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Purpose: Inverse association between premorbid body mass index (BMI) and

amyotrophic lateral sclerosis (ALS) was implied in observational studies; however,

whether this association is causal remains largely unknown.

Materials and Methods: We first conducted a meta-analysis to investigate whether

there exits an association between premorbid BMI and ALS. We then employed a

two-sample Mendelian randomization approach to evaluate the causal relationship of

genetically increased BMI with the risk of ALS. The Mendelian randomization analysis

was implemented using summary statistics for independent instruments obtained from

large-scale genome-wide association studies of BMI (up to ∼770,000 individuals) and

ALS (up to ∼81,000 individuals). The causal effect of BMI on ALS was estimated

using inverse-variance weighted methods and was further validated through extensive

complementary and sensitivity analyses.

Results: The meta-analysis showed that a unit increase of premorbid BMI can result in

about 3.0% (95% CI 2.1–4.5%) risk reduction of ALS. Using 1,031 instruments that were

strongly related to BMI, the causal effect of per one standard deviation increase of BMI

was estimated to be 1.04 (95% CI 0.97–1.11, p = 0.275) in the European population.

This null association between BMI and ALS also held in the East Asian population

and was robust against various modeling assumptions and outlier biases. Additionally,

the Egger-regression and MR-PRESSO ruled out the possibility of horizontal pleiotropic

effects of instruments.

Conclusion: Our results do not support the causal role of genetically increased or

decreased BMI on the risk of ALS.

Keywords: body mass index, amyotrophic lateral sclerosis, Mendelian randomization, instrumental variable,

genome-wide association studies
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is among the most
frequent adult-onset fatal neurodegenerative diseases and is
clinically characterized by rapidly progressive motor neurons
degeneration and death because of respiratory failure (1).
Although great advance has been made for the understanding of
ALS in the past decades, the pathogenic mechanism underlying
ALS remains largely unknown and only few therapeutic options
can be available (2). It has been reported that both genetic
(3, 4) and environmental factors (e.g., cigarette smoking,
alcohol consumption, exposure to pesticides, lead, organic
toxins or electromagnetic radiation, and socioeconomic status)
may contribute to the development of ALS (5–11). However,
few replicable and definitive environmental risk factors are
currently well-established for ALS. In addition, due to the
quickly growing population aging in the upcoming years, it
is evaluated that the number of ALS cases across globe will
increase by ∼70% (12), which is anticipated to result in
rather serious socioeconomic and health burden. Therefore,
understanding the risk factors of ALS for improving the
medical intervention and quality of life for ALS patients is
considerably important from both disease treatment and public
health perspectives.

Among extensive epidemiological researches of ALS, an
important observation is that ALS patients often encounter a loss
of weight or a decrease of body mass index (BMI) at the early
phase of diagnosis (1, 13–20). Indeed, substantial change of BMI
in ALS patients has been identified as an independent prognostic
factor and has been linked to disease progression (19, 21–27).
For example, it is observed that a rapid reduction of BMI in
ALS patients at the initial disease stage is a strong indicator of
faster disease progression and shorter survival time, consistent
with the finding that nutritional intervention for ALS patients to
increase BMI can prolong the survival time and lead to a delay in
disease progression (28–30). The benefit of raising BMI for ALS
patients by taking high-energy diet is also confirmed by mouse
models (31).

However, whether the long-term exposure to genetically
increased (or decreased) BMI prior to the onset of ALS also
plays a pathological role in the development of ALS is less
understood. Various findings with regard to the relationship
between premorbid (i.e., prediagnostic) BMI and ALS have
been reported in the literature. In a large-scale observational
cohort, it was shown that higher BMI before the onset of
ALS was associated with a decreased risk of ALS, resulting in
an average of 4.6% [95% confidence interval (CI) 3.0–6.1%]
lower risk of ALS per unit increase in BMI (25). This inverse
association between premorbid BMI and the risk (or mortality)
of ALS was also supported by recent studies (Table S1) (32–
36). However, contradictory results were also reported. For
example, it was shown that ALS cases consistently had a
greater BMI compared with controls beyond 5 years before ALS
manifestation although they had a smaller BMI than controls
within 5 years prior to onset; and that per unit increase of BMI
can result in ∼5.0% (95% CI 0.0–11.0%) higher risk of ALS
(Table S2 and Figure S1) (19). This study also implied that BMI

may already begin to change about 10 years before onset of
ALS (19). A more pronounced increased risk associated with
greater BMI before 5 years onset of ALS was observed in a
population-based case-control study performed in Washington
State (37, 38): 50% higher risk of ALS for those with BMI
between 24 and 26 kg/m2 compared with those with BMI
<21 kg/m2, and 70% higher risk of ALS for those with
BMI larger than 26 kg/m2 compared with those with BMI
<21 kg/m2.

The conflicting observations on the relationship
between premorbid BMI and ALS may be partly due to
uncontrolled/unknown bias or confounding factors that are
frequent in observational studies, or partly due to the relatively
small sample size for patients because of the rarity of ALS,
or partly due to the reverse causality as well as a limited
retrospective time (or follow-up) before ALS onset (19). Overall,
an essential problem still exists—is the change of BMI before
ALS manifestation a causal risk factor or the consequence
of ALS?

Because BMI is a modifiable exposure factor and obesity is
a growing global health problem (39), a better characterization
of the causal effect of BMI on ALS can thus facilitate our
understanding of the pathogenesis of ALS and finally lead to
better prevention and treatment for ALS patients. Traditionally,
randomized controlled trial (RCT) studies are the gold standard
for inferring the causal impact of exposure on outcome. However,
determining the causal relationship between premorbid BMI
and ALS through RCT is challenging and unrealistic, because
RCT necessarily requires a very large set of subjects and an
extremely long follow-up before clinical manifest of ALS due
to its rarity in the population (40) and wide variations in
prevalence and incidence across various age groups (41–44).
Therefore, it is desirable to investigate the causal association
between premorbid BMI and ALS through observational studies.
The Mendelian randomization approach may help clarify the
causal relationship (45, 46) by employing single nucleotide
polymorphisms (SNPs) as instrument variables for the exposure
(i.e., premorbid BMI) to assess its causal effect on the outcome
of interest (i.e., ALS) (Figure S2) (47). Intuitively, we are
dependent on the idea that SNPs which influence the exposure
would also affect the risk of outcome through the change
of exposure. The recent successes of large-scale genome-
wide association studies (GWASs) (48–52) make it feasible to
choose strongly associated SNPs to be valid instruments for
causal inference in Mendelian randomization (53, 54). Indeed,
in the last few years Mendelian randomization has become
a considerably powerful method for causality inference in
observational studies (53, 55).

In the present study we first conducted a meta-analysis to
investigate whether there is an association between premorbid
BMI and ALS. As a result, we found that an inverse
association existed. Furthermore, to examine whether this
negative association was causal, we conducted the largest
and most comprehensive two-sample Mendelian randomization
analysis to date by using summary statistics obtained from large-
scale GWASs with ∼770,000 individuals for BMI and ∼21,000
cases for ALS.
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TABLE 1 | Summary information of 11 studies included in the meta-analysis.

First author

(year)

Country (or

region)

Study design Fellow up

period

Total N

(case/control)

OR/RR/HR Covariates

Nelson et al.

(37, 38)

USA Case-control 1990–1994 482 (161/321) 1.06

(0.95–1.16)

Cases and controls were matched on age, gender,

and respondent type; the conditional logistic

regression was used while adjusting for education,

total energy intake, and smoking.

Scarmeas et al.

(32)

USA Case-control 1992-2000 409 (270/139) 0.94

(0.90–0.99)

Age, sex, always-slim, and varsity athlete

Veldink et al. (70) Netherlands Case-control 2001–2002 473 (219/254) 1.02

(0.97–1.08)

Sex, age, education, smoking, and alcohol use

Sutedja et al. (33) Netherlands Case-control 2004–2009 872 (334/538) 0.92

(0.87–0.97)

Age and sex

Doyle et al. (71) UK (women) Prospective

cohort

1996–2001 1.3M (752/NA) 0.98

(0.96–0.99)

Region, deprivation, year of birth, use of hormone

replacement therapy, smoking, and alcohol use

Gallo et al. (34) Europe Prospective

cohort

1992–2002 518,108 (222/NA) 0.97

(0.94–1.01)

Sex, education, and smoking

O’Reilly et al. (25) USA Prospective

cohort

1976–2008 1,100,910

(1,153/NA)

0.94

(0.92–0.97)

Smoking, vitamin E from food and supplements,

education, and physical activity

Huisman et al. (35) Netherlands Case-control 2006–2011 2,767 (674/2,093) 0.97

(0.94–0.99)

Age, sex, education, smoking, lifetime physical

activity, and total energy intake

Mariosa et al. (36) USA (aged at

25 years)

Case-control 2005–2010 1,442 (467/975) 0.99

(0.95–1.03)

Age, use of VA health care, sex, race/ethnicity,

smoking, and education

Mariosa et al. (36) USA (aged at

45 years)

Case-control 2005–2010 1,442 (467/975) 0.95

(0.91–0.98)

Age, use of VA health care, sex, race/ethnicity,

smoking, and education

Aberg et al. (72) Swedish

(men)

Prospective

cohort

1968–2005 1,819,817 (526/NA) 0.96

(0.93–0.99)

Age

O’Reilly et al. (73) USA, Europe,

and Australia

Prospective

Cohort (death)

1986–2010 568,060 (428/NA) 0.97

(0.95–0.99)

Smoking, education, physical activity, and race

MATERIALS AND METHODS

Systematic Review and Meta-Analysis
We first employed the systematic review and meta-analysis to
provide a pooled conclusion about the relationship between
premorbid BMI and ALS. Following the PRISMA guidelines
(56), we carried out a literature search mainly on the
database PubMed, with the detailed search strategy given in
Supplementary Text S1. For the included articles (Table 1 and
Figure M1), we then extracted from the literature with the
information on study setting, study design, population, and
case/control, observational period as well as measurement results
of effect size [odds ratio (OR), relative ratio (RR), or hazard
ratio (HR)]. Based on those extracted data, we evaluated the
association between premorbid BMI and the risk of ALS via
inverse-variance weighted methods. Details of the meta-analysis
were shown in Supplementary Text S1.

GWAS Data Sources and Instrument
Selection for Mendelian Randomization
We selected independent index association SNPs (p < 5.00E-
8) to serve as instrumental variables for BMI (Table S3)
from the Genetic Investigation of ANthropometric Traits
(GIANT) consortium, which is the largest BMI GWAS (up
to 773,253 individuals) for the European population to date
(Supplementary Text S2) (52). For all the selected instruments
we obtained their association summary statistics in terms of

the effect allele, marginal effect size estimate, and standard
error. To estimate the causal effect of BMI on ALS, we
extracted the corresponding association summary statistics of
these index SNPs for ALS from the ALS Variant Server (AVS)
GWAS that was also carried out in the European population
up on 80,610 individuals (20,806 cases and 59,804 controls)
(Supplementary Text S2) (4).

Besides the set of instruments of BMI obtained from Yengo
et al. (52), as a part of complementary and sensitivity analyses,
we also attempted to validate whether the relationship between
BMI and ALS derived from the European population also holds
in the East Asian population. To do so, we performed an
additional Mendelian randomization study using another set
of instruments obtained from an East Asian BMI GWAS up
to 158,284 individuals (Table S4 and Supplementary Text S2)
(50). The corresponding summary statistics of ALS for these
instruments were extracted from an East Asian ALS GWAS
up to 4,084 individuals (1,234 cases and 2,850 controls)
(Supplementary Text S2) (57). The two sets of index SNPs
of BMI from the two populations share only one common
instrument (i.e., rs7903146). The GWAS genetic data sets used
in the present study are summarized in Table 2.

Estimation of Causal Effect With
Inverse-Variance Weighted Methods
To examine whether the instruments are strong, for each
index SNP that was used as instrument, we calculated the
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TABLE 2 | GWAS genetic data sets used in the Mendelian randomization analysis

in the main text.

Traits PubMed

ID

Population k p Sample

size

Data

source

BMI 30124842 European 1,031 2,336,269 773,253 GIANT (52)

ALS 29566793 European 10,031,417 80,610 (4)

BMI 28892062 East Asian 75 6,108,953 158,284 BioBank

Japan (50)

ALS 28931804 East Asian 6,613,544 4,084 (57)

BMI, body mass index; ALS, amyotrophic lateral sclerosis; k is the number of instruments

and p is the total number of SNPs in the GWAS genetic data. Note that there were

∼41,000 and ∼5,000 BMI-associated SNPs (p < 5E−8) in the European and East Asian

GWAS genetic data sets, the shared number of BMI-associated SNPs was ∼1,100.

proportion of phenotypic variance of BMI explained (PVE) by
the instrument using summary statistics (58) and generated the
F statistic (Table S3) (59, 60). We then performed the two-
sample Mendelian randomization analysis (61, 62) and estimated
the causal effect of BMI on ALS in terms of OR per standard
deviation (SD) change in BMI with inverse-variance weighted
(IVW) methods (60, 63). Before formal analysis, to ensure the
validity of Mendelian randomization analysis, we examined the
pleiotropic associations of instruments by removing SNPs that
may be associated with ALS with a marginal p-value below
0.05 after Bonferroni correction. In our analysis no instruments
were excluded from any set of instruments by this strategy.
In addition, we employed the Cochran’s Q-test to examine
the heterogeneity of causal effect across instruments (64) and
performed power calculation using an analytic method (https://
cnsgenomics.shinyapps.io/mRnd/) (65).

Complementary and Sensitivity Analyses
To ensure results robustness and guard against model
assumptions in the Mendelian randomization analysis
(Figure S2), we carried out a series of complementary and
sensitivity analyses: (i) leave-one-out (LOO) cross-validation
analysis (66) and MR-PRESSO analysis (67) to validate whether
there are instrumental outliers that can substantially influence
the causal effect estimate; (ii) weighted median-based method
that is robust when some instruments are invalid (68); (iii)
MR-Egger regression to examine the assumption of directional
pleiotropic effects (61, 69); (iv) IVW causal analysis after
removing instruments that may be correlated to other 38
complex metabolic, anthropometric, and socioeconomic traits
from large-scale GWASs (Supplementary Text S2); (v) reverse
causal inference on BMI using ALS instruments; (vi) IVW
method for the causal effect estimation of BMI on ALS in the
East Asian population.

RESULTS

Identified Association Between Premorbid
BMI and ALS via Meta-Analysis
In our meta-analysis, a total of 11 previous studies were
finally included (Table 1). Among those studies, two showed a
positive association between premorbid BMI and ALS, while

the rest showed a negative relationship. The forest plot for
premorbid BMI with the risk of developing ALS is displayed
in Figure 1. The heterogeneous effect size of BMI on ALS in
those studies is observed (the Q statistic is 20.64 with the
p-value 0.037 and I2 is 47%). The fixed-effects model and
the random-effects model generated similar pooled estimates.
Specifically, for example, the random-effects model shows that
a unit increase of premorbid BMI can result in about 3.0%
(95% CI 2.1–4.5%) risk reduction of ALS (25, 32–36). We
also found that the pooled estimate of effect size is robust
against various subgroup sensitivity analyses (Figures M2–M7)
and that no single study can substantially dominate the final
estimate in the meta-analysis (Table M1). Additionally, the
funnel plot (Figure M8) and the Egger test (p = 0.756)
together demonstrate that the publication bias is unlikely to
influence the estimate of the meta-analysis. In summary, based
on the results of meta-analysis above, we can conclude that
there exists a negative association between premorbid BMI
and ALS.

Causal Effect of BMI on ALS With IVW
Mendelian Randomization Analyses
By using the clumping procedure of PLINK (details in
Supplementary Text S2), we selected 1,031 independent SNPs to
be valid instruments for BMI in the European population from
the GIANT study (52) (Table S3). These instruments together
explain a total of 8.28% of phenotypic variance for BMI. The
F statistics for all these SNPs are above 10 (ranging from 28.8
to 1426.2, with an average of 58.4), implying that the weak
instrument is less likely to bias our analysis. In addition, as
there is significantly statistical evidence for the heterogeneity
of causal effect across instruments (p = 7.43E-4 in terms of
the Cochran’s Q test); therefore, only the results estimated
using the random-effects IVW method are displayed in the
following paragraphs.

Specifically, we found that the OR per unit SD increase of
BMI on ALS is estimated to be 1.04 (95% CI 0.97–1.11, p
= 0.275) using the set of 1,031 instruments, indicating that
the genetically changed BMI is not causally associated with
an increased or decreased risk of ALS. The association is
essentially unaltered if another set of instruments is employed
(Supplementary Text S2). We further examine whether the lack
of detectable non-zero causal effect of BMI on ALS is due to a lack
of statistical power. To do so, we calculated the statistical power
to detect an OR of 1.10 (or 0.90) per unit change of BMI on the
risk of ALS following the analytic approach (65). In the power
calculation, we set the total phenotypic variance of BMI explained
by all the instrumental variables to be 8.28% (see above), the
significance level α to be 0.05, and the proportion of the ALS cases
to be 25.8% [i.e., the proportion of cases observed in the AVS
study (4)]. It is shown that the estimated statistical power is 96%
if n = 80,610 (i.e., the sample size of the ALS GWAS), indicating
that we would have reasonably high power to detect such a causal
effect of BMI on ALS if BMI is indeed causally related to the risk
of ALS.
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FIGURE 1 | Combined OR of meta-analysis when all the 11 studies are included in our study.

Sensitivity Analyses to Validate the
Estimated Causal Effect of BMI on ALS
To guard against the potential false negative error, we now
validate the null causal association between BMI and ALS
identified above through various sensitivity analyses. First, we
examine whether there exist potential instrument outliers and
whether these outliers have a substantial influence on the estimate
of causal effect. To do so, we created a scatter plot by drawing the
effect sizes of BMI with regard to their effect sizes of ALS for all
the 1,031 instruments. Among all the instruments, one index SNP
(i.e., rs2229616) has the largest effect size of 0.106 on BMI and
can be reasonably assumed to be a potential outlier (Figure 2).
However, this outlier does not largely change the estimated causal
effect in our analysis. Specially, after removing rs2229616, the OR
per one SD increase of BMI on ALS is 1.04 (95% CI 0.97–1.11,
p = 0.317), in line with that obtained using all the instruments.
To further examine whether a single instrument may strongly
influence the causal effect of BMI on ALS, we performed a
leave-one-out (LOO). Again, the LOO analysis results show that
no single instrument can influence the causal effect estimate
substantially (Figure 3). Additionally, we also directly tested for
whether any instrument is an outlier using MR-PRESSO (67),
which shows that no significant instrument outliers exist in our
analysis at the significance level of 0.05.

To study whether some are invalid among the set of 1,031
instruments and may bias the results, we conducted a Mendelian
randomization analysis using the weighted median method (68).
The weighted median method yields a similar estimate as before.
In particular, the OR per one SD increase of BMI on ALS is
1.01 (95% CI 0.91–1.13, p = 0.806), suggesting that invalid
instruments unlikely bias our results. To investigate whether
those instruments show potentially horizontal pleiotropy, we
performed theMR-Egger regression (61, 69). The results from the
MR-Egger regression analysis are again largely consistent with
our main results. For example, using all the 1,031 instruments
the MR-Egger regression estimates the OR per one SD increase

FIGURE 2 | Relationship between the SNP effect size estimates of BMI

(x-axis) and the effect size estimates of ALS (y-axis) in the European population

using 1,031 instruments generated from Yengo et al. (52). In the plot, the 95%

CIs for the effect sizes of instruments on BMI are shown as horizontal lines,

while the 95% CIs for the effect sizes of instruments on ALS are shown as

vertical lines. The horizontal dotted line represents zero effects. The line in red

represents the estimated causal effect of BMI on ALS obtained using the

random-effects IVW method. The red dot in the rightmost side is identified as

an outlier (i.e., rs2229616).

of BMI on ALS to be 0.97 (95% CI 0.79–1.19, p = 0.740). The
MR-Egger regression intercept is 0.001 (95% CI−0.002∼0.004, p
= 0.473). Furthermore, the funnel plot also displays a symmetric
pattern around the causal effect point estimate (Figure 4), which,
along with the MR-Egger regression, offers no evidence for
horizontal pleiotropy.

We further performed causal estimation for BMI after
removing instruments that may be potentially associated with
other 38 complex traits (Supplementary Text S2) with various
p-value thresholds. Again, the resulting estimates of causal effect
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FIGURE 3 | Leave-one-out (LOO) results of BMI on ALS based on the set of 1,091 instruments in the European population. (A) Estimated LOO causal effects; (B) The

p-values of the LOO causal effects. In the left panel, the red reference line is the point estimate of causal effect for BMI using all the instruments; in the right panel, the

red reference line represents the significance level of 0.05.

FIGURE 4 | Funnel plot for single causal effect estimate of BMI on ALS

obtained using all 1,091 instruments in the European population.

for BMI on ALS are not statistically significant regardless of the
thresholds used, consistent with the results obtained with all the
instruments (Table S5). The Mendelian randomization analysis
using ALS-related instruments also removes the likelihood of
reverse causality (the causal effect size is −0.011, 95% CI
−0.034∼0.011, p= 0.317). However, we emphasized this reverse
causality result should be interpreted with caution since only one
instrument of ALS was employed, which may be underpowered
to detect the causal effect of ALS on BMI.

Finally, we estimated the causal effect of BMI on ALS in the
East Asian population. To do so, we first obtained a set of 75
BMI-associated SNPs to serve as instruments (Table S4). The
estimated PVE by these instruments is 2.59%, and all have an F
statistic above 10 (range from 22.6 to 410.1, with an average of
56.8) and are thus deemed as strong instruments (59, 60). With
these identified instruments, again we found that genetically
higher BMI is not causally associated with an increased or
decreased risk of ALS at the significance level of 0.05. Specifically,
the OR per one SD increase of BMI on ALS is estimated to be 0.90
(95% CI 0.59–1.39, p= 0.647) in the East Asian population.

DISCUSSION

Summary of the Results of Our Study
It is controversial on whether there exists a relationship between
premorbid BMI and ALS in the literature. To answer this
problem, in the present paper we have performed a systematic
review and meta-analysis and showed that premorbid BMI is
inversely associated with ALS, supporting the previous findings
from epidemiological studies (Supplementary Text S1) (32–38).
To further explore whether this association is causal and to
investigate whether genetic predisposition to BMI plays an
etiological role in ALS, we have implemented a comprehensive
Mendelian randomization analysis using summary statistics
from GWASs. Compared with observational studies, Mendelian
randomization has the advantage that its results are not
susceptible to the measurement error bias and are also less
susceptible to reverse causation and confounders.

However, our Mendelian randomization analysis does not
support the existence of causal association between premorbid
BMI and the risk of ALS in both the European and East Asian
population. We also validated that the failure of identifying non-
zero causal effect of BMI on ALS is not possibly due to the lack of
statistical power. To our knowledge, this is the first Mendelian
randomization study to explore the relationship between BMI
prior to disease onset and ALS by leveraging genetic information
from large scale GWASs (74). As little has been known about the
casual factors for the development of ALS to date (2); therefore,
our study contributes considerably to the research on the role of
premorbid BMI with regard to the ALS risk and has the potential
implication in public health.

Treatment of the Model Assumptions of
Mendelian Randomization
Note that we employed a vast set of independent and strongly
associated instrument variables (a total of 1,031) for causality
inference of BMI on ALS. The benefit of applying multiple
instruments in Mendelian randomization analysis is that the
possibility of weak instruments bias is less likely and the high
statistical power is guaranteed. However, it also has a high
likelihood to incorporate pleiotropic instruments, which violates
the assumptions of Mendelian randomization (Figure S2) (47,
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53, 54). Therefore, to minimize the influence of pleiotropy, we
have tried to remove pleiotropic instruments. In addition, we
also carried out sensitivity analyses by excluding instruments
that may be associated with other 38 complex phenotypes which
may be associated with ALS in a metabolic, anthropometric,
or socioeconomic way and possibly mediate the effect of BMI
on ALS. Our Mendelian randomization analysis showed that
the results are robust against pleiotropy and against various
model assumptions.

Possible Mechanisms Underlying the
Associations Between BMI and ALS
The mechanisms underlying the observed associations between
BMI and ALS is complex. Several explanations for such
association exist. First, in observational studies it cannot fully
remove the influence of measurement errors and confounding
factors (e.g., cigarette smoking, alcohol drinking, or daily diet
intakes) which can bias the observed association between BMI
and ALS. Indeed, it was showed that BMI was no longer
associated with ALS after controlling for socioeconomic status,
prior chronic obstructive pulmonary disease, marital status,
diabetes, and residence at ALS diagnosis (75). Second, it
cannot completely rule out the possibility of reverse causality
between BMI and ALS although it was not significant in
our Mendelian randomization analysis. For example, previous
studies showed that BMI may already begin to change before
the onset of ALS (19), implying that the change of BMI
may be the consequence rather than a risk factor of ALS.
Finally, it cannot fully exclude the possible indirect effects
of BMI on ALS although no direct effect was found in our
Mendelian randomization analysis. For example, it is well-
known that BMI is related to type II diabetes (T2D) (76)
which in turn was showed to be associated with ALS (77),
suggesting that there may exist an indirect influence of BMI
on ALS via the pathway of T2D. Overall, further investigations
are warranted to elaborate the relationship between BMI
and ALS.

Limitations of our Study
Some limitations of this study should be considered. First, similar
to other Mendelian randomization studies, we acknowledge
that the validity of our Mendelian randomization relies on
three crucial modeling assumptions (Figure S2) (47, 53, 54).
Although the first one (i.e., the relevant assumption) can be
directly validated by examining the significance of SNPs on
BMI, the second two assumptions are difficult to validate
in practice. Thus, we emphasize that the results obtained in
the present study should be explained cautiously, although
we have implemented a lot of sensitivity analyses to guard
against the misspecification of model assumptions. Second, also
like other Mendelian randomization studies, we assumed a
linear relationship between BMI and ALS in the Mendelian
randomization model; while linearity may be not appropriate
in the practice. Thus, we cannot fully exclude the possibility
of non-linear association between BMI and ALS. Third, due
to the fact that we conducted our analyses based on summary

statistics rather than individual-level data sets, we cannot further
investigate the causal effect between BMI and ALS in terms of
gender or age (19, 34).

CONCLUSION

In conclusion, based the Mendelian randomization results
obtained from large-scale GWAS summary statistics, the present
study is not supportive of the causal role of genetically increased
or decreased BMI on the risk of ALS.
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