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Members of the genus Bifidobacterium, of which the majority have been isolated
as gut commensals, are Gram-positive, non-motile, saccharolytic, non-sporulating,
anaerobic bacteria. Many bifidobacterial strains are considered probiotic and therefore
are thought to bestow health benefits upon their host. Bifidobacteria are highly abundant
among the gut microbiota of healthy, full term, breast-fed infants, yet the relative
average abundance of bifidobacteria tends to decrease as the human host ages.
Because of the inverse correlation between bifidobacterial abundance/prevalence and
health, there has been an increasing interest in maintaining, increasing or restoring
bifidobacterial populations in the infant, adult and elderly gut. In order to colonize and
persist in the gastrointestinal environment, bifidobacteria must be able to metabolise
complex dietary and/or host-derived carbohydrates, and be resistant to various
environmental challenges of the gut. This is not only important for the autochthonous
bifidobacterial species colonising the gut, but also for allochthonous bifidobacteria
provided as probiotic supplements in functional foods. For example, Bifidobacterium
longum subsp. longum is a taxon associated with the metabolism of plant-derived
poly/oligosaccharides in the adult diet, being capable of metabolising hemicellulose and
various pectin-associated glycans. Many of these plant glycans are believed to stimulate
the metabolism and growth of specific bifidobacterial species and are for this reason
classified as prebiotics. In this review, bifidobacterial carbohydrate metabolism, with a
focus on plant poly-/oligosaccharide degradation and uptake, as well as its associated
regulation, will be discussed.

Keywords: bifidobacteria, plant glycans, plant oligosaccharides, fiber, glycosyl hydrolase, CAZy enzymes,
carbohydrate metabolism

INTRODUCTION

Bifidobacteria are gut commensals and members of the Actinobacteria phylum harbouring
genomes with a relatively high G + C content (considered approximately 50% or higher)
(Ventura et al., 2007). They have been isolated from the gastrointestinal tract (GIT) of
many mammalian species, including humans, as well as of insects and birds (Milani
et al., 2016). Certain bifidobacterial strains or species, such as Bifidobacterium longum
subsp. longum, are considered probiotic and are associated with various health benefits to
the host, such as pathogen protection, including production of acetate to protect against
enteropathogenic infection (Fukuda et al., 2011), sequestration of iron at the detriment of
gut pathogens (Vazquez-Gutierrez et al., 2016), competing for epithelial binding sites with
pathogens (Vazquez-Gutierrez et al., 2016), immune modulation through exopolysaccharide
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production (EPS) (Schiavi et al., 2016), alleviation of Irritable
Bowel Syndrome (IBS) symptoms when supplied as a probiotic
(Whorwell et al., 2006), and reducing the risk of contracting
rotaviral diarrhea (Munoz et al., 2011). Bifidobacteria are known
to metabolize a large number of glycans found in the gut
environment. These glycans are metabolized through a unique
pathway for carbohydrate fermentation which is termed the
fructose-6-phosphoketolase (F6PK) pathway or ‘Bifid Shunt’
(de Vries and Stouthamer, 1967), which together with their
distinctively high G + C content, above 50%, justified their
taxonomic classification as a separate genus unrelated to lactic
acid bacteria. The first bifidobacterial genome sequence, i.e., that
of B. longum subsp. longum NCC2705, was published in 2002
(Schell et al., 2002), and its genome annotation reported a large
number of genes dedicated to carbohydrate metabolism.

Bifidobacteria are highly prevalent in the infant gut and in
particular the stool of breast-fed infants exhibit a significantly
higher bifidobacterial abundance compared to their non-
breast-fed counterparts (Bäckhed et al., 2015; Stewart et al.,
2018). Human breast milk has been shown to contain
viable bifidobacterial and is rich in so-called human milk
oligosaccharides (HMOs) (Martín et al., 2009; Soto et al.,
2014), which are highly specific growth substrates for particular
bifidobacteria (Arboleya et al., 2011; James et al., 2016). It has also
been found that the cessation of breast feeding and introduction
to solid foods, referred to as weaning, is thought to induce
changes to a more adult-like microbiome in infants (Bäckhed
et al., 2015; Stewart et al., 2018). The relative abundance of
bifidobacteria has been shown to decrease following weaning, and
from adolescence into adulthood, with a further decline when
their hosts become elderly (Hill et al., 2010; Odamaki et al., 2016).

Furthermore, the bifidobacterial species that are present in
the human gut may vary depending on host age. One study
reported that the B. longum subsp. longum taxon is associated
with both the adult and infant gut, whilst Bifidobacterium
breve is more frequently associated with the infant gut (Kato
et al., 2017). In contrast, another study reported that B. longum
subsp. longum and B. breve were associated with both the adult
and infant gut (Turroni et al., 2009, 2012a; Odamaki et al.,
2018). Bifidobacterium dentium has been found to be in higher
abundance in the elderly gut although its natural niche is believed
to be the oral cavity (Ouwehand et al., 2008). The type of sample
taken for microbiota analysis, for instance colonic mucosal
sample or stool sample, may determine which bifidobacterial
species is more likely to be identified. However; another reason
to explain why particular species of bifidobacteria are more
prevalent and/or abundant in the infant or adult gut may be that
they are specialized to metabolize specific dietary carbohydrates.
For example, B. breve and Bifidobacterium kashiwanohense are
generally capable of metabolising (certain) HMOs (Bunesova
et al., 2016; James et al., 2016), whilst B. longum subsp. longum
is specialized in the metabolism of particular plant glycans found
in the adult diet (Schell et al., 2002; Riviere et al., 2018). B. longum
subsp. longum strains have also been shown to encode members
of glycosyl hydrolase (GH) families associated with the utilization
of plant-derived carbohydrates (i.e., GH43, GH10, and GH5),
reflecting their adaptation to plant glycan metabolism (Arboleya
et al., 2018; Blanco et al., 2020).

A detailed understanding of carbohydrate metabolism of
a particular bifidobacterial species and/or strains may offer
opportunities to increase its abundance in the adult gut by
dietary means. One way to positively modulate the gut microbiota
is by the supplementation of so-called prebiotics, where a
prebiotic is defined as ‘a substrate that is selectively utilized
by host microorganisms conferring a health benefit’ (Gibson
et al., 2017). Prebiotics that specifically stimulate bifidobacterial
growth are termed ‘bifidogenic’ (Gibson and Roberfroid, 1995;
Gibson et al., 1995). Knowledge on which plant carbohydrates
can be metabolized by a bifidobacterial species/strain may
therefore offer an opportunity to increase the abundance of
bifidobacteria in the adult gut. For instance, Bifidbacterium
longum subsp. infantis is associated with the infant gut, and
is specialized in HMO metabolism, whilst B. longum subsp.
longum, associated with both the infant and adult gut, can
metabolize plant-derived oligosaccharides (O’Callaghan et al.,
2015; Odamaki et al., 2018). This review will in particular focus
on current knowledge regarding bifidobacterial plant-derived
poly/oligosaccharide metabolism.

THE PLANT GLYCANS PRESENT IN THE
GUT

Dietary fibers/glycans are found in the plant cell wall (Figure 1;
Koropatkin et al., 2012) and are common components in cereals
(Broekaert et al., 2011; Shewry and Hey, 2015), fruit (van Laere
et al., 2000; Posé et al., 2018), vegetables (Jonker et al., 2020;
Klaassen and Trindade, 2020) and red grapes (Apolinar-Valiente
et al., 2013), thus being a typical constituent of the human diet.
Dietary fibers/glycans are metabolized by the gut microbiota
in the large intestine (Flint et al., 2012). In contrast, meta-
transcriptomic data from the microbiota in the small intestine
shows, that phosphotransferase systems for simple sugars such
as fructose, glucose and sucrose are utilized for carbohydrate
metabolism suggesting that the small intestine microbiota
utilize simpler sugars and not dietary fibers/glycans (Zoetendal
et al., 2012). Some examples of dietary glycans are fructo-
oligosaccharides (FOS), β-glucan, inulin, pectin, arabinoxylan,
xylan, arabinan and starch (Holscher, 2017). Dietary fibers
represent polymeric carbohydrates, including lignin, consisting
of ten or more monomeric subunits that cannot be hydrolysed by
enzymes found in the upper part of the human gastrointestinal
tract (such as lactases, amylases and sucrases) (Alimentarius,
2010). Plant carbohydrate polymers with a size less than 10
monomeric subunits, but between a degree of polymerisation
(DP) of 3 and 9, may in certain jurisdictions also be classified
as dietary fibers (Alimentarius, 2010). Glycan is a much broader
term that refers to a wide variety of carbohydrates (polymers
and oligosaccharides). Glycans of dietary origin are generally
indigestible to the human host, yet may be metabolized by the
gut microbiota, and may include carbohydrates with less than 10
monomeric units that have been generated by the gut microbiota
following dietary fiber degradation (Koropatkin et al., 2012).

The plant cell wall consists of a matrix comprized of cellulose
fibrils, hemicellulose, pectin and lignin (Flint et al., 2012).
Hemicelluloses are polysaccharides with β-1,4-linked backbones
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FIGURE 1 | Plant cell wall composition and associated plant glycans/fibers. The primary cell wall is located outside of the plant plasma cell membrane. It is
composed of cellulose microfibrils, hemicellulose and pectin. The secondary cell wall is located between the primary cell wall and the plasma cell wall. It consists of
cellulose microfibrils, hemicellulose and lignin.

of xylose, mannose or glucose, to form (arabino)xylan (AX),
mannan, and xyloglucan or β-glucan, respectively (Figure 2;
Scheller and Ulvskov, 2010; Flint et al., 2012). In this review
we focus on AX and arabinoxylo-oligosaccahrides (AXOS)
metabolism. Lignin is predominantly composed of polymerised
phenolic compounds such as hydroxycinnamic acids (HCA)
(Struijs et al., 2008; Scheller and Ulvskov, 2010). Pectin is
composed of various, highly variable polysaccharides including
homogalacturonan (HG), xylogalacturonan, apiogalacturonan,
rhamnogalacturonan I (RGI) and rhamnogalacturonan II (RGII)
(Figure 3; Harholt et al., 2010). These pectic polysaccharides all
contain an α-1,4-linked galacturonic acid backbone (Mohnen,
2008). HG is the simplest pectic polysaccharide, consisting of
unsubstituted α-1,4-linked galacturonic acid moieties, whilst
RGI is associated with an α-1,4-linked, D-galacturonic acid and
rhamnose-containing backbone which can be substituted by
other polymers such as galactan, arabinogalactan and arabinan
(Anderson, 2015). RGII is the most complex chain, with a HG
backbone that can be substituted with over twenty different
glycosyl linkages and five different side chains (O’Neill et al.,
2007). Both hemicellulose and pectic carbohydrates may also be
decorated with HCAs such as ferulic acid or chlorogenic acid
(Agger et al., 2010).

It is important to note that it is unlikely that in the
gut bifidobacteria can metabolize these large, mostly insoluble
complex plant polysaccharides on their own; however, they
may be able to utilize specific components and/or side chains
of these glycans. Alternatively, it is possible that these plant-
derived polysaccharides arrive in the large intestine undigested,
where they are degraded by particular, so-called keystone

species. Examples of such keystone species include Bacteroides
cellulosilyticus, Bacteroides caccae, and Dysgonomonas gadei,
which for example are capable of the degradation of type II
arabinogalactan due to their extracellular endo-β-1,3-galactanase
activity (Cartmell et al., 2018). This extracellular degradation
allows the release of soluble oligosaccharides, such as arabino-
oligosaccharides (AOS), AXOS, and galacto-oligosaccharides
which may then become available as metabolic ‘cross-feeding’
substrates for other gut commensals, such as bifidobacteria. For
example, B. breve UCC2003 can cross-feed on certain galacto-
oligosaccharides released from larch wood arabinogalactan by
Ba. cellulosilyticus (Munoz et al., 2020). Therefore, the current
definition of a prebiotic does not include glycans, such as
intact pectin or xylan, which may stimulate growth of a broad
range of species in the GIT (Gibson et al., 2017). Knowledge
on carbohydrate metabolism of bifidobacteria can therefore be
exploited to develop prebiotics and/or ‘synbiotics’ [a combination
of a probiotic organism and a corresponding prebiotic that
selectively stimulates growth of the administered probiotic, and
therefore its associated beneficial effect(s)] (van Zanten et al.,
2012; Kearney and Gibbons, 2018; Swanson et al., 2020).

THE BIFID SHUNT – A UNIQUE
CARBOHYDRATE METABOLIC PATHWAY

As mentioned above, bifidobacteria possess a unique pathway
for carbohydrate assimilation which is termed the F6PK
pathway (de Vries and Stouthamer, 1967, 1968). This complex
pathway, with its key enzyme fructose-6-phosphoketolase, is very
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FIGURE 2 | Structure of some of the hemicelluloses found in the plant cell wall. Hemicelluloses consist of a xylan backbone composed of β-1,4-linked D-xylose
moieties, some of which may be substituted with an acetyl group. In glucoronoxylan (GX) the xylan backbone is substituted with D-glucuronic acid, while in the case
of arabinoxylan (AX) the carbohydrate decorations consist of α-1,2-linked and/or α-1,3-linked arabinofuranose moieties. Finally, the glycan backbone of
glucoronoarabinoxylan (GAX) possesses arabinose substitutions as in AX, in addition to D-glucuronic acid decorations that are α-1,2-linked to the xylan backbone,
as well as D-xylose and L-galactose moieties that are β-1,2 linked and α-1,2-linked, respectively, to the arabinose substitutions.

FIGURE 3 | Pectin polysaccharides associated with the plant cell wall. Pectin is made up of several polysaccharides including homogalacturonan,
rhamnogalacturonan I and rhamnogalacturonan II, the structure of which is schematically depicted.

distinct from the homofermentative (Embden-Meyerhof-Parnas)
or heterofermentative (phosphoketolase or pentose phosphate)
glycolytic pathways (Macfarlane and Macfarlane, 2003; Mayo

and van Sinderen, 2010) and is exclusively found in the
Bifidobacteriaceae family and members of the Coriobacteriales
order (Palframan et al., 2003; Killer et al., 2010; Gupta et al.,
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2017). The F6PK pathway can assimilate both hexose and pentose
sugars by fermentation into lactate and acetate (Egan and Van
Sinderen, 2018), with a theoretical yield of 1.5 mol acetate and
1 mol of lactate for every mol of glucose consumed (de Vries and
Stouthamer, 1967; Wolin et al., 1998), or a 1:1 ratio of lactate and
acetate in the case of pentose sugar fermentation (Palframan et al.,
2003). Hexose sugars are fed into the F6PK pathway as fructose-
6-phosphate whilst pentose sugars can enter the pathway as
ribulose-5-phosphate or xylulose-5-phosphate (Egan and Van
Sinderen, 2018). However, the actual ratio of acetate to lactate
produced depends on various factors including the individual
strain, pH and growth rate, which in turn differs depending
on the carbohydrate substrate utilized (Palframan et al., 2003;
Watson et al., 2013; McLaughlin et al., 2015). The short chain
fatty acid (SCFA) acetate, when produced by B. longum subsp.
longum from fructose fermentation, has been shown to generate
anti-inflammatory effects and/or to block epithelial apoptosis
in a murine model, thereby preventing translocation of the
Shiga toxin produced by Escherichia coli O157:H7 into the
bloodstream, and in this way providing protection against this
gut pathogen (Fukuda et al., 2011). In addition, lactate, an
organic acid (but not a SCFA), has also been shown to have
a direct effect on enterocyte proliferation and contributes to
hyperproliferation of enterocytes after starvation in a mouse
model thus supporting intestinal barrier integrity (Okada et al.,
2013). The F6PK pathway theoretically produces 2.5 molecules
of ATP per 1 metabolized glucose molecule, which is higher
than the energy yield of homofermentation by lactobacilli species
at 2 molecules of ATP per 1 molecule of glucose metabolized
(Palframan et al., 2003).

BIFIDOBACTERIAL CARBOHYDRATE
IMPORT

Bifidobacteria are capable of metabolizing a diverse range of
mono-, di-, and oligo-saccharides found in the GIT environment,
which they mainly import into their cytoplasm by means of
so-called ABC-type (ATP-binding cassette) transporters or
major facilitator superfamily (MFS) transport systems, such as
proton symporters and proton-motive force-driven permeases
(Schell et al., 2002; Pokusaeva et al., 2011a). Furthermore,
most bifidobacterial species encode Phosphoenol Pyruvate-
Phosphotransferase Systems (PEP-PTSs) (Maze et al., 2007;
Turroni et al., 2012b). However, ABC-type transporters generally
are the most commonly employed systems to internalize
carbohydrates in bifidobacteria. For example, B. longum
subsp. longum NCC2705 is predicted to encode 13 ABC type
transporters, 3 MFS transporters, 1 PTS system, 1 glycoside
pentoside cation symporter family transporter (GPH) and
1 major intrinsic protein family (MIP) transporter (Parche
et al., 2007). Similarly, Bifidobacterium longum subsp. infantis
ATCC15697 is predicted to encode 13 ABC transporter
systems (Sela et al., 2008). However, there are exceptions; as a
representative of its species Bifidobacterium bifidum PRL2010
preferentially utilizes PEP-PTS systems to import carbohydrates,
most likely because this strain degrades complex carbohydrates

extracellularly, thereby releasing mostly monosaccharides,
explaining why PRL2010 encodes just two ABC-type transporters
and four PEP-PTS systems (Turroni et al., 2012b). ABC-type
transporters hydrolyse ATP in order to import their substrate,
such as a carbohydrate, against a chemical gradient (Wilkens,
2015). An ABC-type transport system typically consists of two
transmembrane-associated proteins, which act as permeases to
translocate the substrate across the membrane and two ATP-
binding proteins that provide the energy required for transport
(Rees et al., 2009). The so-called substrate binding protein (SBP)
binds a specific carbohydrate monomer or oligosaccharide (or
very related substrates) and brings the substrate to the permease
to be imported (Rees et al., 2009). This can affect the growth
rate of a strain; for instance, the SBP of an ABC-type transporter
specified by Bifidobacterium animalis subsp. lactis B1-04 binds
preferentially to β-1,6-galactobiose over β-1,4-galactobiose, and
this may in part contribute to faster growth of this strain on the
former substrate (Theilmann et al., 2019). The heavy reliance on
carbohydrate-specific ABC-type transporters by bifidobacteria
for internalization of their carbon and energy sources may
reflect the need for members of this genus to be versatile in
metabolizing a diverse range of carbohydrates, including various
plant-derived oligosaccharides present in the gut environment
(Schneider, 2001; Chandravanshi et al., 2019), rather than relying
on PEP-PTSs, which are mainly restricted to monosaccharide
utilization (Deutscher et al., 2006). For example, an ABC-type
transporter was found to confer the ability of B. animalis subsp.
lactis B1-04 to metabolize the tri-saccharide raffinose (and
related oligosaccharides) and this strain was able to outcompete
Bacteroides ovatus when both strains are co-cultured on raffinose
(Ejby et al., 2016).

ENZYMATIC DEGRADATION OF
PLANT-OLIGOSACCHARIDES BY
BIFIDOBACTERIA

A relatively high percentage, 13.7%, of the overall Bifidobacterium
pan-genome is dedicated to carbohydrate metabolism (Milani
et al., 2014, 2016), and a similar percentage, 13.23 and 12.5%,
when representative genomes of B. breve and B. longum
subsp. longum, respectively, are scrutinized (Bottacini et al.,
2014; O’Callaghan et al., 2015). However, just 5.5% of the
Bifidobacterium core genome (i.e., genus-wide conserved genes)
is dedicated to carbohydrate metabolic pathways suggesting
that in order to survive in the GIT environment the acquisition
of carbohydrate metabolic genes in the accessory genome is
important (Milani et al., 2014). This is not surprising considering
the wide diversity of carbohydrates that bifidobacteria may
encounter in the GIT environment. Bifidobacteria, like other
members of the gut microbiota, possess ‘Carbohydrate Active
Enzymes’ (CAZymes), such as GHs that break the glycosidic
bonds between carbohydrate moieties and covalent linkages
between carbohydrates and non-carbohydrate moieties.
Carbohydrate esterases (CE) cleave the ester bound between
a HCA and a carbohydrate residue, and thereby may provide
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access to other GHs to hydrolyse plant-derived oligosaccharides
(Kelly et al., 2018).

The process of hydrolysis by GHs can occur by two distinct
routes, either (i) by means of a single displacement mechanism
which takes place in a single step and which results in the
inversion of the anomeric centre, or (ii) by a double displacement
mechanism involving two catalytic steps resulting in the
retention of the anomeric center following hydrolysis (Davies
and Henrissat, 1995; Withers, 2001). Hydrolysis of a glycosidic
linkage between two monosaccharides is usually mediated by
two catalytic carboxylic residues in the corresponding GH, one
being a proton donor represented by an acid, while the other
acting as a proton acceptor and represented by a base, activating
a water molecule that acts as a nucleophile, in the inverting
enzyme (van den Broek et al., 2008). However, in the retaining
configuration, one carboxylic residue acts as an acid/base and
another as nucleophile (Figure 4; Davies and Henrissat, 1995).

In the first step of the double displacement mechanism one
residue protonates the glycosidic oxygen leading to the hydrolysis
of the glycolytic bond and the formation of an oxocarbenium
ion-like transition state. A glycosyl-enzyme intermediate is then
formed by the other residue (nucleophile) attacking the anomeric
center of the sugar. In the second step of the reaction, termed
deglycosylation, the basic residue deprotonates a water molecule
which in turn attacks the glycosyl-enzyme intermediate to
cause hydrolysis of the glycosyl-enzyme intermediate (Figure 4;
Withers, 2001; van den Broek et al., 2008). CAZymes can either
degrade oligo- or polysaccharides at the end of the molecule, most
commonly from the non-reducing end, or in between individual
saccharidic moieties, representing hydrolytic abilities that are
referred to as exo or endo activity, respectively (Mangas-Sánchez
and Adlercreutz, 2015). The remainder of this review will focus
on bifidobacterial GHs and CEs involved in the degradation of a
selected number of plant-derived poly- and oligo-saccharides.

XYLAN AND
XYLO-OLIGOSACCAHRIDES (XOS)

Bifidobacteria are capable of growth on several plant-derived
poly/oligo-saccharides and their derived monomers (Watson
et al., 2013; McLaughlin et al., 2015). Specifically, the B. longum
subsp. longum and Bifidobacterium adolescentis taxa seem to be
particularly well adapted to plant-based carbohydrate utilisation
(O’Callaghan et al., 2015). Hemicelluloses include carbohydrates
that generally possess a β-1,4-linked backbone, for example xylan,
which is composed of β-1,4-linked D-xylose moieties (Scheller
and Ulvskov, 2010). Furthermore, this xylan backbone can be
decorated or substituted with L- or D-arabinose, xylose, galactose
and D-glucuronic acid (Ndeh and Gilbert, 2018). Based on the
nature of these substituents xylan is further categorized into
AX, glucuronoxylans (GX) and glucuronoarabinoxylans (GAX)
(Rogowski et al., 2015). AX from corn may also contain α-1,2-
linked galactose to arabinose side chains (Appeldoorn et al., 2010;
Pollet et al., 2012; Figure 5).

It should be noted that the xylan backbone typically requires
removal of its substitutions before it can be degraded, a process

that may involve multiple enzymatic activities. Xylanases or
endo-1,4-β-xylanases (EC 3.2.1.8, GH5, GH8, GH10, GH11,
GH30, GH51, and GH98) are endo-acting enzymes that
randomly hydrolyse the internal β-1,4 bond between D-xylose
residues within a xylan polymer to produce XOS (with a degree
of polymerisation ranging between two and nine) (Figure 5A;
Collins et al., 2005). Currently, no bifidobacterial strain/species
is known to be able to grow on the polymeric, insoluble xylan
backbone. Therefore, it is likely that in the GIT species such as
Ba. ovatus, Bacteroides xylanisolvens or Bacteroides intestinalis
degrade the xylan backbone into soluble XOS, which then
becomes available for other species to utilize (Zhang et al., 2014;
Despres et al., 2016; Wang et al., 2016). Particular bifidobacterial
species, e.g., B. longum subsp. longum and B. adolescentis, are able
to metabolize xylan-derived XOS (Falck et al., 2013; Arboleya
et al., 2018) and several enzymes have been implicated in
the degradation of this oligomeric substrate by bifidobacteria.
β- D-xylosidases (EC 3.2.1.7, GH1, GH2, GH3, GH43, GH51,
GH52, GH54, GH116, and GH120) are exo-enzymes which
can hydrolyse XOS starting at the non-reducing xylose residue.
For instance, a β-1,4 xylosidase (EC 3.2.1.37) (GH51) from B.
breve K-110 was shown to elicit activity against p-Nitrophenyl
(pNp) β-D-xylopyranoside, yet exhibits very limited activity
against xylan (Shin et al., 2003). Furthermore, B. adolescentis
LMG10502 encodes two β-xylosidases: XylB (GH120) which
hydrolyses XOS but not xylobiose, and XylC (GH43), which
hydrolyses xylobiose (Lagaert et al., 2011; Figure 5B). In
addition, the GH8 RexA or reducing-end, xylose-releasing exo-
oligoxylanase enzyme (EC 3.2.1.156) (Valenzuela et al., 2016)
from B. adolescentis LMG10502 was shown to elicit limited
activity against xylan, no activity against xylobiose or pNp-β-
D-xylopyranoside, though was shown to exhibit activity against
XOS with a DP of 3 and above (Figure 5C; Lagaert et al., 2007).

Transcriptional and proteome analysis of B. animalis subsp.
lactis BB-12 grown on XOS revealed expression of a number
of xylanases, β-xylosidases and ABC transporters (Lagaert et al.,
2007). Bifidobacterial species/strains that are able to utilize
XOS, such as B. longum subsp. longum and B. adolescentis,
usually metabolize XOS only up to a DP of six, i.e. xylohexose
due to size limitations of the corresponding XOS transport
system (Wang et al., 2010; Amaretti et al., 2013). It must be
noted that generally bifidobacterial CAZymes act intracellularly,
although extracellular hydrolysis of XOS by an apparently
extracellular bifidobacterial β-1,4 xylosidase has been reported for
B. adolescentis (Amaretti et al., 2013).

AX, AXOS, ARABINAN,
ARABINOGALACTAN, AND CORN GAX

The xylose residues in xylan and XOS can be mono-substituted
with L-arabinose at the C(O)2 or C(O)3 positions or di-
substituted with L-arabinose at both C(O)2 and C(O)3 positions,
while these arabinose substitutions can either be α-1,2-linked
or α-1,3-linked (Figure 2; Scheller and Ulvskov, 2010; De
Vuyst et al., 2014). Only a limited number of bifidobacterial
species/strains, e.g., B. longum subsp. longum, are able to
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FIGURE 4 | Summary of Inverting hydrolysis, retaining hydrolysis and transglycosylation. (A) Summary of inverting single displacement mechanism. (B) Summary of
retaining double displacement mechanism. See text for details of the reactions.

metabolize such AX and AXOS glycans (O’Callaghan et al., 2015;
Riviere et al., 2015; Truchado et al., 2015). Depending on the
particular bifidobacterial species/strain different components of
AX or AXOS are utilized. One study classified bifidobacterial
species/strains into five clusters based on the particular AX,
AXOS, or XOS components a given strain could metabolize:
cluster I, metabolism of monosaccharides arabinose and xylose,
but no metabolism of XOS or arabinose substituents; cluster
II, metabolism of mono- or di-substituted arabinose, yet no
utilization of the XOS backbone; cluster III, utilization of the XOS
backbone but no utilization of arabinose substituents; cluster
IV, utilization of both arabinose substituents and XOS, up to
xylotetraose of AXOS; cluster V, utilization of AXOS including
up to xylohexose XOS chains (Riviere et al., 2014). Therefore, the
presence of AX, AXOS, and XOS in the GIT supports growth of
various bifidobacterial species/strains either directly or indirectly
through possible cross-feeding activities (De Vuyst et al., 2014).
In this sense, Ba. ovatus has been shown to support growth
of B. adolescentis when they interact on simple xylans, such as
wheat AX and birch GX (Rogowski et al., 2015). However, Ba.

ovatus cannot cross-feed with Bifidobacterium sp. when they use
complex dietary xylans, such as corn AX. The reason for this
inability is that Bifidobacterium sp. lack the catalytic apparatus
needed to metabolize the oligosaccharides released from complex
dietary xylans by Ba. ovatus. This is consistent with the fact
that B. adolescentis is unable to metabolize corn AX, even if it
is pretreated with the GHs located on the surface of Ba. ovatus
(Rogowski et al., 2015).

Pectin is composed of multiple complex glycans that can
be utilized by the gut microbiota (Ndeh et al., 2017; Luis
et al., 2018). Probably because of its complexity there are
currently no known bifidobacterial species that are able to
directly metabolize pectin (Figure 3). It is therefore presumed
that other gut commensals such as Bacteroides thetaiotaomicron
degrade these large polymers extracellularly and that certain
bifidobacterial species can then scavenge the released mono-
and oligosaccharides, as shown previously by co-cultivation
of B. longum subsp. longum with Ba. thetaiotaomicron in the
presence of arabinogalactan (Degnan and Macfarlane, 1995). B.
breve UCC2003 can cross-feed on β-1,3 galacto-di/trisaccharides
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FIGURE 5 | Enzymatic degradation of xylan and xylo-oligosacharides (XOS). Degradation of the xylan backbone to XOS by endo-xylanases (A). Degradation of XOS
by β-D-xylosidases (B). Degradation of XOS by a ‘Reducing end xylose releasing exo-oligoxylanase (C). DP = degree of polymerization. Enzyme names are indicated
in bold. See text for details.

released from larchwood arabinogalactan by Ba. cellulosilyticus
(Munoz et al., 2020). B. longum subsp. longum strains have
been shown to grow on the pectic components arabinan and
arabinogalactan (O’Connell Motherway et al., 2011; Komeno
et al., 2019). Arabinan consists of an α-1,5-linked L-arabinose
backbone that can be mono- or di-substituted with either α-1,2-
linked and/or α-1,3-linked L-arabinose (Mohnen, 2008). Type
I arabinogalactan is usually linked to other pectin-associated
glycans, whereas type II arabinogalactan is O-linked to a protein
backbone. Both arabinogalactan types are key components of
the plant cell wall (Seifert and Roberts, 2007; Sakamoto and
Ishimaru, 2013). Type I arabinogalactan is composed of a β-
1,4-linked D-galactose backbone substituted by α-1,5-linked L-
arabinose, while type II arabinogalactan is composed of a β-
1,3-linked D-galactose backbone that can be substituted with
α-1,3-linked arabinose and α-1,6-linked galactose side chains
with further decorations with other minor monosaccharide
components, such as rhamnose, (methyl)glucuronic acid, xylose
or fucose (Mohnen, 2008; Sakamoto and Ishimaru, 2013;
Cartmell et al., 2018).

α-L-arabinofuranosidases (EC 3.2.1.55, GH1, GH2, GH3,
GH5, GH39, GH43, GH51, GH54, and GH62) are exo-
acting enzymes that can cleave arabinose moieties from the
polymeric backbone of xylan, XOS, galactan or arabinan/AOS
(Margolles and de los Reyes-Gavilan, 2003; Lagaert et al., 2014).
Arabinofuranosidases typically remove mono-substituted α-1,2
linked and/or α-1,3 linked arabinose from their particular
substrate backbone (van den Broek et al., 2005; Bourgois et al.,

2007), although certain arabinofuranosidases are specialized in
removing arabinose from a di-substituted substrate (van den
Broek et al., 2005; Cartmell et al., 2011). The ability to degrade
AXOS has been shown to be species/strain dependent and
certain bifidobacterial species/strains are only able to metabolize
the arabinose substitutions on XOS (Riviere et al., 2014). An
α-arabinofuranosidase (GH51) produced by B. longum subsp.
longum has been shown to release arabinose from AX (Margolles
and de los Reyes-Gavilan, 2003), while AbfA (GH43) from
B. adolescentis was shown to remove arabinose residues from
the C(O)2 and C(O)3 positions of mono-substituted xylose,
and AbfB (GH51) and AXHd3 (GH43) were demonstrated to
release arabinose residues from the C(O)3 of disubstituted xylose
residues (van den Broek et al., 2005; Lagaert et al., 2010).
L-arabinofuranosidases can also act as exo-enzymes on AOS
present in arabinan or arabinogalactan. For example, an α-L-
arabinofuranosidase (GH1) from B. adolescentis was shown to
possess exo-activity on α-1,5-linked AOS (DP 2-5) (Suzuki et al.,
2013). Similarly, the B. longum subsp. longum ArafC (GH43)
was shown to be capable of removing α-1,2-linked and α-1,3-
linked arabinose side chains of AX and arabinan, yet ArafD
(GH43) was shown to exhibit hydrolytic activity towards α-1,5-
linked arabinan (Komeno et al., 2019). α-L-arabinofuranosidases
can also release arabinose side chains from galactose residues
in arabinogalacatan; BlArafA (GH43), an α-arabinofuranosidase
produced by B. longum subsp. longum, can release α-1,3-
linked arabinose from β-1,6-galacto-oligosaccharides (Fujita
et al., 2019). Endo-α-arabinases (EC 3.2.1.99) hydrolyse the
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α-1,5-linkage within the arabinan backbone (Arnal et al.,
2015) and it is likely that arabinofuranosidases must first
remove the L-arabinose substituents before the backbone can
be effectively cleaved. Currently, no endo-arabinases have
been described in bifidobacteria. β-L-arabinofuranosidases (EC
3.2.1.185, GH127, GH142, and GH146) remove β-linked
arabinose substitutions from plant-oligosaccharides; β-linkages
are less common and found on extensins (proteoglycans that
are abundant in carrots) type II arabinogalactan, RGI and
RGII (from pectin polysaccharides) linked to plant cell wall
proteins (Lansky et al., 2014; Ndeh et al., 2017; Luis et al.,
2018). In B. longum subsp. longum, β-arabinofuranosidases
HypBA1 (GH127) and HypBA2 (GH121) release arabinose
from β-1,2-linked arabinosaccharides (DP 2-3) linked to
hyproxyline (Fujita et al., 2011, 2014b). Several bifidobacterial α-
L-arabinofuranosidases and β-L-arabinofuranosidases have been
reported in literature and their salient features are summarized in
Table 1.

Various enzymes are required to degrade plant-derived
galactan. Exo-acting β-1,3-galactanases (EC 3.2.1.145, GH43
subfamily 24) cleave the β-1,3-D-galactose backbone of type
II arabinogalactan even in the presence of β-1,6-D galactose
side chains through a by-pass mechanism (Ichinose et al.,
2006; Cartmell et al., 2018). Exo-acting β-1,4-galactanases (no
designated EC number) cleave terminal β-1,4-linked galactose
bonds (Sakamoto and Ishimaru, 2013). An exo-β-1,3 galactanase
(GH43 subfamily 24), (Bl1,3Gal) isolated from B. longum
subsp. longum was shown to hydrolyse β-1,3-linked galacto-
oligosaccharides (DP between 2 and 5) and de-arabinosylated
larchwood arabinogalactan (Fujita et al., 2014a). This Bl1,3Gal
enzyme is unusual as it exhibits a higher activity for β-
1,3-galactan when the latter substrate is substituted with β-
1,6-side chains, apparently recognizing these side chains as
a specificity determinant in the active site. Similarly, BgaA
(GH2) of B. breve UCC2003 was shown to cleave β-1,3-
linked galactobiose/triose (Figure 6A) (Munoz et al., 2020).
An exo-β-1,6-galactobiohydrolase (Bl1,6-Gal, GH30) from the
same species was shown to degrade β-1,6-linked galactose (DP
between 2 and 4) and β-1,6-galactan, but was not able to
degrade arabinose substituted substrates (Fujita et al., 2019;
Figure 6B). Furthermore, depending on the linkage type of
the galactan backbone degradation may involve endo-acting β-
1,3-galactanases (EC 3.2.1.181, GH30) (Sakamoto and Ishimaru,
2013), β-1,4 galactanases (EC 3.2.1.89, GH53) (Zavaleta and
Eyzaguirre, 2016) or β-1,6-galactanases (EC 3.2.1.164, GH30)
(Sakamoto and Ishimaru, 2013).

In B. longum subsp. longum, an extracellular endo-acting
β-galactanase, designated GalA, was found to be capable
of cleaving β-1,4 and β-1,3-galactan linkages (Hinz et al.,
2005; Figure 6C). The extracellular GalA (GH52) homolog
in B. breve UCC2003, which is present in certain strains of
this species, was found to elicit hydrolytic activity towards
galactan, thereby releasing galacto-oligosaccharides (O’Connell
Motherway et al., 2011). GalA is encoded by a galactan
utilization cluster in both B. breve UCC2003 and B. longum
subsp. longum strains, and in addition specifies an ABC type
transporter, and GalG (GH42), a β-galactosidase (O’Connell

Motherway et al., 2011, 2013). β-galactosidases (EC 3.2.1.23,
GH1, GH2, GH35, GH39, GH42, GH59, GH147, and GH165)
hydrolyse linkages between a galactose moiety and another
sugar moiety and several β-galactosidases have been identified
in B. bifidum, B. longum subsp. longum, B. longum subsp.
infantis and B. breve, being able to hydrolyse β-1,3, β-
1,4 or β-1,6 linkages in galacto-oligosaccahrides and HMO
substrates (Goulas et al., 2007; Godoy et al., 2016; James
et al., 2016; Sotoya et al., 2017; Ambrogi et al., 2019;
Figure 6D).

Finally, the backbone or side chains of these plant-derived
oligomers may also be substituted with HCAs. HCAs that are in
free form are absorbed by the small intestine (Cremin et al., 2001),
whereas HCAs that are linked to plant-derived polysaccharides
are not readily absorbed in the small intestine and are therefore
likely to reach the colon (Clifford, 2004). Many hemicelluloses
and pectic plant polymers have HCAs attached by an ester bond
to the (O)5 position of the sugar moiety (Saulnier and Thibault,
1999; Scheller and Ulvskov, 2010). HCA-specific esterases (EC
3.1.1.73, CE1 and CE6) catalyse the hydrolysis of the ester bond
between a given HCA, for example ferulic acid and p-coumaric
acid, and a sugar moiety (arabinose, galactose or xylose) on AX
and pectin plant-oligomers (Wong, 2006). These HCA-specific
esterases possess an alpha/beta hydrolase fold, a consensus motif
(Gly-X-Ser-X-Gly) and a catalytic triad consisting of Ser-His-Asp
residues (Bornscheuer, 2002). Bifidobacterial esterases active
against HCAs have been described, including the CaeA esterase
in B. longum subsp. longum, whose encoding gene is located
within the same genetic locus as the genes encoding GH enzymes
that are predicted to be involved in plant-oligosaccharide
utilization (Raimondi et al., 2015; Fritsch et al., 2017; Kelly et al.,
2018).

REGULATION OF CARBOHYDRATE
METABOLISM IN BIFIDOBACTERIA

Carbon catabolite repression (CCR) refers to a global regulatory
mechanism by which bacteria can preferentially metabolize
the ‘optimal’ carbon source that has the greatest energy
yield, amongst a mixture of carbon sources, and involves
inhibition of the metabolic pathways of the less preferred
carbon sources (Stülke and Hillen, 1999). This is important in
the GIT environment where potentially multiple carbohydrate
sources are present and the optimal carbon source must
be consumed to increase chances of survival in the gut.
There are many mechanisms of CCR and this can vary
from species to species. For instance, CCR may involve
transcriptional activation, transcriptional repression and/or
translational regulation (Görke and Stülke, 2008). In the CCR
paradigm, many bacteria, such as Escherichia coli, the ‘optimal’
substrate glucose is metabolized preferentially (Inada et al.,
1996). Certain bacteria, e.g., B. longum subsp. longum and
Streptococcus thermophilus, preferentially metabolize lactose over
glucose (van den Bogaard et al., 2000; Kim et al., 2003;
Parche et al., 2006). The preference of other sugars over
glucose for metabolism is also termed reverse CCR (Görke
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TABLE 1 | Summary of characterised bifidobacterial arabinofuranosidases.

Enzyme name/classification Substrates GH family References Species

AbfB Arabinan, AX, arabinobiose -
arabinopentose

GH51 Margolles and de los
Reyes-Gavilan, 2003

B. ll

α-L-arabinofuranosidase

BXA43 XOS (DP 2-4) GH43 Viborg et al., 2013 B. al

β xylosidase/ α-L-arabinofuranosidase pNP-α-L araf

pNp-β-D Xyl

BAD0156 pNP-α-L araf GH1 Suzuki et al., 2013 B. a

α-L-arabinofuranosidase α-1,5 arabinosaccharides

BlArafC pNP-α-L araf GH43 Komeno et al., 2019 B. ll

α-L-arabinofuranosidase Arabinan

AX

BlArafD pNP-α-L araf GH43 Komeno et al., 2019 B. ll

α-L-arabinofuranosidase Arabinan

BlArafA pNP α L araf GH43 Fujita et al., 2019 B. ll

α-L-arabinofuranosidase α-1,3-Araf Gal3

Araf-α-1,3-Araf-α-OMe

Radish AG

Larch AG

Arabinan

Blon_0625 pNP-α-L araf GH3 Matsumoto et al., 2015 B. li

α-L-arabinofuranosidase

HypBA2 β1,2-Arabinose hyproxyline GH121 Fujita et al., 2011 B. ll

β-L-arabinofuranosidase

β1,2-linked arabinotriose - hyproxyline

Arabinan

Debranched Arabinan

HyBA1 β 1,2-linked Arabinose – hyproxyline
(DP 2 and 3)

GH127 Fujita et al., 2014b; Ito et al.,
2014; Zhu et al., 2014

B. ll

β-L-arabinofuranosidase

Arabinobiose - ME

AfuB-H1 pNP-α-L araf GH51 Lee et al., 2011 B. ll

α-L-arabinofuranosidase

AbfA AX GH43 Lagaert et al., 2010 B. a

α-L-arabinofuranosidase AXOS

pNP-α-L araf

pNP-β-Xyl

AbfB AX, GH43 Lagaert et al., 2010 B. a

α-L-arabinofuranosidase AXOS

pNP-α-L araf

Arabinan

AXH-d3 AX GH43 van den Broek et al., 2005 B. a

AXOS

Arabinan

α-L- arabinofuranosidase pNP-α-L araf – Shin et al., 2003 B. b

Ginsenoside RC

L araf, L-arabinofuranose; D Xyl, D-xylopyranoside; ME, methyl group; Gal, galactose; OMe, O-linked methyl group; AG, arabinogalactan; AX, Arabinoxylan; AXOS,
arabinoxylo-oligosaccharides; B. ll, Bifidobacterium longum subsp. longum; B. al, Bifidobacterium animalis subsp. lactis; B.b, Bifidobacterium breve; B. a, Bifidobacterium
adolescentis; B. li, Bifidobacterium longum subsp. infantis.

and Stülke, 2008). CCR-resembling regulation has previously
been described in bifidobacteria. In particular, in B. breve
UCC2003, a FOS utilization cluster inducible by growth on

sucrose or Actilight, a commercial FOS prebiotic, was shown to
be downregulated in the presence of glucose and/or fructose –
sucrose mixes (Ryan et al., 2005). CCR may be important
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FIGURE 6 | Enzymatic degradation of galactan. Degradation of galactan by exo-β1,3- or β1,4-galactanases (A). Degradation of galactan by exo-β1,6-galactanases
(B). Degradation of galactan by endo-β1,3- or β1,4-galactanases (C). Degradation of a galactose-sugar moiety bond by β-galactosidases (D). Enzyme names are
indicated in bold. See text for details.

from an ecological perspective, as it may avoid species/strain
competition for limited carbon sources in the gut environment
(Brückner and Titgemeyer, 2002). However, CCR is not the only
model to describe the regulation of carbohydrate metabolism
in bacteria. Indeed, B. breve and Corynebacterium glutamicum,
both members of the Actinobacteria phylum, have been shown
to globally regulate their central metabolic flux and control
co-metabolism of multiple sugars (Wendisch et al., 2000;
Lanigan et al., 2019).

LacI-type transcriptional regulators are the most prevalent
and abundant family of bifidobacterial TFs; in one study they
were shown to account for 63% of all identified regulators
encoded by ten bifidobacterial genomes (Khoroshkin et al.,
2016). LacI-type transcriptional factors in bifidobacteria typically
act as carbohydrate-specific transcriptional repressors and
are therefore important allowing only appropriate expression
of carbohydrate metabolism genes in the presence of the
corresponding saccharidic substrate in the GIT environment.
LacI-type transcription factors contain a so-called helix-turn-
helix DNA binding domain at their N-terminus, a core domain
to bind sugar ligands and a multimerization domain for the
formation of dimers and/or tetramers (Lewis et al., 1996).

Bifidobacterial LacI-type transcriptional factors have been
shown, in silico and in vitro, at a local level to control genes
and/or operons involved in carbohydrate metabolism for various

carbohydrates including HMOs (James et al., 2018), galactan
(O’Connell Motherway et al., 2011), melezitose (O’Connell et al.,
2014), AOS (Arzamasov et al., 2018), FOS (Ryan et al., 2005),
ribose (Pokusaeva et al., 2010) and cellodextrin (Pokusaeva et al.,
2011b). Nonetheless, other types of transcriptional regulation
have been reported to be involved in transcriptional control
of genes involved in carbohydrate metabolism. Examples are
represented by a GntR-type transcription factor (TF) for sialic
acid utilization (Egan et al., 2015), a so-called repressor open
reading frame kinase (or ROK) TF for raffinose and stachyose
metabolism (O’Connell et al., 2014), and a NagC/XylR-type
repressor involved in sulfated sugar metabolism regulation (Egan
et al., 2016). Therefore, LacI-type and other transcriptional
regulator families play an important role in the regulation of
bifidobacterial carbohydrate metabolism.

Central carbohydrate metabolism in bifidobacteria is
represented by the ‘Bifid Shunt’, which is regulated by two
LacI-type regulators, designated AraQ and MalR1 (Lanigan
et al., 2019), employing a mechanism that is reminiscent
to that reported for C. glutamicum (Wendisch et al., 2000).
This mechanism of global carbohydrate regulation may be
advantageous to bifidobacteria in the GIT environment by
allowing these gut commensals to quickly and effectively
respond to the various glycans that can be present in the GIT
at any given time.
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B. longum subsp. longum, AN INFANT
AND ADULT ASSOCIATED
BIFIDOBACTERIAL SPECIES

B. longum subsp. longum is a bifidobacterial species that is
associated with both the infant and adult gut microbiota
(Odamaki et al., 2018), while B. longum subsp. infantis is
typically associated with the infant gut (Turroni et al., 2012a). As
mentioned above a major factor that influences the bifidobacterial
species composition in the infant or adult gut is the nature of
the carbohydrates present in the diet, though other factors may
also affect the ability of bifidobacteria to colonize and survive in
the gut environment, as reviewed elsewhere (González-Rodríguez
et al., 2013). In the infant gut and unaffected by host enzymes,
HMOs are the main dietary glycans and these are mainly
composed of hexose sugars; for example, most HMOs contain
N-acetylglucosamine (GlcNac) and β1,3- or β1,4-linked lacto-
N-biose (LNB, Galβ1,3GlcNac) residues with a terminal lactose
at the reducing end (Smilowitz et al., 2014), and are frequently
decorated with fucose or sialic acid (Bode and Jantscher-Krenn,
2012). B. longum subsp. infantis is able to metabolize a broad
range of HMOs including those that are decorated with fucose
and sialic acid (Sela et al., 2008; Zabel et al., 2019). This is
due to B. longum subsp. infantis possessing a broad range of
ABC transporters specialized to import HMOs which are then
further processed by intracellular enzymes (Sela et al., 2008;
Wong et al., 2020). In contrast, the ability of B. longum subsp.
longum to metabolize HMOs is limited and generally this species
can only metabolize LNB and LNT (Galβ1-3GlcNAcβ1-3Galβ1-
4Glc), although some B. longum subsp. longum strains can utilize
fucosylated HMOs (Garrido et al., 2016). B. longum subsp.
longum strains that metabolize HMOs similarly encode ABC
transporters for their uptake but can also encode extracellular
enzymes to degrade HMOs including an extracellular lacto-
N-biosidase that cleaves LNT into LNB and lactose (Yamada
et al., 2017). B. longum subsp. longum therefore has both the
capacity to metabolize HMOs from breast milk in the infant
diet and plant-derived oligosaccharides present in the diet of
adults. This may be why the B. longum subsp. longum species
is found in both the infant and adult gut and is therefore an
important bifidobacterial species that is part of the gut microbiota
throughout the lifespan of the human host. This knowledge of
HMO utilization and plant-derived glycan utilization therefore
may be used to encourage an increase in the abundance in
bifidobacteria after the weaning and hopefully prevent the decline
in bifidobacteria as the human host ages.

CONCLUSION AND FUTURE
PERSPECTIVES

The GIT environment is a dynamic, highly competitive and
challenging ecological niche for bifidobacteria to colonize.
To further complicate matters, the diet of the human host
changes as we age, starting from breast milk in infancy to
complex plant glycans in adulthood. Therefore, in order to

survive the GIT environment bifidobacteria must be able to
metabolize complex plant-oligosaccharide carbohydrates and
most importantly choose the most metabolically efficient
carbohydrate source if it is to compete with other microbial
species in the GIT. Bifidobacteria represent a key genus among
the gut microbiota and are present in the gut throughout life
from infancy, adolescence, adulthood to old age. They are seen
as a general indicator of health due to their purported probiotic
properties. Therefore, as they decline with human host age it is
important to understand how bifidobacterial species adapt and
are able to metabolize plant-oligosaccharides more associated in
the adult diet. This knowledge may allow the opportunity to
increase the abundance of bifidobacteria in the adult and elderly
human host potentially benefiting it with the probiotic effects
attributed to bifidobacteria.

A key area in carbohydrate metabolism involves the question
of how dependent bifidobacteria are on other microbial species
(bacterial and/or fungal) to degrade complex insoluble plant
glycans into oligosaccharidic substrates? Previously, it has been
shown that growth of Ba. cellulosilyticus on arabinogalactan can
support growth of B. breve by release of galacto-oligosaccharides
(Munoz et al., 2020) demonstrating that cross-feeding occurs
between species. Further investigations are needed to precisely
assess the relationship between bifidobacteria and other species,
in particular members of the Bacteroides genus. Bacteroides
spp. are known for their ability to degrade complex plant
glycans (Cartmell et al., 2018), and they are called ‘messy eaters’
that extracellularly degrade glycans releasing oligosaccharides
for other GIT members, including bifidobacteria, to scavenge
(Porter and Martens, 2016). More detailed studies are needed
to understand these complex ecological interactions, which may
then allow rational strategies to be exploited for the development
of novel plant-derived oligosaccharide prebiotics.

Another area related to this research topic includes the
role of HCA metabolism by bifidobacteria. Previously, esterases
that cleave synthetic HCA substrates have been reported in
bifidobacteria (Raimondi et al., 2015; Fritsch et al., 2017;
Kelly et al., 2018). The gene encoding the CaeA esterase is
located in a locus predicted to be involved in AOS metabolism
(Arzamasov et al., 2018; Kelly et al., 2018). Removal of
HCAs from plant-derived oligosaccharides is hypothesized to
provide substrate access to GHs that might otherwise be
sterically hindered by HCA substitutions. However, a lack of
commercially available plant-derived oligosaccharide substrates
retaining the HCA decorations remains a challenge to ascertain
to what extent HCAs affect metabolism of complex plant-derived
glycans. Furthermore, do released HCAs, which in B. longum
subsp. longum happens intracellularly, provide any benefit to
bifidobacteria? In other heterofermentative bacteria HCAs has
been shown to act as external electron acceptors and their
presence in growth media results in higher intracellular ATP
levels (Filannino et al., 2014). HCAs also inhibit growth of certain
gut pathogens, such as Clostridium perfringens (Lee et al., 2006),
presumably due to membrane damage. However, how sensitive
bifidobacteria are to the effects of HCAs is currently not studied.

Finally, different plant-oligosaccharides derived from hemi-
celluloses and pectin have highly complex structures, yet in
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cases contain identical monomeric/oligomeric components
and glycosidic linkages. Additionally, bifidobacterial genomes
often contain multiple loci in different locations across the
genome dedicated to the metabolism of dietary carbohydrates.
It is likely that if bifidobacteria are provided with a buffet of
plant-derived oligosaccharides to metabolize in the gut they
must choose the most energetically favorable carbon source as
they are competing for resources with other members of the
microbiota. In future, more understanding of the bifidobacterial
transcriptional regulation of plant derived oligosaccharides
is needed and potentially this knowledge could lead to
better understanding of the prebiotic plant-oligosaccharides
preferentially utilized by bifidobacteria. This, however, requires
that plant oligosaccharides are purified to a high quality, that
the detailed structural (DP, covalent linkages and sidechain
substitutions) information of these oligosaccharides is known
and that sufficient amounts of oligosaccharides are purified
to allow growth and transcriptional analyses. Currently, plant
oligosaccharides are not widely available in large amounts at a
reasonable costs, while characterizing oligosaccharides requires
specialist techniques and expensive equipment such as mass-
spectrometry, HPLC, HPAEC-PAD and NMR. Furthermore,
following the acquisition of this information, animal models
would need to be employed to assess the prebiotic/bifidogenic

potential of a given oligosaccharide. In conclusion, the
ability of bifidobacteria to utilize a variety of plant-derived
oligosaccharides is an important characteristic of specific
members of this genus to colonize and survive in the adult gut.
Novel plant-glycan based prebiotics specific for bifidobacteria
could be developed in the future, though this will require further
research to fully understand plant-derived poly/oligosaccharide
metabolic capabilities exerted by bifidobacteria.
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