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Background: The polypyrimidine tract-binding protein (PTBP) nuclear

ribonucleoprotein family of proteins, including PTBP1, PTBP2 and PTBP3,

regulate the process of cell proliferation, differentiation, apoptosis and

carcinogenesis. PTBPs exhibit oncogenic effects in certain tumors. However,

the role of PTBPs in pan-cancer remains unclear. Our study examined the

clinical significance and mechanism of PTBPs in pan-cancer.

Methods: We compared the expression of PTBPs in paired and unpaired tissue

samples from the Cancer Genome Atlas (TCGA) database. Univariate and

multivariate Cox regression, Kaplan–Meier curves, and time-dependent

receiver operating characteristic (ROC) curves were used to assess the

prognostic significance of PTBPs in pan-cancer. The cBioPortal database

also identified genomic abnormalities in PTBPs. TISIDB, TCGA, and Cellminer

were used to investigate the relationship between PTBP expression and

immune subtypes, immune checkpoint (ICP) genes, tumor mutational

burden (TMB), microsatellite instability (MSI), tumor-infiltrating immune cells,

and chemosensitivity. cBioPortal was used to search for PTBP co-expressing

genes in pan-cancer, and GO and KEGG enrichment analyses were performed

to search for PTBP-related signaling pathways.

Results: PTBPs were shown to be widely upregulated in human tumor tissues.

PTBP1 showed good prognostic value in ACC, KIRP, and LGG; PTBP2 in ACC

and KICH; and PTBP3 in ACC, LGG, and PAAD, with AUC >0.7. PTBPs were

differentially expressed in tumor immune subtypes and had a strong correlation

with tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment

(TME). In addition, PTBP expressions were related to ICP, TMB, and MSI,

suggesting that these three PTBPs may be potential tumor

immunotherapeutic targets and predict the efficacy of immunotherapy.

Enrichment analysis of co-expressed genes of PTBPs showed that they may

be involved in alternative splicing, cell cycle, cellular senescence, and protein

modification.
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Conclusion: PTBPs are involved in themalignant progression of tumors. PTBP1,

PTBP2 and PTBP3 may be potential biomarkers for prognosis and

immunotherapy in pan-cancer and may be novel immunotherapeutic targets.

KEYWORDS

biomarkers, immunotherapy, pan-cancer, polypyrimidine tract-binding proteins,
prognosis

Introduction

Cancer is a life-threatening disease to humans worldwide.

The incidence and mortality rates of various cancers have been

increasing year by year, and lung cancer, colorectal cancer, liver

cancer and gastric cancer have the highest mortality rates (Sung

et al., 2021). The field of precision medicine is advancing through

new developments in technology and medicine, but the present

state of practice is far from ideal (König et al., 2017). Therefore,

the identification of tumor-related diagnostic, prognostic, and

therapeutic biomarkers is a research hotspot.

Polypyrimidine tract-binding proteins (PTBPs) are

important RNA-binding proteins (RBPs) which influence cell

growth and development by regulating mRNA stability,

translation and alternative splicing (Singh et al., 1995;

Mickleburgh et al., 2014). The PTBP family consists of

PTBP1, PTBP2 and PTBP3, and these proteins show

similarities and differences in expression, structure, and

biological function (Oberstrass et al., 2005; Tan et al., 2015).

Studies have shown that up-regulation of PTBP1 is associated

with the poor prognosis and disease progression in non-muscle-

invasive bladder cancer. Therefore, PTBP1 may become a

possible outcome-predictor for bladder cancer (Bielli et al.,

2018). PTBP2 was also shown to stimulate the proliferation,

migration, and metastasis of colorectal cancer cells (Ji et al.,

2014). Previous studies demonstrated that PTBP3 enhances the

invasion and metastasis of breast cancer and regulates the

expression of drug resistance proteins in gastric cancer,

suggesting that PTBP3 may serve as a potential novel

therapeutic target for gastric cancer (Liang et al., 2017; Hou

et al., 2018; Liang et al., 2020). These studies have indicated that

PTBPs may function in cancer. However, research has been

restricted to a small number of tumor types, and the function

of PTBPs in pan-cancer has not been examined.

A growing body of evidence has revealed the close

relationship between the tumor microenvironment (TME)

and the effectiveness of immunotherapy (Donlon et al.,

2021; Newnes et al., 2021). Immune checkpoint (ICP)

inhibitors, including PD-1, CTLA4, LAG3, and TIM-3,

have potent tumor suppressor effects and can interfere with

immune escape; these inhibitors are currently the first-line

treatment options for multiple malignancies (Ribas and

Wolchok, 2018; Tu et al., 2020). Tumor infiltrating

immune cells in TME, such as macrophages, neutrophils,

T cells, Treg cells, T helpers, and NK cells, can affect the

immunological features of malignancies. Unfortunately, this

tumor heterogeneity among individuals influences the efficacy

of clinical immunotherapy (Keenan et al., 2019). Thus far,

precision medicine has not completely manifested in human

tumors. Researchers agree on the need to explore better

treatment targets.

In this study, we evaluated the clinical importance and

prognostic usefulness of PTBPs in pan-cancer. We used the

Cancer Genome Atlas (TCGA) to examine the expression

levels of PTBP1, PTBP2, and PTBP3 in normal and tumor

tissues, and cBioPortal was used to examine the genomic

alterations. We also examined the link between PTBP

expression and tumor immune subtype, tumor-infiltrating

lymphocytes (TILs), ICP, tumor mutational burden (TMB),

microsatellite instability (MSI), and chemosensitivity using

multiple databases. Finally, we constructed a PTBP-interacting

protein network and performed enrichment analysis of co-

expressed genes. Our findings have demonstrated the

prognostic value of PTBPs in pan-cancer. PTBPs may have

excellent potential to be therapeutic targets and predict the

efficacy of immunotherapy. We also predicted the molecular

mechanisms and biological signaling pathways of PTBPs using

databases and experimental data.

Materials and methods

Study overview

A total of 30 tumor types were studied in this article. A

schematic flow chart of our research is shown in Supplementary

Figure S1.

Difference and correlation analysis of
PTBP1, PTBP2, and PTBP3 expression

Gene expression, clinical data, and survival information for

30 different types of tumors were downloaded from TCGA

database (https://portal.gdc.cancer.gov), and the RNA-seq data

in level 3 HTSeq-FPKM format were log2-transformed. The

Mann–Whitney U test was used to analyze the differences in

the expression levels of PTBP1, PTBP2, and PTBP3 in unpaired

tissue samples, and the Wilcoxon signed rank test was used for

paired samples.
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To analyze the expression correlation between PTBP1,

PTBP2, and PTBP3 genes, we excluded the tumor types with

less than three normal samples and then log2-transformed the

ratio of the mean expression of PTBPs in tumors and normal

samples of the remaining 21 tumor types. All details are shown in

Supplementary Table S2.

Copy number alterations and mutations

Copy number alterations and mutations of PTBP genes were

analyzed using the online database cBioPortal (http://www.

cbioportal.org).

Cox regression analysis, Kaplan–Meier
curve, time-dependent receiver operating
characteristic curve and prognostic
nomogram

First, univariate Cox regression analysis was performed on

the expressions of PTBP1, PTBP2, and PTBP3 in pan-cancer.

Factors with p ≤ 0.05 were included in multivariate Cox

regression analysis and displayed in a forest plot. We used

Cox regression models to predict survival and plotted

Kaplan–Meier (KM) curves. The accuracy of the model in

predicting prognosis at a specific time was tested by a time-

dependent receiver operating characteristic (ROC) curve, and the

prognostic value of PTBPs in pan-cancer was determined. Taking

the tumor “ACC” as an example, we constructed prognostic

nomograms using PTBP expressions and pathological stage, and

the accuracy of the nomogram was evaluated by a calibration

curve. We examined overall survival (OS) in our analyses.

Analysis of PTBP expression and tumor
immune subtypes

We analyzed the associations between PTBP expression and

immune subtypes in human cancers using TISIDB, an online

integrated website (http://cis.hku.hk/TISIDB/index.php). p ≤ 0.

05 was considered statistically significant.

Relationship between PTBP expression
and tumor-infiltrating lymphocytes in
pan-cancer

Using the ssGSEA algorithm to calculate the score of tumor-

infiltrated immune cells in TCGA database, we selected 24 TILs

to evaluate the relationship between PTBP expressions and

tumor-infiltrating lymphocytes (TILs) in pan-cancer. The TILs

included activated DCs (aDCs), B cells, CD8 T cells, cytotoxic

cells, DC, eosinophils, immature DCs (iDCs), macrophages, mast

cells, neutrophils, NK CD56bright cells, NK CD56dim cells, NK

cells, plasmacytoid DCs (pDCs), T cells, T helper cells, T central

memory (Tcm), T effector memory (Tem), T follicular helper

(Tfh), T gamma delta (Tgd), Th1 cells, Th17 cells, Th2 cells, and

Tregs (Bindea et al., 2013). Neutrophils and macrophages were

selected for detailed display.

Correlation analysis of PTBP expressions
with immune checkpoint, tumor
mutational burden, and microsatellite
instability

Spearman correlation analysis was performed to examine the

relation of the expression levels of PTBPs and four immune

checkpoint (ICP) genes (PD-1, CTLA4, LAG3, and TIM-3

genes). We used Spearman correlation analysis to determine

the correlation of PTBP expressions with tumor mutational

burden (TMB) and MSI in human cancers. RNA-seq data and

clinical information were obtained from TCGA database. The

TMB data and microsatellite instability (MSI) data were derived

from the studies of Thorsson et al. (2018) and Bonneville et al.

(2017), respectively. p ≤ 0.05 was considered statistically

significant.

Correlation analysis with drug
susceptibility

Transcriptome data (RNA: RNA-seq) and drug sensitivity

data (compound activity: DTP NCI-60) were downloaded from

Cellminer (https://discover.nci.nih.gov/cellminer); these data are

derived from the same 60 samples. Only FDA approved samples

were analyzed. A positive correlation indicated that the higher

the expression of PTBP, the more sensitive that the cells were to

the drugs.

Protein-protein interaction network
analysis

We performed the analysis of Protein-Protein Interaction

(PPI) networks using the STRING website (https://string-db.org/

). The parameters for finding the interacting proteins of PTBPs

were set as follows: minimum required interaction score

[“Medium confidence (0.400)”], meaning of network edges

(“evidence”) and active interaction sources (“experiments”).

The parameters for finding the interaction relationship among

PTBP1, PTBP2 and PTBP3 were set as follows: minimum

required interaction score [“Medium confidence (0.400)”],

meaning of network edges (“evidence”), active interaction

sources (“textmining, experiments, databases, co-expression,
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co-occurrence”), and max number of interactors to show (“no

more than 10 interactors”).

Co-expressed genes of PTBPs in pan-
cancer

We downloaded the dataset “Pan-cancer analysis of whole

genomes (ICGC/TCGA, Nature 2020)” on cBioPortal and

screened several mRNAs co-expressed with PTBPs using the

absolute value of Spearman’s correlation coefficient ≥0.4 and p <
0.05. Data were obtained from 991 samples.

GO enrichment and KEGG pathway
analysis

We performed ID conversion on 926 PTBP1-related mRNAs,

657 PTBP2-related mRNAs, and 874 PTBP3-related mRNAs

obtained in the previous step and analyzed their functions by

GO and KEGG enrichment analysis. After correcting the p-value

by the BH method, items with p. adjust ≤0.05 were selected for

partial visualization.

Statistical analysis

R (version 3.6.3) was used for statistical analysis and

visualization. The following R packages were used in this

study: ggplot2 package [version 3.3.3], ggpubr package

[version 0.1.4] for basic drawing, limma package [version

3.28.14] for differential analysis, survminer package [version

0.4.9], survival package [version 3.2–10] for statistical analysis

of survival data, timeROC package [version 0.4] for ROC curve

analysis, rms package [version 6.2–0] for building nomograms,

impute package [version 1.68.0] for processing the missing

value, GSVA package [version 1.34.0] for immune

infiltration analysis, org. Hs.eg.db package [version 3.10.0]

for id conversion, and the clusterProfiler package [version

3.14.3] for enrichment analysis.

Results

Expression levels of PTBPs in tissues of
pan-cancer

We analyzed the expression levels of PTBPs in tumor

tissues and normal/adjacent tissues from 30 cancer types, and

the abbreviations of tumor types are shown in Supplementary

Table S1. Paired differential expression analysis was then

performed for 18 cancer types with more than three normal

samples. Among PTBPs, PTBP1 showed the highest RNA

expression level in tumor tissues, followed by PTBP3; the

expression level of PTBP2 was the lowest among the three

genes. PTBP1 was upregulated in tumor tissues compared

with normal tissues in BLCA, BRCA, CESC, CHOL, COAD,

ESCA, GBM, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC,

PRAD, READ, STAD, and UCEC. PTBP2 was upregulated

in CHOL, HNSC, KIRC, LIHC, LUAD, and LUSC and

downregulated in BLCA, BRCA, CESC, GBM, KICH,

PCPG, PRAD, READ, THCA, and UCEC. PTBP3 was

upregulated in BLCA, BRCA, CESC, CHOL, COAD,

ESCA, GBM, HNSC, LIHC, LUAD, LUSC, READ, STAD,

and UCEC and downregulated in KICH, KIRC, KIRP, and

THCA (Figures 1A–C). The results of differential expression

analysis for paired samples are shown in Figures 1D–F.

Furthermore, we predicted the structures of these three

proteins based on AlphaFold (Jumper et al., 2021; Varadi

et al., 2022) (Supplementary Figures S2–S4), among which,

PTBP1 and PTBP2 were highly similar in structure.

Expression correlation among PTBP1,
PTBP2, and PTBP3

Expression correlation analysis was performed on

21 cancer types with more than three normal samples. As

shown in the circular heatmap in Figure 1G, PTBP1 and

PTBP3 are expressed similarly, while PTBP2 and PTBP1/3

have the opposite expression in multiple cancers.

Genetic alterations of PTBPs

We next used the public dataset “Pan-cancer analysis of

whole genomes (ICGC/TCGA, Nature 2020)” from cBioPortal

to examine copy number alterations and mutations. The

dataset includes a total of 2565 patients, and information

on these three genes was available in 174 patients. The copy

number alterations and mutation data of PTBPs in pan-cancer

are shown in Figure 2A. PTBP1 was the most altered among

the PTBPs, with the main genetic alteration types being

amplifications and deep deletions. PTBP1 was frequently

altered in colorectal cancer, pancreatic cancer, and ovarian

cancer; PTBP2 was frequently altered in non-small cell lung

cancer, lung cancer, and ovarian cancer; and PTBP3 was

frequently altered in pancreatic cancer, soft tissue sarcoma,

and colorectal cancer (Figures 2B–D).

PTBPs are clinically significant tumor-
associated factors

We next analyzed the relationship between PTBP

expression and stage, grade, or other clinical features in
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pan-cancer and drew violin plots using data from TCGA

(Figure 3). The expression of PTBP has a strong correlation

with the clinical characteristics of various tumors, indicating

that PTBPs are related to the occurrence and development of

tumors. For example, the expression of PTBP3 was

significantly higher in high-grade BLCA than that in low-

grade BLCA (p = 0.002). PTBP2 expression in IDH-mutant

GBM was significantly higher than that in IDH-wildtype GBM

(p < 0.001). The expression of PTBP1 was related to the

pathological stage of ACC: PTBP1 expression in stage IV

ACC was significantly higher than that in stage I ACC (p =

0.004). Multivariate Cox regression analysis showed that the

HR of PTBP1 in ACC was 3.97 (p = 0.01) (Figure 4A). Patients

with high expression of PTBP1 had a lower probability of

survival (Figure 4D), indicating that PTBP1 is an independent

risk factor for ACC and has the potential to be a prognostic

indicator.

Prognostic value of PTBPs in pan-cancer

We downloaded RNA-seq data and corresponding clinical

information of tumor tissues from 30 cancer types in TCGA

database. Univariate and multivariate Cox regression analyses

were performed on the OS data to analyze the hazard ratio

(HR), 95% confidence interval (95%CI), and p value of PTBPs in

pan-cancer (Table 1). Throughmultivariate Cox regression analysis,

we found that PTBP1 was significantly associated with poor

prognosis in ACC, KIRP, LGG, LUAD, MESO, PRAD, and

SKCM (HR > 1, p < 0.05). PTBP2 is a risk factor for ACC,

KICH, LIHC, and UCEC (HR > 1, p < 0.05) and a protective

factor for OV, SKCM, and UCS (HR < 1, p < 0.05). PTBP3 was

significantly associated with poor prognosis in ACC, LGG, PAAD,

and PCPG (HR > 1, p < 0.05), but predicted better prognosis in

KICH and KIRC (HR < 1, p < 0.05). The above-listed tumors were

chosen to make the forest plots (Figures 4A–C).

FIGURE 1
The expression levels of PTBP in pan-cancer tissues and the expression correlation among the three PTBP genes. RNA-seq data were obtained
from the TCGA database. (A–C) Differential expression of PTBPs in unpaired samples of 30 tumor types. (D–F) Differential expression of PTBPs in
paired samples of 30 tumor types (*p < 0.05; **p < 0.01; ***p < 0.001; ns: not significant). (G)Correlation analysis of the expressions of PTBP1, PTBP2,
and PTBP3 in various tumor types.
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FIGURE 2
Characterization of genetic alterations in PTBPs. (A) General profile of genetic alterations in PTBPs in the pan-cancer dataset from cBioPortal.
(B–D) Genetic alterations of PTBPs in specific tumor types, in descending order of alteration frequency.

FIGURE 3
Expression levels of PTBPs in clinical parameters of interest (*p < 0.05; **p < 0.01; ***p < 0.001; ns: not significant).
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FIGURE 4
Evaluation of the prognostic value of PTBPs in pan-cancer. The multivariate Cox regression analysis results of (A) PTBP1, (B) PTBP2, and (C)
PTBP3were visualized and presented as forest plots (*p < 0.05; **p < 0.01; ***p < 0.001). (D–F)OS-KM survival curves of PTBPs in multiple cancers.
(G–I) Time-dependent ROC curves of PTBPs to evaluate the utility of PTBPs as prognostic markers in selected tumor types. (J–O) Prognostic
nomograms of PTBP expression combined with pathological stage in ACC. (M–O) The calibration curves for nomograms.
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TABLE 1 Univariate and multivariate Cox regression analysis of PTBP expressions and overall survival in pan-cancer.

Cancer
(OS)

n PTBP1 univariate
analysis

PTBP1 multivariate
analysis

PTBP2 univariate
analysis

PTBP2 multivariate
analysis

PTBP3 univariate
analysis

PTBP3 multivariate
analysis

HR (95%CI) p
value

HR (95%CI) p
value

HR (95%CI) p
value

HR (95%CI) p
value

HR
(95%CI)

p
value

HR
(95%CI)

p
value

ACC 79 6.748
(2.433–18.713)

<0.001 *** 3.970
(1.384–11.390)

0.010 ** 4.346
(1.859–10.159)

<0.001 *** 3.089
(1.226–7.782)

0.017 * 4.343
(2.376–7.940)

<0.001 *** 2.723
(1.387–5.344)

0.004 **

BLCA 413 0.849
(0.551–1.308)

0.457 0.828
(0.554–1.237)

0.357 0.892
(0.711–1.120)

0.325

BRCA 1082 0.911
(0.532–1.560)

0.733 0.787
(0.529–1.171)

0.238 1.226
(0.924–1.628)

0.158

CESC 306 1.139
(0.475–2.732)

0.771 0.640
(0.338–1.215)

0.173 1.012
(0.641–1.598)

0.96

CHOL 36 0.450
(0.066–3.089)

0.416 0.711
(0.269–1.876)

0.491 0.464
(0.163–1.322)

0.151

COAD 477 1.239
(0.747–2.056)

0.406 0.906
(0.537–1.529)

0.711 0.890
(0.682–1.162)

0.392

ESCA 162 1.121
(0.496–2.536)

0.783 0.931
(0.514–1.687)

0.814 1.208
(0.729–2.001)

0.463

GBM 168 1.061
(0.765–1.472)

0.723 0.684
(0.468–1.002)

0.051 1.012
(0.672–1.523)

0.954

HNSC 501 0.988
(0.670–1.456)

0.950 0.640
(0.406–1.007)

0.054 1.054
(0.823–1.350)

0.675

KICH 64 38.073
(2.640–549.096)

0.008 ** 4.222
(0.280–63.719)

0.298 ns 44.174
(6.571–296.980)

<0.001 *** 19.281
(1.913–194.340)

0.012 * 0.425
(0.191–0.945)

0.036 * 0.429
(0.187–0.985)

0.046 *

KIRC 539 1.267
(0.769–2.086)

0.353 1.232
(0.832–1.825)

0.298 0.578
(0.434–0.770)

<0.001 *** 0.578
(0.434–0.770)

<0.001 ***

KIRP 288 4.002
(1.391–11.511)

0.010 ** 4.002
(1.391–11.511)

0.010 ** 0.692
(0.342–1.402)

0.306 1.318
(0.837–2.076)

0.233

LGG 527 2.424
(1.802–3.262)

<0.001 *** 1.801
(1.260–2.574)

0.001 *** 0.684
(0.442–1.060)

0.089 2.702
(1.900–3.844)

<0.001 *** 1.717
(1.134–2.599)

0.011 *

LIHC 373 1.850
(1.256–2.725)

0.002 ** 1.663
(0.994–2.782)

0.053 ns 2.087
(1.370–3.179)

<0.001 *** 1.792
(1.067–3.010)

0.027 * 1.382
(1.068–1.789)

0.014 * 0.909
(0.617–1.338)

0.627 ns

LUAD 526 1.866
(1.293–2.693)

<0.001 *** 1.866
(1.293–2.693)

<0.001 *** 0.792
(0.586–1.072)

0.131 1.184
(0.923–1.517)

0.183

LUSC 496 1.030
(0.728–1.456)

0.868 0.934
(0.666–1.311)

0.695 1.238
(0.944–1.625)

0.123

MESO 85 3.760
(1.568–9.015)

0.003 ** 3.760
(1.568–9.015)

0.003 ** 0.964
(0.448–2.072)

0.925 1.377
(0.916–2.070)

0.124

OV 377 0.723 0.033 * 0.033 * 0.205

(Continued on following page)
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TABLE 1 (Continued) Univariate and multivariate Cox regression analysis of PTBP expressions and overall survival in pan-cancer.

Cancer
(OS)

n PTBP1 univariate
analysis

PTBP1 multivariate
analysis

PTBP2 univariate
analysis

PTBP2 multivariate
analysis

PTBP3 univariate
analysis

PTBP3 multivariate
analysis

HR (95%CI) p
value

HR (95%CI) p
value

HR (95%CI) p
value

HR (95%CI) p
value

HR
(95%CI)

p
value

HR
(95%CI)

p
value

0.948
(0.707–1.272)

0.811
(0.670–0.983)

0.811
(0.670–0.983)

1.160
(0.922–1.458)

PAAD 178 1.082
(0.561–2.087)

0.814 0.600
(0.326–1.106)

0.102 2.101
(1.369–3.223)

<0.001 *** 2.101
(1.369–3.223)

<0.001 ***

PCPG 183 7.151
(0.269–190.171)

0.240 0.053
(0.001–2.006)

0.113 3.819
(1.074–13.581)

0.038 * 3.819
(1.074–13.581)

0.038 *

PRAD 499 23.975
(2.154–266.880)

0.010 ** 16.775
(1.486–189.408)

0.023 * 5.099
(0.489–53.212)

0.173 3.753
(0.941–14.970)

0.061

READ 166 0.448
(0.162–1.238)

0.122 1.281
(0.287–5.718)

0.745 0.629
(0.335–1.180)

0.149

SARC 263 2.586
(1.552–4.310)

<0.001 *** 3.207
(0.635–16.210)

0.159 ns 0.918
(0.690–1.220)

0.554 1.278
(0.905–1.806)

0.163

SKCM 456 1.491
(1.048–2.122)

0.026 * 1.456
(1.020–2.081)

0.039 * 0.685
(0.494–0.950)

0.023 * 0.703
(0.508–0.974)

0.034 * 0.892
(0.722–1.103)

0.292

STAD 370 0.742
(0.532–1.036)

0.079 1.193
(0.838–1.699)

0.326 0.856
(0.663–1.105)

0.232

THCA 510 1.098
(0.088–13.772)

0.942 2.768
(0.717–10.688)

0.140 1.960
(0.615–6.249)

0.255

TGCT 139 0.476
(0.031–7.289)

0.594 0.364
(0.036–3.691)

0.393 3.799
(0.587–24.563)

0.161

UCEC 551 0.716
(0.425–1.206)

0.209 1.588
(1.137–2.220)

0.007 ** 1.588
(1.137–2.220)

0.007 ** 1.008
(0.777–1.307)

0.955

UCS 56 1.653
(0.665–4.110)

0.280 0.337
(0.156–0.728)

0.006 ** 0.337
(0.156–0.728)

0.006 ** 1.335
(0.786–2.268)

0.285

UVM 80 1.319
(0.341–5.098)

0.688 0.891
(0.356–2.231)

0.805 1.822
(0.967–3.434)

0.064
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We divided samples into high and low expression groups

using the median value of PTBP expression, predicted survival

possibility, and plotted OS-KM curves. Except for PRAD (p >
0.05), the survival time of patients with ACC, KIRP, LGG, LUAD,

MESO, and SKCM was shorter when PTBP1 was highly

expressed, with statistical significance (HR > 1, p ≤ 0.05)

(Figure 4D). Patients with ACC, KICH, and LIHC with high

PTBP2 expression had a shorter OS (HR > 1, p ≤ 0.05), while

patients with UCS with high PTBP2 expression had a longer

survival time (HR = 0.32, p = 0.003). No significant differences in

OS were observed in OV, SKCM, and UCEC (p > 0.05)

(Figure 4E). When PTBP3 was highly expressed, patients with

ACC, LGG, and PAAD had lower survival probability and poorer

prognosis (HR > 1, p ≤ 0.05), while patients with KIRC had a

longer OS and better prognosis (HR = 0.55, p < 0.001); there was

no significant differences observed in patients with KICH and

PCPG (p > 0.05) (Figure 4F).

By comprehensively analyzing the results of multivariate Cox

regression and the OS-KM curve, we concluded that PTBP1 is a

risk factor for ACC, KIRP, LGG, LUAD, MESO, and SKCM, and

high expression of PTBP1 predicts a shorter survival time. PTBP2

is a risk factor in ACC, KICH, and LIHC and a protective factor

in UCS. PTBP3 is a risk factor for ACC, LGG, and PAAD but a

protective factor for KIRC.

Next, we assessed the prognostic value of the three genes in

the above tumors. We analyzed the predictive ability of PTBP

genes for prognosis at 1, 3, and 5 years by time-dependent

ROC curves to confirm the accuracy of these candidate

markers (Supplementary Table S3). Our results indicated

that PTBP1 may serve as a prognostic biomarker for ACC,

KIRP, and LGG at the three time points according to the

criterion of AUC >0.7 (Figure 4G). PTBP2 showed good

prognostic value in ACC and KICH (Figure 4H), and

PTBP3 showed good prognostic value in ACC, LGG, and

PAAD (Figure 4I), indicating these PTBPs may function as

prognostic biomarkers in these tumors.

Our results showed that all three PTBPs were associated

with poor prognosis in ACC, and therefore we determined the

prognostic nomogram of ACC. Pathologic stage and PTBP

expression were included in Cox regression analysis to

establish prognostic nomograms. A vertical line was drawn

to connect corresponding points and calculate the total score

to estimate the 3-, 5-, and 8-years survival probability of ACC

patients (Figures 4J–L). Calibration curves used to observe the

predictive effect of the nomogram are shown in

Figures 4M–O.

The expression of PTBPs in tumor immune
subtypes

In 2018, Scientists performed an extensive immune genomic

analysis of 33 cancer types (Thorsson et al., 2018). Six immune

subtypes, including C1 (wound healing), C2 (IFN-gamma

dominant), C3 (inflammatory), C4 (lymphocyte depleted), C5

(immunologically quiet), and C6 (TGF-β dominant), were

identified by macrophage and lymphocyte markers, the ratio

of Th1 cells to Th2 cells, and immune regulatory genes. This

tumor heterogeneity leads to suboptimal outcomes of

immunotherapy in the clinic.

We investigated the expression levels of PTBPs in

different tumor immune subtypes by TISIDB. The results

showed that PTBP1 expression was associated with tumor

immune subtypes of BLCA, BRCA, COAD, ESCA, GBM,

KIRC, KIRP, LGG, LIHC, LUAD, LUSC, PRAD, SARC,

SKCM, STAD, TGCT, and UCEC (Figure 5A). PTBP2

expression correlated with tumor immune subtypes of

BLCA, BRCA, LGG, LUAD, PAAD, PCPG, PRAD, READ,

SARC, SKCM, STAD, TGCT, THCA, and UCEC (Figure 5B).

PTBP3 expression correlated with tumor immune subtypes

of BLCA, BRCA, ESCA, KIRC, KIRP, LGG, LIHC, LUAD,

LUSC, OV, SARC, SKCM, STAD, TGCT, and UCEC

(Figure 5C). The expression of PTBPs in immune subtypes

of other cancers is shown in Supplementary Figures S5–S7.

PTBP expression and immune infiltrating
cells in the tumor microenvironment

The Spearman correlations between PTBPs and TILs in

various tumor types were further investigated. We found

strong positive correlations of PTBP1 with Th2 cells

(Figure 6A), PTBP2 with T helper cells and Tcm (Figure 6B),

and PTBP3 with T helper cells, Tcm, and Th2 cells (Figure 6C) in

most tumor types. Overall, the expression of PTBPs was highly

correlated with the number of TILs in the TME. These results

suggest that PTBPs may have a regulatory effect on the tumor

microenvironment (TME) (Geng et al., 2021).

We also examined PTBP expression with macrophages

and neutrophils (Figures 6D–F). Most tumor types had an

infiltration of macrophages and neutrophils, and this was

inversely linked with the expression of PTBP1 and PTBP2.

However, in many tumor types, PTBP3 levels were favorably

linked with macrophage and neutrophil counts. These details

are shown in Supplementary Table S4.

Correlation analysis of PTBPs and immune
checkpoint

Studies have shown that the immune checkpoint (ICP) genes

have a great influence on the efficacy of immunotherapy. PD-1,

CTLA4, LAG3, and TIM-3 are four ICPs that are frequently

examined in the clinic, and inhibitors targeting these factors have

shown potent tumor-killing effects in a variety of tumors (Sun et al.,

2021; Yang et al., 2021; Gaikwad et al., 2022; Tian et al., 2022). To
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FIGURE 5
The relationship between PTBP expression and tumor immune subtype. (A) Expression levels of PTBP1 in immune subtypes. (B) Expression
levels of PTBP2 in immune subtypes. (C) Expression levels of PTBP3 in immune subtypes. These results are statistically significant.
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explore the potential of PTBPs in immunotherapy, we analyzed the

relationship between PTBPs and four ICP genes in pan-cancer

(Supplementary Table S5). In the 30 tumor types, PTBP1

expression had the most prevalent positive correlation with LAG3

and PD-1 expression (in Figure 7A). Similarly, PTBP2 was generally

positively correlated with CTLA4 and PTBP3 with CTLA4 and TIM-

3. These results suggest that PTBPsmay serve as potential targets for

immunotherapy.

PTBP expression correlates with tumor
mutational burden and microsatellite
instability and can predict immunotherapy
efficacy

TMB and MSI are demonstrated biomarkers that predict the

efficacy of immunotherapy, with higher TMB or MSI indicating a

better response to ICP inhibitors (Chan et al., 2019; Diao et al.,

2021). Using the criteria of |R| ≥ 0.3 and p < 0.05, the radar chart

showed that the expression of PTBP1 in ACC, LGG, MESO, and

STAD was positively correlated with TMB. PTBP2 expression was

negatively correlated with TMB in UVM. PTBP3 expression was

positively correlated with TMB in ACC and STAD (Figure 7B).

In KICH and LUSC, PTBP1 expression associated favorably

with MSI, but it correlated negatively in READ. PTBP2 expression

was positively correlated with MSI in READ (Figure 7C). The

detailed expression data were presented in Supplementary Table

S6, and the correlations were shown in Supplementary Table S7.

These evidences supported the finding that PTBPs may predict

response to immunotherapy and play a role in tumor immunity.

Correlation analysis of PTBPs and
chemical drug sensitivity

We next analyzed the Pearson correlation of PTBP

expression with the sensitivity of 263 FDA-approved

drugs in 60 tumor cell lines using the Cellminer database

(Figures 8A–C) and obtained the top six drugs with the

strongest correlation with PTBPs. For example, the

expression of PTBP1 was proportional to the sensitivity of

cells to gemcitabine (R = 0.409, p = 0.001): the higher the

expression of PTBP1, the more sensitive the cell was to

gemcitabine. Therefore, the expression of PTBPs may be a

predictor of tumor response to chemotherapeutic drugs.

The analysis of protein-protein interaction

We mapped the PPI networks of PTBP1, PTBP2, and PTBP3

(Figure 9A) respectively and visualized the interaction among these

three molecules using STRING (Figure 9B). It showed that

PTBP1 was closely related to heterogeneous nuclear

ribonucleoproteins (hnRNPs), YBX1, and SFPQ (Meissner et al.,

FIGURE 6
Correlation of PTBP expression with tumor-infiltrating lymphocytes in the tumor microenvironment in pan-cancer. (A–C) Heatmap of the
correlation of PTBP expression with 24 TILs in pan-cancer. (D–F) The correlation of PTBP expression with macrophages and neutrophils in various
tumors is shown in detail in lollipop plots (*p < 0.05; **p < 0.01).
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2000; King et al., 2014). There are four relationships between

PTBP1 and PTBP2: experimentally determined interactions,

databases recorded interactions, protein homology, and text

mining. However, PTBP3 did not seem to interact with

PTBP1 and PTBP2 (Figure 9B).

Functional enrichment analysis of PTBP-
related genes

Spearman correlation analysis on the pan-cancer dataset from

cBioPortal yielded 926 mRNAs co-expressed with PTBP1,

657 mRNAs co-expressed with PTBP2, and 874 mRNAs co-

expressed with PTBP3 (|R| ≥ 0.4, p < 0.05) (Supplementary

Table S8). We further analyzed PTBP-related mRNAs using GO

(including BP, CC, and MF) and KEGG enrichment analyses

(Figures 9C–E). The results revealed that PTBP1 may function

through “Cell cycle,” “Human T-cell leukemia virus one infection,”

“RNA transport,” “Spliceosome,” “DNA replication,” “Cellular

senescence” and “Apoptosis.” PTBP2 may be associated with

“Herpes simplex virus one infection” and “Spliceosome”

pathways, while PTBP3 may affect tumor progression through

“Amyotrophic lateral sclerosis,” “Viral carcinogenesis,” “Cell

cycle” and “Homologous recombination” pathways

FIGURE 7
Spearman correlation analysis of PTBP expression with immune checkpoint genes, tumor mutational burden and microsatellite instability in
pan-cancer. (A) Correlation of PTBP expression with ICPs (PD-1, CTLA4, LAG3 and TIM-3) in pan-cancer (*p < 0.05; **p < 0.01). (B) Correlation of
PTBP expression with TMB. (C) Correlation of PTBP expression with MSI. p values are marked in the figures.
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FIGURE 8
Pearson correlation of PTBP expression with drug sensitivity scores in various tumor cell lines in Cellminer. The top six drugs with the largest
absolute value of the correlation coefficient are displayed. (A) Correlation of PTBP1 with drug sensitivity. (B) Correlation of PTBP2 with drug
sensitivity. (C) Correlation of PTBP3 with drug sensitivity. The correlation coefficient and p value are marked in the figure.

FIGURE 9
Protein-protein interaction networks and functional enrichment analysis of PTBPs in pan-cancer. (A) Experimentally validated interacting
proteins of PTBPs using STRING. (B) The interaction relationship among the three protein molecules. Line colors in the legend indicate different
relationships. (C–E) GO enrichment and KEGG pathway analysis results for co-expressed mRNAs of PTBPs.
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(Supplementary Table S9). Together, the results above have

established a novel theoretical framework for the investigation of

PTBP regulation mechanism in malignancies.

Discussion

PTBPs are RNA-binding proteins that are involved in

alternative splicing, mRNA stability, and translation. The PTBP

family includes PTBP1, PTBP2 and PTBP3. PTBP1 can be expressed

in almost all types of cells; PTBP2 is only expressed in the

neurological system while PTBP3 is found mostly in immune

cells (Spellman et al., 2007). Among the PTBP family members,

PTBP1 is most frequently linked with cancer, followed by PTBP3. It

is reported that PTBP1 promotes lung cancer metastasis by

regulating the alternative splicing of Mena mRNA (Li et al.,

2019). PTBP3 is upregulated in breast cancer and regulates ZEB1

mRNA stability to promote epithelial-mesenchymal transition in

BRCA (Hou et al., 2018; Liang et al., 2020). Most research has

focused on the function of PTBPs in tumor cells, but little attention

has been paid to their interaction with immune cells in the TME

(Sasanuma et al., 2019; Geng et al., 2021). In addition, reports of

PTBPs in uncommon tumors are rare. Thus, we investigated the

expression, function, and immune characterization of PTBP1,

PTBP2, and PTBP3 in pan-cancer.

We first performed differentiation analysis and correlation

analysis on the expression of the PTBP1, PTBP2, and PTBP3

genes in 30 tumor types using TCGA. The results showed that in

most tumor types, the expression levels of PTBP1 and PTBP3 in

tumor tissues were significantly higher than that in non-tumor

tissues. In contrast, the expression level of PTBP2 was lower in

tumor tissues compared with that in normal tissues.

Interestingly, when we analyzed the expression correlation of

PTBPs, we found that PTBP1/3 appeared to have opposite

expression trends to PTBP2 in pan-cancer. Our results were

consistent with other scholars’ findings. Previous studies

suggested that PTBP1 is a repressor of PTBP2 and that there

was a “switch” between the two molecules (Boutz et al., 2007;

Spellman et al., 2007). SON may be an on-off regulator of the

expression of PTBP1 and PTBP2 in GBM (Kim et al., 2021), and

PTBP2 compensates for the absence of Ptbp1 during B cell

development in mice (Monzón-Casanova et al., 2020).

Furthermore, we found a co-expression trend between PTBP1

and PTBP3 which deserved to be further investigated.

It has been reported in the literature that PTBP1 can be used

as a biomarker for poor prognosis in bladder cancer (Bielli et al.,

2018), and PTBP3 as a therapeutic target for gastric cancer (Liang

et al., 2017). Here we further comprehensively explored the

association of PTBP expression with prognosis in pan-cancer.

Through multivariate Cox regression analysis and OS-KM

survival curves, we found that patients with ACC, LGG, and

PAAD had poor prognosis when PTBP3 was highly expressed,

but patients with KIRC had better prognosis. Given that the

expression of PTBP3 in KIRC tumor tissues was significantly

lower than that in control tissues, PTBP3 may be a tumor

suppressor molecule in KIRC. Thus, more research is required

to examine the function and molecular mechanism of PTBP3 in

KIRC. Time-dependent ROC curves were used to verify the

prognostic value of PTBPs in pan-cancer. Compared with the

ordinary ROC curve, the time-dependent ROC curve detects the

accuracy of candidate markers at specified times. We finally

identified PTBP1 in ACC, KIRP, and LGG; PTBP2 in ACC and

KICH; and PTBP3 in ACC, LGG, and PAAD as potential

prognostic biomarkers that may be involved in tumor

progression in these tumor types.

We then analyzed the expression of PTBPs in different immune

subtypes. The results indicated that PTBPs might participate in

immune regulation. The expression of PTBPs was significantly

different across multiple immune subtypes and strongly correlated

with the number of TILs in the TME. Remarkably, PTBP1 on

Th2 cells, PTBP2 on T helper cells and Tcm, and PTBP3 on T

helper cells, Tcm, and Th2 cells may have broad positive regulatory

effects in pan-cancer. PTBPs are also strongly associated with

macrophages and neutrophils in the TME. For example, PTBP3

expression was positively correlated with macrophages and

neutrophils in GBM, LGG, PRAD, SARC, MESO, KIRC, OV,

and THCA. These results demonstrated the important role of

PTBPs in tumor immunity and the tumor microenvironment.

The immune microenvironment in tumor tissues leads to

tumor heterogeneity, which influences the clinical efficacy of

anticancer drugs. Immune checkpoint inhibitors are used as

treatment options for cancer patients. We found that PTBP

expression showed a strong correlation with PD-1, CTLA4,

LAG3, or TIM-3 in pan-cancer. Therefore, PTBPs may be a

class of potential therapeutic targets, providing a new direction

for combined targeted immunotherapy in the future.

We also analyzed the correlation of PTBPs with TMB and

MSI. Tumor cells with high TMB usually have higher levels of

neoantigens, which help the immune system to recognize the

tumor and activate the anti-tumor effect of T cells. Therefore,

higher TMB generally indicates better outcome of

immunotherapy, and TMB is highly correlated with the

efficacy of PD-1/PD-L1 inhibitors (Yarchoan et al., 2017;

Chan et al., 2019). MSI works similarly. TMB and MSI have

become predictive markers of tumor immunotherapy efficacy in

recent years. The correlation of PTBP expression with TMB and

MSI in pan-cancer suggests that PTBPs may become novel

biomarkers for predicting patients’ response to immunotherapy.

We alsomade other notable findings. Gemcitabine is an effective

anti-tumor drug for NSCLC (stage III and IV), OV, BRCA, BLCA,

and other malignant tumors (Ferrazzi and Stievano, 2006; Mornex

and Girard, 2006), and 5-fluorodeoxyuridine is a common

chemotherapeutic drug for BRCA, STAD, READ, and BLCA

(Koizumi et al., 1993). PTBP1 expression was proportional to the

sensitivity of cells to gemcitabine (R = 0.409, p = 0.001) and 5-

fluorodeoxyuridine (R = 0.407, p = 0.001). This result indicates that
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the expression of PTBPs may predict the therapeutic effect of

chemotherapeutic drugs.

When we investigated “interacting proteins”, we found that all

PTBP family proteins can tightly interacts with hnRNPs andELAVL1

(also known as HuR), which was verified by co-immunoprecipitation

or reported in literature (Hegele et al., 2012). The presence of such

protein complexes may increase their effect. For example, PTBP1 can

interact with HuR and jointly upregulate the translation of HIF-1α

mRNA in human cervical carcinomaHeLa cells (Galbán et al., 2008).

In the enrichment analysis of co-expressed genes, we inferred

that PTBPs may function in the cell cycle, RNA splicing and RNA

localization. PTBP1 and PTBP3 were enriched in telomere-related

signaling pathways, suggesting that they may be involved in cellular

senescence pathways. Scientists found that PTBP1 can regulate

alternative splicing of genes involved in intracellular trafficking to

control the senescence-associated secretory phenotype (SASP).

Inhibition of PTBP1 blocks the tumor-promoting effect of SASP

and impair immune surveillance (Georgilis et al., 2018). Sayed et al.

also found that knockdown of PTBP1 in cancer cells reduced hTERT

full-length splicing and telomerase activity (Sayed et al., 2019). The

important role of PTBP1 and PTBP3 in cellular senescence and

immunity should be further explored.

This study has several limitations. First, our conclusions are

limited by sequencing technologies and analytical methodologies

from the database, and the data may be lacking in granularity and

precision. This has become a pervasive problem in bioinformatics

research. Second, whether PTBPs can be used as biomarkers for

prognosis and immunotherapy requires validation in more clinical

samples. At present, there is no immune-targeted drug against

PTBPs, so it is not possible to clinically verify the effect of these

targets. Third, the involvement of PTBPs in immune regulation and

cellular senescence need to be supported by in vitro and in vivo

experimental evidence.

Conclusion

This study comprehensively and systematically analyzed the

prognostic value, genetic variation, and signaling pathways of

PTBP1, PTBP2, and PTBP3 and the correlation of PTBP

expression with TILs, ICP, TMB, MSI, and drug sensitivity from

a pan-cancer perspective. Our results indicate that PTBPs may be

promising prognostic biomarkers and predict the response to

immunotherapy in pan-cancer. We found that PTBPs are closely

related to tumor progression and cell senescence, which provides a

theoretical reference for subsequent research.
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