climate, we found that foraging intensity was higher during periods that are cooler and drier than 
average, especially if they are preceded by conditions that are warmer and wetter than average. Interaction plots 
(Fig. 4) show that flowering and foraging is favored when precipitation slows over the preceding year, indicating 
that previous rainfall followed by a transition from wet to dry is important. Similarly, Law et al.8 observed that, 
for 20 species of eucalypts in northern New South Wales, the greatest flowering in a 10 year period occurred 9 
months after an above average rainfall event. Further, it is interesting that partial dependence plots (blue plots 
in Fig. 3) indicate that in the region of our study area, changes in precipitation must be relatively mild, and that 
extreme transitions (e.g. an exceedingly wet period followed by an average one, or an average period followed by 
a drought) may not be amenable to flowering. We speculate that during wet periods, eucalypt forests may forgo 

Figure 5. Monthly spatial predictions of the final boosted regression tree model within the maximum observed 
foraging radius of Pteropus poliocephalus around the two study roosts in southeastern Queensland (46 km for 
Boonah and 30 km for Canungra) from 2005–2014. Predicted number of foraging stops is shown from dark blue 
(Y = 0), to red (Y = 16).

Figure 6. A time series of the final boosted regression tree model within the maximum observed foraging 
radius of Pteropus poliocephalus around the two study roosts in southeastern Queensland (46 km for Boonah 
and 30 km for Canungra) from January 2006–December 2015. The violin plots show the distribution of all cell 
values within the study area and the blue line shows the change of the median value over time.
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flowering in favor of continued growth, and during a drought, dry conditions inhibit flowering and nectar pro-
duction due to moisture stress.

When considering temperature, we found that flowering and foraging is associated with low minimum tem-
peratures (below 19 °C) in the preceding month (red plots in Fig. 3). Likewise, Law et al.8 showed that prior cool 
temperatures were the most consistent climatic trigger for flowering in 9 of 20 eucalypt species in northern New 
South Wales. In more southern species, Specht and Brouwer44 note that in E. regnans the growth phase is halted 
when mean temperatures drop below 16–18 °C, followed by flowering [typically in autumn for this species43], and 
Moncur45 demonstrated floral induction in E. lansdowneana below 10–15 °C. Our model results complement 
previous studies on flowering phenology within the context of flying-fox foraging ecology, showing that cool 
temperatures are an important seasonal climatic trigger determining the timing of flowering in eucalypts, which 
leads to nectar-based resources for flying-foxes.

Beyond seasonal climatic drivers, we observed a positive correlation between the spatial concentration of 
nectar foraging and values of the SOI at a temporal lag of 3–8 months (Fig. 10), indicating that previous climatic 
conditions associated with La Niña have a cumulative effect on flowering phenology and resulting foraging by 
flying-foxes. It has been known for some time that the state of the ENSO can predict spring/summer rainfall for 
eastern Australia20, so the observed correlation is not entirely surprising. SOI values above zero are associated 
with La Niña cycles, where increased ocean surface temperatures increase cloud cover, humidity, rainfall, and 
minimum temperatures for southeastern Queensland46. Some species of eucalypt may invest more energy into 
the growth phase during the amenable conditions of La Niña, until drier and cooler conditions of a neutral 
phase trigger flowering. However, it should be noted that each species of eucalypt has a unique seasonal schedule 
for growth and flowering phenology that is influenced by both photoperiod and time-lagged climatic effects47. 
Therefore, physiological responses to the broader climatic conditions brought by La Niña may influence eucalypts 
within a region by means of the Moran effect48, causing periodic deviations from strict seasonal dynamics. We 
hypothesize, accordingly, that the timing of ENSO cycle changes (i.e. La Niña to neutral phase) is a general driver 
of the notorious inter-annual periodicity of eucalypt growth and flowering phenology, and the erratic patterns of 
redistribution characteristic of flying-fox populations.

Seasonal and annual trends in model predictions indicate that nectar-based foraging for flying-foxes has 
important implications for Hendra virus disease ecology. As shown in Fig. 8a,b, seasonal trends in the model 
predict peaks in spatial resource concentration in late-summer, followed by lower values in autumn/winter. 
Coincidentally, Field et al.26 and Paez et al.49 show that peak Hendra virus prevalence in bat populations also 
occurs in the winter, which may indicate epidemiological drivers of Hendra virus prevalence in bat roosts in 
response to resource scarcity. It should be noted that our model of resource distribution is based on the for-
aging patterns of GHFF whereas BFF is thought to be the primary driver of Hendra virus transmission in bat 
populations and excretion of the virus into the environment15. However, Paez et al.49 found that measures of 
climate in preceding seasons (similar to those used in our model) in combination with the number of BFF 
could predict peaks in Hendra virus prevalence. Specifically, they found that when hot and dry conditions in 

Figure 7. Annual and seasonal trends in model predictions are plotted against the quartile variation coefficient 
(QVC), which is a measure of spatial resource concentration (top panels) and independent data of population 
census counts for the grey headed flying-fox at the Canungra roosting site (bottom panels).
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Figure 8. Seasonal trends in (a) spatial resource concentration as quantified by the quartile variation coefficient 
(QVC) within 50 km of both Boonah and Canungra roosts, (b) Hendra virus prevalence at the Boonah roost 
from July 2011–June 2014 (prevalence calculated from pooled under-roost urine samples26), and (c) the total 
number of spillover events within 25, 50, and 100 km of the both Boonah and Canungra roosts. Lines in (a) 
and (b) represent fitted Generalized Additive Models with cubic cyclic spline smoothing terms and their 95% 
confidence intervals.

Figure 9. A univariate time series of the quartile variation coefficient (QVC), which is a measure of spatial 
resource concentration, was calculated from spatial model predictions within the maximum foraging radius of 
only the Canungra roost (30 km).
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the previous spring/summer coincide with larger numbers of BFF, peaks in Hendra virus are higher and occur 
earlier in the winter season. Based on our model and its correlation with the SOI, warmer and drier conditions 
in the spring/summer (typical of the El Niño phase of ENSO), appear connected with both reduced flowering 
and foraging in the following autumn/winter, and larger peaks in Hendra virus prevalence in the winter sea-
son. Following Plowright et al.14, a period of resource scarcity could impact viral prevalence in bat populations 
through a decreased allocation of energy to immune defenses. Resource scarcity could also increase contact rates 
and connectivity between local roosts due to more dispersed foraging behavior in the region, thus affecting viral 
dynamics.

Spillover events from flying-foxes to horses in the region follow a similar pattern with winter occurrence 
(Fig. 8c)13. Plowright et al.13 also note that there was an unprecedented cluster of spillover events in the winter 
of 2011 in southern Queensland and northern New South Wales, a year in which our model predicts the lowest 
concentration of nectar-based resources around Canungra (Figs 7 and 9). We, therefore, hypothesize that periods 
of a low spatial concentration of nectar resources result in dispersed foraging behavior among resident GHFF 
and BFF individuals, which increases the number of bats foraging in horse paddocks. In this manner, the type of 
population distribution across the landscape (e.g. aggregated during resource plenty or dispersed during resource 
scarcity) determines where the virus can be excreted into the environment, providing the first enabling factor for 
spillover to horses50.

The role of foraging behavior in bat population distribution and Hendra virus ecology emphasizes the impor-
tance of coherent management actions which preserve or enhance flying-fox foraging habitat. This is especially 
timely because a 2013 amendment to the Queensland Vegetation Management Act 1999 loosened regulations on 
remnant and old growth forest clearing. A subsequent resurgence of vegetation clearing [395,000 hectares per 
year in 2015–1651], put Queensland on a trajectory to return to the clearing rates of the 1990s when it was labeled 
a world deforestation ‘hotspot’52,53. In response, the Queensland government reinstituted legislation this year to 

Figure 10. The cross-correlation function showing the time-lagged correlation between the quartile variation 
coefficient (QVC). The QVC was calculated from spatial model predictions within the maximum observed 
foraging radius of Pteropus poliocephalus around the two study roosts in southeastern Queensland (46 km for 
Boonah and 30 km for Canungra) and the a 3-month moving average of the Southern Oscillation Index (SOI). 
Dashed blue lines indicate the cutoff for significance for the cross-correlation coefficient. Time series of the 
QVC an SOI are plotted in Fig. 11.

Figure 11. The quartile variation coefficient (QVC), which is a measure of spatial resource concentration, was 
calculated from spatial model predictions within ~50 km of both Boonah and Canungra roosts and plotted with 
a 3-month moving average of the Southern Oscillation Index (SOI) from January 2006–December 2015. The 
QVC values are plotted as the blue line and the SOI values are plotted as the orange line.
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protect remnant vegetation54, which is a promising step to reduce future clearing rates. However, the impacts of 
clearing on bat populations and risk of spillover may not be observed until subsequent foraging bottlenecks occur 
due to annual or inter-annual cycles in climate. For instance, cleared foraging areas for bats may not cause sig-
nificant changes in nectar resource availability and foraging behavior until the next El Niño phase when warmer 
and dryer spring/summer conditions cause poor flowering in the following autumn. The time-lagged effects of 
deforestation and habitat fragmentation, therefore, present significant challenges when studying the ecological 
impacts of landscape change. Hence, habitat conservation strategies should employ analyses on the dynamic 
changes in flowering and foraging over time to identify areas that: 1) offer consistent winter flowering species, and 
2) contain species that produce large amounts of nectar on an inter-annual basis, and seek to preserve these areas, 
or even establish new areas to plant important diet species. Such a conservation strategy targets both temporal 
and spatial gaps in nectar-based resources24.

Our model is subject to three important limitations inherent in the data that must be considered. First, the 
data that we used to define foraging areas of bats came from 37 individuals roosting at Boonah and Canungra 
between June 2013–February 2015. Although we have confidence in our definition of foraging areas, we must 
assume that the areas used by our 37 individuals are representative of a larger population. Second, there is likely 
spatial autocorrelation in the foraging area data (even after we clustered foraging stops into areas). We, therefore, 
designed a modeling approach that reduces this influence by aggregating foraging areas to more coarse spatial and 
temporal scales, utilizing the ‘bagging’ technique within the BRT algorithm, including distance from the home 
roost as a predictor, and by determining model meta-parameters using a 5-fold spatial cross validation structure. 
Even with appropriate precautions, it is difficult to completely remove the confounding effects of autocorrelation 
in the data. Third, there is heterogeneous species richness in eucalypts within the study area, which may lead to 
diverse responses to climate. There is likely variability in foraging dynamics that is not included in our model 
because the model predictions are summarized over coarse spatial and temporal scales in order to draw broader 
inferences. This is a trade-off that must be made in order to describe the general environmental drivers of flower-
ing and bat foraging within the region of our two study roosts over time. Therefore, our conclusions are relative to 
observed foraging activity within our study area, and differences in eucalypt species richness and regional climate 
regimes may lead to different results in other regions.

So then, are we any further along than Ratcliffe in implementing ‘better-informed conservation’? Recent dis-
persal actions55 indicate that, in terms of implementation, the answer is no. However, we are making progress in 
understanding the dynamics of bat population distribution, which is difficult given the spatial scale at which they 

Figure 12. Histograms plotting the number of foraging stops of Pteropus poliocephalus recorded at roosts in 
Boonah and Canungra in southeastern Queensland. The month is plotted on the y-axis and the x-axis shows 
the number of individual foraging stops in the top panel, and the number of aggregated foraging areas in the 
bottom panel. The full unfiltered data set is shown in grey at the top left. The filtered data (clustered foraging 
stops, urban points removed, aggregated to resolution of environmental data) is shown in blue. Data were not 
retrieved from individual bats in Mar/Apr and Sep/Oct (see top right). Foraging activity tends to occur in the 
winter around the Boonah roost, and in the summer around the Canungra roost. For a detailed description of 
the movement data, see Westcott et al.4.
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operate. Here we showed that the climatic responses of eucalypt phenology drive bat foraging, which has impor-
tant implications for bat population distribution, Hendra virus ecology, and conservation strategy. This provides 
additional ecological context to previous work, and connects ecosystem phenology to broader climatic drivers 
such as the ENSO, allowing speculation about the future impacts of climate changes. For example, under future 
climate predictions, the frequency of El Niño cycles are expected to increase, with more irregular timing56. Based 
on our data and model, this would result in less reliable temperatures and rainfall in spring/summer seasons, 
contributing to a decrease in the spatial concentration of flowering and foraging in our study area. Therefore, 
future research that takes the concepts presented here, and applies them to the landscape scale could produce a 
useful spatiotemporal map defining priority conservation areas that provide sufficient foraging habitat over time. 
Additionally, mechanistic models of bat distribution that include this information would help to understand 
the spatiotemporal distribution of bat populations in a human-dominated landscape, and the potential for food 
resource phenology to drive Hendra virus ecological dynamics.

Methods
Environmental data. We developed a suite of environmental data layers for the rectangular extent encom-
passing the maximum foraging radii of two study roost sites (Boonah and Canungra; Fig. 1) from 2006–2015 at 
8-day intervals (spatial resolution of 700 m in Albers Equal Area projection). These include Eucalypt-based veg-
etation indices, average monthly precipitation, cumulative precipitation, average monthly temperature extrema, 
and temperature anomaly. The Eucalypt-based vegetation indices are spatial adaptations of laboratory measure-
ments from Datt57,58, which represent chlorophyll and water content of Eucalypt leaves. For a more extensive 
discussion of the indices and climate variables, see Giles et al.40. Given the significant influence of prior environ-
mental conditions on the timing and intensity of Eucalypt flowering8,28, we also derived time-lagged differences 
of these variables at 1, 3, 6, 9, and 12 month time lags. Also, we added distance from the home roost as a predictor 
variable to help model spatial autocorrelation of the foraging data not addressed by data aggregation and mod-
eling techniques such as bagging and spatial cross validation (discussed below). For a complete list of variables 
explored in the model, see Table 3.

Foraging data. Data on bat movement was collected as part of the Nation Flying-fox Monitoring Program4. 
Specifically, Westcott et al.4 fitted 37 GHFF individuals (15 females and 22 males) with tracking devices enabled 
with GPS and accelerometers from June 2013–Feb 2015. We then aggregated the raw data on two levels: first, 
by clustering movement data into foraging stops, and second, by counting the number of points aggregated to 
the spatial and temporal resolution of the environmental data. Fine-scale movement data was filtered to iden-
tify times and locations of significant foraging activity. We considered bats to be in a ‘stopped’ state when the 
speed of the device was recorded as <2 ms−1. We defined a successful foraging event (hereafter referred as a 
foraging ‘stop’) as an area where a group of stop points was within 10 meters of one another. Accordingly, we 
produced a dataset of foraging ‘stops’ by clustering points within 10 m and taking the centroid, rendering 2997 
points with a spatial distribution shown in Fig. 1. Although the data have an even distribution across gender 
(female = 1440, male = 1557), season (summer = 1318, winter = 1679), and the two home roosts in our study 
area (Boonah = 1590, Canungra = 1407), movement data was not retrieved from any bats in Mar/Apr and Sep/
Oct, and the bats exhibit a preference for foraging near Canungra in the summer and Boonah in the winter 
(Fig. 12). For more detailed specifications of the GPS technology developed for the tracking collars, see Sommer 
et al.59, and for additional description of their implementation to collect movement data, see Westcott et al.4. To 
remove the potential confounding effect of generalist foraging behavior compared with foraging on nectar-based 

Figure 13. The spatial distribution of Pteropus poliocephalus foraging areas (aggregated foraging stops; see 
Methods) plotted around their home roosts in Boonah and Canungra in southeastern Queensland. The area 
shaded green represents non-urban areas and the white areas represent urban and peri-urban areas. Observed 
foraging areas that are found within non-urban areas are plotted as black circles and the red circles indicate 
those in urban and peri-urban areas.
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resources in Eucalypt forests, we removed points within 500 m of urban and peri-urban land use types as this 
was expected to contain high proportions of non-native fruiting trees, leaving 2416 foraging stops that are likely 
driven by Eucalypt phenology (Fig. 13). To attain counts of foraging stops per unit area and time, we aggregated 
the data to the temporal and spatial resolution of the environmental data. We aggregated foraging stops tempo-
rally by assigning them to the nearest 8-day interval of the environmental data, and then spatially by counting the 
number of foraging stops within each grid cell, resulting in aggregated counts for 385 unique locations and times.

To account for sampling bias and provide information on the environments of foraging sites that are available, 
but not used, by our 37 individual bats, we implemented a use-availability sampling design60,61. Specifically, we 
compiled a data set of ‘available’ foraging sites, for which the response variable (number of foraging stops) was set 
to zero, by drawing a large number of randomly stratified points within the maximum observed foraging distance 
of each roost (46 km for Boonah and 30 km for Canungra; see Fig. 1), for all dates with observed foraging activity. 
We adjusted the total number of points so that an ‘available’ foraging site was sampled once per 5 km2 within each 
of the 25 unique dates (approximately 19000 points total). This sampling design provides a thorough representation 
of the environmental space at available foraging sites within the foraging radius of the home roosts at times when 
individuals were roosting there60; however, it results in imbalanced data classes that can lead to underestimation of 
fitted values and hinder model assessment62. We assumed that both ‘used’ and ‘available’ foraging areas are equally 
accessible based on observed foraging radii. So, before modeling, we applied a correction that balances the weight 
of the two data classes. Following King and Zeng62, we weighted ‘used’ samples as τ=w y/1 , and ‘available’ samples 
as w y(1 )/(1 )0 τ= − − . Where τ is set to 0.5, and y  is the frequency of ‘used’ foraging areas in the data.

Modeling. To estimate spatiotemporal foraging intensity, we explored models using boosted regression trees 
(BRT) with a Poisson error distribution and a log link function. This gives a functional approximation for the 
expected density of foraging stops within a grid cell at a given time relative to available foraging areas within the 
foraging radii around our study roosts. We used BRT because regression trees provide an additive model structure 
that can fit a flexible non-monotonic response that ignores weak covariates63,64. The BRT algorithm also reduces 
the impact of autocorrelation that may result from spatial clustering in the data via ‘bagging’, where models at 
each iteration of the algorithm are built with a randomly selected proportional subset of the data65. BRT is espe-
cially useful when modeling environmental patterns associated with flying-fox foraging areas because they forage 
on a wide range of Eucalypt species and forest types, each with a potentially unique pattern of climatically driven 
flowering. The flexible response fitted by BRT can accommodate the complex relationship between Eucalypt 
phenology and bat foraging behavior within a framework similar to classic Poisson regression. Moreover, recent 
literature has elucidated the relative proportionality among Poisson regression, presence-background regression, 
and inhomogenous Poisson point processes when modeling the intensity of a point process66–68.

To identify an optimal model, we followed the recommendations of Elith et al.64, where we explored the per-
formance of models built with various combinations of meta-parameters such as tree complexity (tc = 5, 7, 9), 
learning rate (lr = 0.005, 0.001, 0.0005), and bagging fraction (bf = 0.5, 0.6, 0.7). Out of the 27 combinations, the 
optimal meta-parameter set was determined based on performance on independent test data within a 5-fold spa-
tial cross validation structure. Cross validation folds were assigned using a 5 km spatial grid placed over the study 
area (defined by maximum foraging radii). Points were assigned to one of the 5 folds based on random assign-
ment of the grid cells into one of the 5 folds (similar to Renner and Warton67; Fig. 14). To ensure reliable metrics 
in cross validation tests, we selected a random seed that ensured even proportion of used and available foraging 
areas across the 5 folds. We tested model generality by calculating the mean Poisson deviance and mean squared 
error (MSE) among the 5 folds. The final selected model was refitted with all data using the meta-parameter com-
bination that returned the lowest mean deviance and MSE, while fitting >1000 trees (as suggested by64). Then we 
re-fitted the final model with all the data to determine the optimal number of trees on the full data set.

Figure 14. The spatial cross validation design for testing the boosted regression tree models assigns points 
within the maximum observed foraging radius around the two study roosts in southeastern Queensland (46 km 
for Boonah and 30 km for Canungra) to one of five randomly assigned 5 km grid cells. Each color indicates 
membership to one of the five folds.
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To describe the fitted function, we selected 12 influential variables (shown in bold in Table 3) and constructed 
partial dependence plots by predicting the model over the range of the variable in question while holding all other 
variables in the model constant. We also explored the influence of interactions among environmental variables 
and plotted the two most influential interactions. To assess the spatiotemporal pattern of GHFF foraging intensity 
across the study area, we projected the final model onto the spatial data at 8-day intervals from 2006–2015. We 
then aggregated predictions to monthly summaries, by taking the mean at each grid cell within each month. We 
summarized temporal trends in two ways. First, we plotted a time series of violin plots that show the distribution 
of all cell values for the monthly spatial predictions. Second, we plotted a univariate time series that gives the 
quartile variation coefficient (QVC; a measure of relative dispersion suited to non-normal count data). Here, high 
values of the QVC correspond to spatial predictions that produce high values of foraging intensity surrounded 
by comparatively low values (indicative of high-quality nectar production events), and low values correspond to 
those with a more homogeneous distribution of low or mid-range values (indicative of poor foraging conditions 
and dispersed foraging behavior). In this manner, the QVC can be interpreted as a measure of spatial resource 
concentration.

To assess temporal trends in spatial resource concentration, we plotted model values by year and month and 
validated them with independent data of population counts. Specifically, we calculated time series of QVC values 
for spatial predictions within the maximum foraging radius of Canungra (30 km) and compared them to the 
median value of monthly population counts observed at Canungra from 2008–2014 using a Pearson’s product 
moment test. We focus on the Canungra roost here because over this time period, consistent monthly population 
counts of Pteropus poliocephalus were performed by the Queensland Department of Environment and Heritage 
Protection as part of the Southeast Queensland Flying-fox Monitoring Program. Population counts were also 
performed at the Boonah roost from 2011–2014, however, this roost was subjected to repeated dispersal attempts 
during this time, leading up to its removal in 2014. We also explored the connection between QVC across the 
whole study area from 2006–2015, and a broad climate indicator, the Southern Oscillation Index (SOI69. In this 
case, we calculated the cross-correlation function between the temporal summary of the model and the 3-month 
moving average of monthly SOI values at time-lags of up to 18 months.

To explore hypotheses on how eucalypt phenology and observed foraging activity are linked to Hendra virus 
dynamics, we gathered data on Hendra virus prevalence and spillover occurrence within our study area and 
plotted seasonal trends with our model of nectar-based foraging resources. We acquired data on Hendra virus 
prevalence in fruit bats from the field sampling study conducted by Field et al.26. As described by Field et al.26 
prevalence values are calculated from pooled urine samples collected under the roost. Although both GHFF and 
BFF were present at this roost at the time of sampling, Hendra virus excretion is primarily attributed to BFF15. 
Within our study area, Hendra virus prevalence data was only available for the Boonah roosting site. The times 
and locations of Hendra virus spillover events to horses came from the Queensland Government’s public database 
of documented Hendra virus infection in horses27. To summarize seasonal patterns in the data, we fit Generalized 
Additive Models (GAMs) with cubic cyclic spline smoothing terms to monthly values of spatial resource con-
centration (approximated with the Quartile Variation Coefficient (QVC)) and Hendra virus prevalence using 
Gaussian and Quasi-Binomial link functions respectively. The spline terms used integer values corresponding to 
each month as the covariate. We calculated the total number of monthly spillover events which occurred within 
three distance thresholds (25, 50, and 100 km) of the two study roost sites and plotted all three data sources 
together. All data processing and modeling was performed in the R statistical language70 using the mgcv, gbm, 
dismo, raster, and spatstat packages71–75. Data and R code can be found in the online supplementary 
information.
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