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In the era of “big data,” coping with a society that is in constant development, the discovery of 
“new” scientific and technological knowledge must (i) progress at an incredibly fast pace, (ii) target 
a wide audience, and (iii) have a practical impact in the society by addressing relevant challenges. 
The health sciences are naturally a priority area of research, mostly because of the impact they have 
on augmenting human life expectancy and improving well-being, by developing advanced tailored 
approaches to address patient-specific needs. As an example, during the past decade, the wide 
amount of data gathered from the human genome project, along with the improved knowledge of 
genome regulatory mechanisms, brought about the development of synthetic biology and genomic 
editing techniques (Singh et al., 2017). This massive advancement has been contributing not only 
to a better definition of disease mechanisms, but, importantly, also to the development of personal-
ized therapeutic approaches. Indeed, the so-called “precision medicine” represents one of the main 
themes addressed by the European Commission health program, being featured in several distinct 
topics in the Horizon 2020 research and innovation program.1

In this context of incessant development of tools and improvements in the biomedical field, 
tissue engineering is playing a leading role as a multidisciplinary research branch. The ambition 
to cope with the complexity of human tissues, aimed at regenerating those hampered by diseases 
and age-related degeneration, has been the major goal of tissue engineering, which emerged in the 
1980s, as a frontier scientific field with an enormous potential. An overwhelming amount of tissue 
engineering strategies have been developed since then, aimed at regenerating bone, cartilage, skin, 
and many other tissues and organs, in the attempt to bridge structure (gross anatomy and histological 
architecture) with the corresponding function (physiology and cell biology), as a paramount chal-
lenge to be solved (Campana et al., 2014). On this regard, several efforts have been made worldwide 
to develop synthetic or semisynthetic constructs that could mimic native tissues.

Most of the human native tissues are made of complex three-dimensional (3D) structures, 
presenting different shapes, architectures, specific cell types, and extracellular matrix composi-
tions. Furthermore, these tissues are extremely plastic and not static, having unique functions 
suitable to dynamic changes in tissue conformations. Thus, the conventional approaches of creat-
ing static 3D structures are not sufficient for its usage in biomedicine and the achievement of 3D 
complex organ structures is far from being tangible (Woodfield et al., 2017). Implants for tissue 
engineering strongly depend on the (bio)materials and the manufacturing process. The conven-
tional manufacturing processes do not present a properly control over pore size, geometry, and 
spatial distribution, not guaranteeing pore interconnectivity; which are key features for successful 
tissue regeneration (Hollister, 2005). Therefore, additive manufacturing (also known as 3D print-
ing) techniques have gained an increased importance for the scientific community overlapping 
the referred drawbacks. The usage of computer-aided processes for patterning and assembling 

1 http://ec.europa.eu/research/.
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living and non-living materials with a prescribed 2D or 3D 
organization promoted bioprinting to produce bioengineered 
structures serving in regenerative medicine, pharmacokinetic, 
and basic cell biology studies (Guillemot et  al., 2010). Bioink-
based 3D bioprinting technologies are being employed to 
engineer experimental models of tissue and organ substitutes  
(Ji and Guvendiren, 2017). Some examples are full-thickness skin 
models, retaining all characteristics of human skin, and allow-
ing to restore even large defects (Cubo et al., 2016; Pedde et al., 
2017; Pourchet et al., 2017); vascular structures, such as vessels 
and heart valves (Datta et  al., 2017); bone and osteochondral 
constructs (Yang et al., 2017); mini-liver with partial functional 
properties (Zhong et  al., 2016); neural structures, among a 
growing number of other biological structures (Cui et al., 2017;  
Li et al., 2016a).

Nevertheless, 3D bioprinting has been focused on the deve-
lopment of constructs that lack a crucial element for appropri-
ately mimicking native live tissues: the ability to acutely change 
according to functional status and changes in the environment 
(Khademhosseini and Langer, 2016). That is why leading research 
groups have recently proposed the four-dimensional (4D) bio-
printing as an enhanced approach for tissue engineering and 
regenerative medicine. 4D bioprinting aims to include the ability 
of promoting dynamic changes of the structure, improving the 
functional response of the construct. It requires stimuli–respon-
sive biomaterials that should be developed, suitable to be utilized 
in optimized bioprinting equipment, leading to constructs that 
are biologically active and can change their physical–chemical 
properties using the designed stimulation.

These features are vital to maintain long-term function of 
biosynthetic constructs after implantation, maintaining cellu-
lar homeostasis, self-renew, respond to tissue mechanical and 
chemical stimuli, and integrate with host cells and tissues. To 
this aim, the implementation of living cells, possibly of dif-
ferent lineages, enable to mimic the niche microenvironment  
(Cui et  al., 2017). On this regard, somatic multipotent stromal 
cells, isolated from different postnatal organs and tissues (includ-
ing bone marrow, adipose tissue, amniotic membrane, among 
others), represent a promising source, as they grant relatively 
high viability and yield, limited harvesting-associated morbidity, 
robustness and mechanical resilience, limited immunogenicity, 
and extended trophic properties. Most of their functional features 
are believed to reside in their paracrine functions: once implanted 
they release bioactive molecules such as angiogenic factors and 
immunomodulatory cytokines that are actively involved in tissue 
regeneration (Barba et al., 2017; Silini et al., 2017). By offering 
the potentiality to generate synthetic tissues and organ subunits 
in vitro relying on adult stem cells, bioprinting may allow over-
coming the ethical burden associated with the development of 
either xenogeneic or embryo-derived engineered constructs to 
restore damaged human organs (Pedersen et al., 2012).

Still, several challenges arise. For instance, bioinks must be 
optimized to achieve successful bioprinting and processes must 
be mechanically designed to obtain robust shape-changing capa-
bility of the constructs (Li et al., 2016b). Additionally, we consider 
that specific bioreactors for complex tissue function maturation 
need to be invented and evaluation procedures should be defined 

to examine the functionality response. Only gathering these four 
issues, we will be able to design and produce reliable structures 
able to experience dynamic changes according to the changes 
provoked by the environment. Indeed, despite bioprinting being 
a revolutionary technology aimed at building living tissues and 
organs with definite cytoarchitectonics, it has not yet been trans-
lated efficiently into the clinical setting. This is mainly due to cur-
rent limitations in building human-scale functional constructs, 
facing vascularization, and dynamic homeostatic regulations as 
the main operative challenges (Ji and Guvendiren, 2017; Mir and 
Nakamura, 2017; Ravnic et al., 2017).

Some research groups have been studying the 4D potential, 
mainly by the first mentioned challenge: the biomaterial. Develop-
ing “smart” biomaterials (also referred as “intelligent,” “stimuli–
responsive,” “stimuli-sensitive,” or “environmentally sensitive”) 
to allow the dynamic changes of the structure (Furth et al., 2007)  
is critical for enhanced tissue engineering approaches (Gao 
et al., 2016). Optimally, they should have self-adaptability, self-
sensing, shape-memory, responsiveness, multifunctionally, self-
repair, and decision making. Shape memory polymers (SMPs) 
are a class of smart materials able to “memorize” a permanent 
shape through physical or chemical crosslinking. This allows 
them to be deformed and fixed temporarily by vitrification or 
crystallization of the polymer chain and then returned to the 
permanent shape by the application of an external stimulus  
(e.g., heat) (Liu et al., 2007).

Recent advances in SMP have enabled the study of program-
mable, shape-changing, cytocompatible scaffolds (Tseng et  al., 
2016), mostly for bone tissue engineering and using conventional 
manufacturing processes. For instance, porous foams triggered 
to recover at body temperature exhibited two-way reversible 
shape memory under the bias of a compressive load (Baker et al., 
2013) and have shown to be cytocompatible with osteoblast-like 
cells (Rychter et  al., 2015). Furthermore, SMP scaffolds have 
exhibited excellent bioactivity in  vitro, supporting osteoblast 
adhesion, proliferation, and osteogenic gene expression (Zhang 
et al., 2014) and promising results to be used as a synthetic bone 
substitute in an in  vivo non-load bearing critical-size defect 
model (Liu et al., 2014). Additionally, porous fibrous scaffolds by 
electrospinning have also been studied. Recently, even after being 
processed into fibrous structures, the copolymers maintained 
their shape memory properties, and all the fibers exhibited excel-
lent shape recovery ratios (Kai et al., 2016). The biological assays 
demonstrated osteoblast proliferation, functionally enhanced 
biomineralization-relevant alkaline phosphatase expression and 
mineral deposition, corroborating previous studies using the 
same manufacturing technique (Bao et al., 2014). Nevertheless, 
the osteogenic differentiation capacity of stem cells resident in 
shape memory scaffolds following the programmed shape change 
remains unclear (Tseng et al., 2016).

The detailed knowledge of the biological events involved in  
tissue homeostasis and related disorders would be crucial to 
achieve a successful structural and functional regeneration. 
Specifically, we believe that the accurate characterization of stem 
cell niches and their local environment (Lattanzi et  al., 2015),  
including the molecular networks orchestrating their proliferation- 
differentiation switch, could help tailoring bioprinting strategies 
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to improve self-regeneration through the implementation of 
molecular targeted approaches. Therefore, the most promising 
approach is to optimize the cell-constructs interactions, becom-
ing feasible to explore the usage of computer modeling to examine 
the further responses.
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