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Kurtosis fractional anisotropy, its 
contrast and estimation by proxy
Brian Hansen1 & Sune Nørhøj Jespersen1,2

The diffusion kurtosis observed with diffusion magnetic resonance imaging (dMRI) may vary with 
direction. This directional variation is summarized in the scalar kurtosis fractional anisotropy (KFA). 
Recent studies suggest that kurtosis anisotropy offers microstructural contrast not contained in other 
commonly used dMRI markers. We compare KFA to other dMRI contrasts in fixed rat brain and in 
human brain. We then investigate the observed contrast differences using data obtained in a physical 
phantom and simulations based on data from the phantom, rat spinal cord, and human brain. Lastly, 
we assess a strategy for rapid estimation of a computationally modest KFA proxy by evaluating its 
correlation to true KFA for varying number of sampling directions and signal-to-noise ratio (SNR) 
levels. We also map this proxy’s b-value dependency. We find that KFA supplements the contrast 
of other dMRI metrics – particularly fractional anisotropy (FA) which vanishes in near orthogonal 
fiber arrangements where KFA does not. Simulations and phantom data support this interpretation. 
KFA therefore supplements FA and could be useful for evaluation of complex tissue arrangements. 
The KFA proxy is strongly correlated to true KFA when sampling is performed along at least nine 
directions and SNR is high.

Diffusion weighted magnetic resonance imaging (dMRI) offers unrivalled sensitivity to tissue microstructure 
making it an important investigative and diagnostic tool. Traditional dMRI analysis has employed the diffu-
sion tensor model in which diffusion is assumed to be Gaussian; tissue microstructure, however, causes the spin 
probability distribution to deviate from normal. This deviation is therefore seen as an indirect microstructural 
marker. The diffusion kurtosis imaging (DKI) framework1 captures the deviation from Gaussianity and is an 
increasingly popular method to further the sensitivity of dMRI to microstructure. As with diffusivity the kurtosis 
may be directionally dependent. The anisotropy of the diffusion tensor2,3 is described compactly by the scalar 
fractional anisotropy, FA4. Various metrics of kurtosis anisotropy have been suggested5,6 but they do not provide 
information of the anisotropy of the kurtosis tensor alone as they include information from the diffusion tensor 
in the metric. So far, only few studies (e.g.7,8) have employed them, leaving the value of these kurtosis anisotropy 
metrics largely unexplored. A recently9,10 proposed measure of kurtosis anisotropy (the kurtosis fractional ani-
sotropy or KFA) is mathematically analogous to FA. This provides coherent definitions of the basic anisotropy 
markers derived from DTI and DKI so that KFA solely reflects the anisotropy of the kurtosis tensor without 
contributions from the diffusion tensor. KFA was studied extensively in11 using data from human brain and 
simulations to explore its contrast and compare KFA to previous kurtosis anisotropy metrics and the general-
ized fractional anisotropy12 calculated from an approximation of the diffusion orientation distribution function 
derived from DKI13,14. The scope of the present paper is limited to KFA and comparing its contrast to the contrast 
content of traditional dMRI metrics - including FA. Our comparison is based on data from fixed rat brain and  
in vivo human brain. We also perform an investigation of the observed contrast differences between FA and KFA 
using data obtained in a physical phantom and simulations based on data from the phantom, rat spinal cord, and 
human brain. The findings supplement and are consistent with the report in11. Lastly, we propose and evaluate 
a KFA proxy which has the advantage that it may be evaluated based on much less data than the true KFA and 
reconstructed rapidly without fitting. This proxy method could be suitable for the clinical setting where the time 
required to obtain true KFA from the kurtosis tensor may be prohibitive. We assess the KFA proxy by evaluating 
its correlation to true KFA for varying number of sampling directions and SNR levels. We also map the b-value 
dependency of the correlation between the proxy and KFA.
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Theory. In DKI the logarithm of the diffusion MRI signal ^S b nlog ( , ) is described by the Taylor expansion1:
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where b is the diffusion weighting applied along =n̂ n n n( , , )x y z  and subscripts label Cartesian components (e.g. 
i =  x, y, z). In our notation, summation over repeated indices is implied so that e.g. = ∑n n D n n Di j ij i j i j ij, . Here, 
the kurtosis tensor W is defined in terms of spin displacement moments as in1. Fitting Eq. (1) to appropriate dif-
fusion MRI data provides several metrics obtainable from the diffusion tensor D and the kurtosis tensor W, fore-
most the mean diffusivity =D trace(D)/3, the mean kurtosis MK15, and the mean of the kurtosis tensor 
=W trace(W)/510,16. Both mean kurtosis metrics have been shown to have diagnostic value e.g.17–19; see also 

more complete literature surveys in10,20. The diffusion tensor D allows assessment of the tissue anisotropy through 
the fractional anisotropy (FA) as4:

λ
λ

=
−

=FA DI3
2

D
D

3
2

std( )
rms( ) (2)

where λ  are the eigenvalues of the diffusion tensor, std denotes the standard deviation, and rms the 
root-mean-square value. In complete analogy a kurtosis fractional anisotropy (KFA) has been introduced based 
on the kurtosis tensor W9,10:

=
−KFA WW I
W (3)

Here, as well as in Eq. (2), double vertical bars ||A||2 =  < A, A>  signifies the Frobenius norm of the tensor. 
Drawing inspiration from the rightmost expression in Eq. (2) we propose that a useful approximation of KFA 
might be obtained from the directional variation of the apparent kurtosis ^W n( ) as:

=
^
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While conceptually reflecting the same information, the KFA proxy is not directly equivalent to the KFA defined 
in Eq. (3). Complete agreement between the two is therefore not expected, but the proxy might be useful in that 
it can be estimated without knowledge of the full tensor W as required in Eq. (3). The proxy definition is similar 
in form to the right-most expression in Eq. (2). However, no appropriate normalization factor is known for the 
KFA proxy and so the range of KFA and the KFA proxy cannot be expected to coincide either. It is not evident if 
this strategy would work and how many directions would be needed. However, a rapid estimation technique 
would perhaps facilitate exploration of the usefulness of KFA as a biomarker. The feasibility of the proxy strategy 
and its experimental dependency on number of sampled directions ̂n, choice of b-values and signal-to-noise ratio 
(SNR) is the subject of the final part of this study.

Results
Examples of D, FA, W , and KFA are provided in Fig. 1. Generally, the KFA is high where FA is high but KFA is also 
seen to possess high values in areas where FA is low e.g. in regions of the hippocampus and some areas of cortex.

This behavior is even more apparent in the data example from human brain shown in Fig. 2. Here direction 
encoded color FA map21 (top row), FA and KFA are shown in three consecutive axial slices. In both types of FA 
maps, a dark band is seen to go through the white matter (WM) region in a anterior-posterior direction (indi-
cated in one side by the arrows but seen in both hemispheres). The band is present in all three slices and is clearly 
inside anatomical WM, but the fiber arrangement in this bundle causes FA to vanish. In contrast, KFA only 
decreases slightly in these regions and is high in all WM areas but low in gray matter (GM) regions although not 
as low as FA. To further explore the information difference between KFA and typical dMRI metrics we list the 
linear correlation coefficients between KFA and D, FA, and W  for the data in Figs 1 and 2 in Table 1. Segmentation 
was performed based on FA as described in the methods. Generally the correlations are weak except for the cor-
relation between FA and as expected from visual inspection of the maps in Figs 1 and 2. However, even here the 
correlations are weak (0.5–0.6) most likely due to the regions where FA vanishes and KFA does not.

In the following, KFAs robustness to such fiber arrangements where FA ceases to provide information is 
explored. Firstly, we do this using a physical phantom (asparagus) with three orthogonal fiber directions present 
in equal proportions. Figure 3A shows a structural scan of the phantom clearly showing each fiber bundle in the 
3 ×  3 arrangement and each bundle’s fiber orientation. The remaining panels show parameter maps obtained from 
a voxel-wise fit of Eq. (1) to DKI data collected in the phantom.

For the analysis, we used the map of D from each image plane to segment out the water-containing back-
ground voxels. When the parameter maps of D, FA, W , and KFA are averaged over this mask we obtain a true 
average of each parameter in each image plane. If instead we average the DKI data (again using the mask based on 
D) for each diffusion encoding prior to fitting with Eq. (1) we obtain values corresponding to estimation based on 
low resolution scans with substantial fiber orientation heterogeneity below voxel level (mimicking a 3D orthogo-
nal fiber arrangement where FA is zero). These estimates are shown alongside the true mean values in Fig. 4. The 
behavior is consistent across all image slices: D is unaffected while the W  estimate obtained from voxel averaging 
prior to fitting is slightly higher than its true mean value. As expected for single fiber orientations both the average 



www.nature.com/scientificreports/

3Scientific RepoRts | 6:23999 | DOI: 10.1038/srep23999

true FA and KFA are high while FA almost vanishes when each diffusion encoding is averaged over voxels. In this 
case KFA also decreases compared to the true average but to a much smaller extent than FA.

Figure 1. Maps of D, FA, W , and KFA from a high resolution data set collected in fixed rat brain allows 
qualitative comparison of the contrast in provided by each metric.

Figure 2. FA and KFA in normal human brain. The top row shows the FA map with fiber direction encoded in 
the red-green-blue color scheme (red: left-right, green: up-down, blue: in-out of plane). A low intensity band is 
seen in both versions of the FA maps inside the WM (e.g. as pointed out be the red arrows). The band is present 
in all three consecutive slices shown. KFA in the same slices does not show this behavior.
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The analysis based on the physical phantom demonstrates the sensitivity of FA to the presence of multiple fiber 
orientations and also the relative insensitivity of KFA to these conditions. D and W  are almost immune to the fiber 
orientation heterogeneity. Theoretically, D is expected to remain constant due to linearity. Apparently, averaging 
the signal over fiber directions causes the signal to appear more non-Gaussian (perhaps due to increased diffusion 
heterogeneity from averaging over compartments) reflected in the slight increase in W . KFA on the other hand 
decreases slightly when the signal is averaged across directions possible due to smaller directional dependence in 
the averaged signal compared to a single fiber. As expected then, FA is the only parameter to show inability to 
accommodate these complex diffusion profiles. To further explore this behavior we performed a series of simula-
tions based on data from the physical phantom, high resolution DKI data from rat spinal cord and human brain.

Figure 5 shows the results of simulations investigating KFA behavior with increasing tissue complexity. The 
simulated tissue composition is described by the volume fraction index VI which is 1 when only a single fiber 
direction is present (volume fraction 1) and decreases to zero when three orthogonal fiber directions exist in 
equal amounts (each with volume fraction 1/3). The VI is defined in the methods section where its behavior is 
also illustrated. In the simulations we also evaluate the behavior of other diffusion metrics as fiber orientation 
heterogeneity increases. The figure shows results of simulations based on the data from the physical phantom 
(panel A), DKI data of rat spinal cord (panel B), and normal human brain (panel C). Details on the regions/voxels 
used in the simulations are provided in the methods section. The simulations show the behavior of D, FA, W , and 

Rat brain Human brain

Linear correlation 
coefficient D-KFA

Linear correlation 
coefficient FA-KFA

Linear correlation 
coefficient W-KFA

Linear correlation 
coefficient D-KFA

Linear correlation 
coefficient FA-KFA

Linear correlation 
coefficient W-KFA

All tissue 0.02 0.66 − 0.02 − 0.42 0.54 0.00

WM 0.05 0.48 − 0.15 − 0.15 0.23 0.08

GM − 0.09 0.22 − 0.40 − 0.39 0.17 − 0.30

Table 1. The linear correlation coefficients between KFA and D, FA, and W  for the rat brain data in Fig. 1 
and whole human brain (including the data in Fig. 2).

Figure 3. The physical phantom employed contains three orthogonal fiber directions in a 3 × 3 
arrangement as seen in the structural scan. Maps of D, FA, W , and KFA are shown in the remaining panels. 
Water surrounds the fibers explaining the high intensity background in the D map. These regions were used to 
segment out the background for the further analysis.
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KFA with increasing tissue complexity. In the graphs each parameter is normalized by its maximum value in the 
simulation. Simulation results are seen to yield similar results for all three systems: for a single orientation 
(VI =  1) both FA and KFA are high but FA is seen to decrease with increasing tissue complexity whereas KFA is 
less affected and does not vanish even for equal fiber volume fraction 1/3 (VI =  0) where FA vanishes. The simu-
lations also show W  to increase slightly with increasing complexity for simulations based on preclinical data 
(panels 5A–B). In the simulations based on human data (panel 5C) the increase in W  is more pronounced. We 
attribute this behavior to the different experimental conditions under which the data for the simulations were 
acquired: plant stalks/fixed tissue and strong gradients (5A–B), and in vivo human brain with weaker gradients 

Figure 4. Comparison of the robustness of D, FA, W , and KFA to fiber orientation heterogeneity across six 
image planes of the physical phantom. In each panel white bars correspond to the true parameter average. The 
black bars show the parameter values obtained when the DKI data from each diffusion encoding is averaged 
across voxels prior to fitting. This mimics the situation where low imaging resolution causes a voxel to have 
substantial fiber direction heterogeneity. The effect is seen to vary between parameters but clearly FA is most 
strongly affected and KFA much less so. In contrast, D and W  are almost unaffected.

Figure 5. Simulations of the effect of increasing fiber orientation heterogeneity based on data from the physical 
phantom (A), fixed rat spinal cord (B), and WM in human brain (C). The curve labeled KFA199 shows the 
behavior of the KFA proxy based on an estimation from 9 directions. Overall, the observed effects are the same 
although effect size varies: D and W  are unaffected by the increasing heterogeneity, contrarily KFA is slightly 
sensitive to the fiber orientation mixture but not as severely as FA which is seen to vanish almost completely 
when the fibers directions are present in equal proportions. Each parameter is normalized by its maximum 
value.
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(affecting DWI encoding timings). We note, however, that the overall behavior is the same. D is unaffected by the 
mixture level. While overall behavior is the same in the three systems the simulations based on phantom data 
(Fig. 5A) are seen to be noisier than the other two simulations (Fig. 5B,C). This is because the phantom simula-
tions rely on measured signals to a much higher degree than the other two simulations. This introduces more 
noise into the simulations which naturally affects the non-Gaussian metrics W  and KFA much more than the 
diffusion tensor derived metrics D and FA.

Fast estimation of KFA. Eq. (4) provides a strategy for obtaining a KFA proxy that can be obtained without 
the need for data fitting. However, the relation between this proxy and KFA is not direct and therefore we inves-
tigate how strongly the proxy correlates with KFA and how the correlation depends on acquisition details such as 
number of sampling directions, choice of b-values and signal-to-noise (SNR) levels.

Firstly, Fig. 6 shows the correlation strength between true KFA and the KFA proxy assessed using a range of 
sampling directions and SNR levels. In the figure, results from separate investigations of WM, GM and all tissue 
combined are shown (see Methods for details on segmentation). The overall behavior is the same with low corre-
lation between KFA and the proxy at SNR levels below 50 in all three cases. Almost identical performance is seen 
for SNR levels 80 and 100 with correlation strengths consistently above 0.8 when the number of sampled direc-
tions ≥ 9. Correlation is best in WM, where a proxy estimation based on 25 directions at SNR =  80 performs as 
well as the ideal case of infinite SNR. For the case where both tissue types are present (Fig. 6C), the same behavior 
is seen.

To further assess the proxy’s correlation to true KFA the bottom row of Fig. 6 shows KFA (Fig. 6D) alongside 
the idealized situation where simulations are used to estimate the proxy from 86 sampling directions at infinite 
SNR (Fig. 6E). As expected the obtained value ranges are not identical since the proxy is not equivalent to true 
KFA. The maps shown in Fig. 6D,E span nearly the same range of values (0.05–1 for KFA and 0.03–1 for the 
proxy) with nearly identical standard deviations of 0.23 for KFA and 0.22 for the proxy. However, comparison 
of the histograms of these two maps (data not shown) reveals a pile up of low to intermediate (0.2–0.4) values in 
the proxy causing a lower mean value for the proxy of 0.36 compared to 0.49 for true KFA. The proxy is seen to 
assume lower values than true KFA in the same WM regions where FA assumes low values (the dark bands) in 
Fig. 2. This behavior is predicted by the simulations (Fig. 5B,C), where the proxy estimated from nine directions 
(KFA199) is seen to decrease more than true KFA for low VI. However, even here the FKA proxy still indicates 
higher diffusion anisotropy than FA in configurations where diffusion anisotropy is expected. For these reasons 
we show the maps on different scales to expose similarities and differences. A common way of comparing contrast 
in images is by way of the root-mean-square (RMS) contrast22. Normalizing both maps to the range 0–1 we obtain 
very similar RMS contrasts for the two maps: 0.24 for KFA and 0.22 for the proxy. Overall, the contrast offered 
by the proxy is seen to be quite similar to true KFA and the linear correlation coefficient between the two maps 
in Fig. 6D,E is 0.97.

Figure 6. Correlation strength between KFA and the KFA proxy for a range of sampling directions and 
SNR levels at b = 0. Panel (A) shows the correlation for WM only, (B) shows GM behavior, and panel  
(C) shows the behavior for all tissue voxels. The bottom row compares KFA (D) to the idealized situation where 
the proxy is estimated from 86 sampling directions at infinite SNR (E). The proxy is not equivalent to true KFA 
and therefore the maps are shown on different scales. This, however, does not affect contrast offered by the 
proxy, which is seen to be quite similar. The similarity is also reflected in the linear correlation coefficient of 0.97 
between the two maps.
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Having thus established the correlation between KFA and the KFA proxy as well as the proxy’s requirements 
in terms of SNR and encoding directions we turn to the choice of b-values (b1 and b2) of the two shells required 
for proxy estimation. Figure 7 shows the linear correlation coefficient as a function of b1 and b2 obtained from 
simulation (simulation SNR =  100 at b =  0, 9 encoding directions, all tissue types included). We note that b1 =  b2 
is not a valid combination which explains the estimation behavior in the vicinity of the b1 =  b2 line in the map. 
From the map we see that choosing a large b2-value (b1 ~ 1 ms/μm2, b2 ~ 5 ms/μm2) produces a proxy with a cor-
relation to true KFA of ~0.93. However, this is well outside the b-value range typically employed in DKI due to 
the non-negligible influence of higher order effects at b >  3 ms/μm2 15. The b-value choice recommended for fast 
kurtosis imaging in20 (b1 =  1 ms/μm2 and b2 =  2.4–2.6 ms/μm2) provides a correlation of ~0.9, meaning that a 
good KFA estimate can be obtained from the scheme in20 given sufficiently high SNR. Using 25 directions the 
correlation increases slightly to 0.93 for these b-values and peaks at 0.96 for b1 =  1 ms/μm2, b2 =  ~5 ms/μm2. For 
SNR =  60 (at b =  0) these same b-value combinations provide estimates with correlations of 0.80 (nine directions) 
and 0.85 (25 directions) respectively. To illustrate the method performance at a more standard SNR level Fig. 8 
shows a realization of the proxy acquisition using 9 directions, b1 =  1 ms/μm2 and b2 =  2.6 ms/μm2 which had SNR 
at b =  0 just below 40. The data for this was acquired as part of the human acquisition that produced Fig. 2 and 
the same slices are shown. CSF has been segmented out in the proxy maps to ease comparison since estimation in 
these regions are dominated by the low SNR at b2. The linear correlation coefficients between KFA and the proxy 
for the three slices shown are (left to right): 0.55, 0.54, and 0.56 in agreement with the simulations in Fig. 6C. 
Figure 9 shows a realization of the proxy acquisition in fixed rat brain also using 9 directions (b1 =  1 ms/μm2  
and b2 =  2.6 ms/μm2). The linear correlation between the maps in Fig. 9A,B is 0.49. In this data set SNR at b =  0 
was approximately 75 and so the performance is seen to be in agreement with the simulations based on the fixed 
rat brain data in Fig. 9C. This indicates different b-value and SNR requirements for the proxy scheme in fixed 

Figure 7. Linear correlation coefficient between KFA and the KFA proxy evaluated from nine encoding 
directions as function of b-values for the two shells b1 and b2. 

Figure 8. Comparison of true KFA to a proxy acquisition using 9 directions, b1 = 1 ms/μm2 and b2 = 2.6 ms/
μm2 at SNR at b = 0 just below 40 in the same slices as shown in Fig. 2. CSF has been segmented out in the 
proxy maps. The linear correlation coefficients for the three slices are (left to right): 0.55, 0.54, and 0.56 in 
agreement with the simulations.
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tissue and in vivo. A b-value optimization similar to Fig. 7 for the nine direction KFA proxy in fixed rat brain 
provides optimal b-values at b1 =  1.6 ms/μm2 and b2 =  5.0 ms/μm2 providing a correlation of 0.83.

Discussion
Enhancing dMRI’s sensitivity to microstructure and providing an ability to distinguish various microstructural 
compositions of tissue is important for improved diagnostics. Many promising dMRI strategies employ non-
standard spin preparations23–26 to reduce scan time and provide alternative diffusion contrasts. However, these 
techniques may not be available to most users and they may not be straightforward to implement on clinical 
systems. The KFA is a fruitful alternative because it may be estimated from DKI acquisitions using standard 
dMRI sequences and offers contrast in areas where the tissue’s fiber composition complexity causes FA to fail 
as a reporter of tissue anisotropy. Establishing a direct biological interpretation of KFA presents an interesting 
challenge. Studies comparing MR microscopy directly to tissue histology as done for DTI in27–29 might serve as 
inspiration for such efforts.

After its original proposal in9,10 KFA was studied extensively in11 where its use was motivated and some fea-
tures of KFA were demonstrated by comparison to FA using human data and simulations. The contrast differ-
ences between KFA and other diffusion maps noted here in rat hippocampus (Fig. 1) were also observed in the 
deep brain structures lenticular nucleus and thalamus in human brain in11. That study also demonstrated KFA’s 
robustness to fiber configurations where FA vanishes despite a high degree of angular dependence in the diffu-
sion profile. Our results also demonstrate this behavior in human brain (Fig. 2) and a phantom built specifically 
to demonstrate this behavior (Fig. 4), as well as in simulations using phantom data, high resolution ex vivo data 
from rat spinal cord, and human brain (Fig. 5). Findings by Billiet et al.7 indicated the kurtosis anisotropy to be 
unaffected by age related effects on brain microstructure. However, the precise definition of kurtosis anisotropy 
employed in that study was not reported, although it was possibly similar to the ref. 5 definition. That definition 
was compared to KFA in11 (where it was referred to as KAσ), where they were observed to offer markedly different 
contrast. However, if KFA is indeed insensitive to age related effects, it would be very important for the unbiased 
study of brain pathology in the elderly, where FA is strongly affected by age30 with an estimated decline of 3% per 
decade in the frontal lobe. Another potential application of KFA is as a supplement to brain fiber tractography, 
where its robustness to fiber crossings may provide information to alleviate the fiber crossing problem. Inclusion 
of non-Gaussian effects was shown to offer improved fiber direction profiles already in13, but so far no studies 
have explored the effect of including KFA in tractography.

While some of the above mentioned properties of KFA were already demonstrated in previous work, we con-
firmed them here using an extensive range of model systems. This serves both to supplement earlier work and as 
a basis for evaluation of the KFA proxy proposed in Eq. (4). The motivation for proposing the proxy is that (like 
conventional DKI in general) its evaluation may be too time consuming for the acute setting because its evalua-
tion requires a large amount of data and non-trivial post-processing to reconstruct the full kurtosis tensor from 
which it is calculated. This makes KFA an unlikely choice for anisotropy estimation in situations where time is of 
essence such as the acute setting. The potential clinical utility of KFA may therefore go unexplored if not a rapid 
estimation scheme exists. One prominent example of this is acute stroke, where diagnosis may be improved by 
methods offering enhanced sensitivity to tissue changes but where imaging time is strongly limited due to patient 
concerns. Although the proposed KFA proxy does not directly correspond to true KFA obtained from W, it may 
still be useful in the acute setting where short acquisition and post-processing time may be more important than 
true KFA estimation as long as important aspects of KFA contrast is preserved by the proxy. Our investigation 
showed that the correlation between KFA and its proxy is excellent (> 0.9) in both WM and GM under ideal 
conditions where SNR is high and many sampling directions are acquired (Fig. 6). Relaxing these conditions we 
found that SNR is the main determinant for proxy performance and that the proxy correlates well with KFA even 
for as few as nine sampling directions and an SNR of approximately 80 at b =  0. However, at typical clinical system 
SNR levels of ~40 at b =  0 the proxy’s correlation to true KFA was seen to be relatively poor in agreement with 
simulations. Interestingly, in rat we saw similar performance (linear correlation of approximately 0.5 between the 
proxy obtained with 1-9-9 and true KFA, Fig. 9A,B), although in this data set the SNR was higher (~75) at b =  0. 

Figure 9. Comparison of true KFA (A) to a proxy acquisition (B) using 9 directions, b1 =  1 ms/μm2 and 
b2 =  2.6 ms/μm2 in rat brain at an SNR at b =  0 of approximately 75 in the same slice as shown in Fig. 1. The 
linear correlation coefficient between these maps is 0.49 in agreement with simulations of proxy estimation 
efficiency in fixed tissue (C). Still, some contrast similarity remains, particularly in areas with high KFA.
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This behavior is in agreement with simulations (Fig. 9C) indicating different SNR requirements. Further analysis 
revealed vastly different optimal b-values for the KFA proxy in fixed brain tissue and in vivo. This is not too sur-
prising since fixation is known to alter tissue properties such as diffusivities and membrane permeabilities. Other 
causes of this behaviour may be differences in the size of structures in fixed rat brain and human brain. These 
effects all cause the tensors D and W that we probe to be quite different in the two cases. Furthermore, differences 
in encoding beyond b-value (combinations of gradient strengths and diffusion timings) employed on pre-clinical 
and clinical systems may contribute also as noted in connection with results in Fig. 9.

We note that the b-values (b1 =  1 ms/μm2, b2 =  2.4 ms/μm2) used in simulations for in vivo performance eval-
uation are optimized values, and that the same b-values are then used for ex vivo evaluation. The b-values are used 
because these are the values that would most likely be employed for 1-9-9 estimation ex vivo but here full estima-
tion of D and W is feasible so the proxy is less valuable in the ex vivo case. While these b-values were also found 
to be optimal for 1-9-9 estimation of W  in fixed tissue in Ref. 20, they need not be optimal for FKA proxy estima-
tion ex vivo where our analysis showed rather high optimal values of b1 =  1.6 ms/μm2 and b2 =  5.0 ms/μm2. These 
b-values are high but in fixed tissue diffusivities are much lower than in vivo so the b-values are still within the 
feasible range for DKI <b DW( 3/ ). This means that if the proxy method is to be used in fixed tissue a 1-9-9-9 
implementation would be needed with the nine directions acquired at one set of b-value pairs for estimation of D, 
W , and FA and another b-value pair for proxy estimation of KFA.

In humans, the proxy method fares better and although the SNR requirement is high, estimation with nine 
directions is possible meaning that KFA may be properly evaluated as part of fast kurtosis methods such as10,16,20 
which already provide fast and robust estimates of D, W , and FA. This is particularly encouraging because a recent 
study31 applying a fast kurtosis method in an animal model of acute stroke found it to be “capable of capturing 
heterogeneous diffusion and kurtosis lesions in acute ischemic stroke and thus is suitable for translational appli-
cations in the acute stroke clinical setting”. This is in agreement with previous studies employing traditional kur-
tosis methods in the assessment of stroke17,32–34. In combination with fast imaging strategies (e.g. multi-slice DWI 
imaging35), the 19 images required for fast estimation of D, W , and FA as shown in20 may be obtainable with 
enough averaging to provide sufficiently high SNR to also allow a robust estimation of KFA by proxy all within an 
acquisition time suitable for the acute setting. An optimized protocol is the subject for future work.

Outside of clinical imaging, the principles of the protocol may also be of use e.g. in diffusion weighted spec-
troscopy where it is possible to probe the diffusion properties of compartment specific reporter molecules36. Such 
techniques might be another example where acquisition of a full diffusion kurtosis data set is not feasible but 
where a strategy providing four metrics from 19 high SNR spectra might be valuable.

Conclusion
We explored the contrast provided by KFA in a number of model systems and in human brain. Phantom meas-
urements and simulations were used to confirm the different behaviors of the DKI metrics in the presence of 
fiber distribution heterogeneity where FA fails as observed in human brain. KFA can therefore supplement FA in 
assessing tissue anisotropy and may therefore be useful for assessment or identification of complex fiber arrange-
ments. A KFA proxy was suggested and a compact strategy for its estimation was evaluated. The proxy was found 
to correlate strongly with true KFA even for as few as nine sampling directions in high SNR conditions. In princi-
ple, this makes it possible to integrate estimation of the KFA proxy into the fast kurtosis scheme in20.

Methods
All animal work was performed in accordance with relevant guidelines and regulations concerning animal exper-
iments. All animal experimental protocols were approved by the Danish The Animal Experiments Inspectorate 
(Dyreforsøgstilsynet). Human data acquisition was performed in accordance with the Declaration of Helsinki. 
All human experimental protocols were approved by the local ethics committee for research (De videnskabset-
iske Komitéer for Region Midtjylland). Informed consent was obtained from all human subjects (one) prior to 
scanning. Smoothing and spatial filtering was not applied in any of the data sets. Throughout, SNR was calculated 
as the average signal in a homogenous region in the object imaged divided by the standard deviation of the sig-
nal in a background region, corrected for Rayleigh distribution in a standard manner37. Unless otherwise stated 
reported SNR levels were evaluated at b =  0.

MRI data obtained in fixed rat spinal cord. An adult male Wistar rat was euthanized and exsanguin-
ated during intra-aortic perfusion fixation with isotonic saline containing heparin (10 IU/mL), followed by 4% 
paraformaldehyde in phosphate-buffered saline (PBS) (pH 7.4). A section of spinal cord including the cervi-
cal enlargement was then dissected out and stored in 4% PFA for weeks prior to imaging. The spinal cord seg-
ment was washed in PBS for 24 hours prior to MR scanning to improve signal by removal of excess fixative. 
For imaging, the tissue was placed in a 5 mm NMR tube. Imaging was performed on a Bruker Biospec 16.4T 
(Bruker Biospin, Germany) spectrometer equipped with microimaging gradients with a strength of 3T/m. Data 
was acquired using a 5 mm saddle coil. DWI data acquisition was performed using a standard DW spin echo 
sequence. A total of 17 b-values equally distributed from 0–15 ms/μm2 were acquired. At each b-value, data 
was acquired along 9 gradient directions, so that the gradient directions at non-zero b-values in combination 
form a 144 point spherical design38. Imaging parameters were: TE =  15.3 ms, TR =  2500 ms, diffusion timings 
δ /Δ =  2/8 ms, 3 averages. Acquisition time per b-value: 3 hrs 36 min. Twenty-five image slices were acquired at a 
resolution of 23 μm ×  23 μm ×  120 μm, matrix size 192 ×  192.

MRI data obtained in fixed rat brain. This specimen was obtained using the same fixation protocol 
as above. After perfusion fixation the brain was removed and immersion fixed in fresh 4% paraformaldehyde 
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solution for weeks. Prior to imaging, the brain was washed in PBS for 24 hours to improve signal by removal of 
excess fixative. Data was acquired using a Bruker Biospec 9.4T (Bruker Biospin, Germany) MRI system equipped 
with a 15 mm quadrature coil. DWI data acquisition was performed using a standard DW spin echo sequence. 
A total of 15 b-values ranging from 0–3 ms/μm2 in steps of 0.2 ms/μm2 were acquired. At each b-value, data 
was acquired along 33 gradient directions. These directions were obtained by combination of a 3-dimensional 
24-point spherical 7-design38 and the nine directions identified for fast estimation of mean kurtosis in10. Imaging 
parameters were: TE =  23.3 ms, TR =  4 s, diffusion timings δ /Δ =  4/14 ms, 2 averages. Fifteen image slices were 
acquired at a resolution of 100 μm ×  100 μm ×  500 μm, matrix size 128 ×  128. SNR was approximately 75 at b =  0 
evaluated using the mean signal across all tissue.

MRI data collected in a physical phantom. Here, we wanted to construct a physical phantom with fiber 
bundles equally distributed along the x̂, y, and ẑ  directions. This phantom was used to mimic one imaging voxel 
with complex fiber distribution while at the same time allowing us to resolve each fiber direction separately. For 
this, a phantom was built using fresh asparagus stems. Stems were cut into 8 mm long sections and placed inside 
a cubic plastic container in a 3 ×  3 design (see Fig. 3A). The box was then placed in an in-house built sample 
holder made from PE foam allowing the sample to be held tightly in place inside the MR coil. Imaging was per-
formed on a horizontal 9.4T Bruker Biospec system using a 40 mm quadrature coil. This coil is intended for 
mounting on an animal bed, but for these scans it was mounted in the magnet bore using a coil holder developed 
in-house. The scan protocol included an anatomical/structural scan and a DKI acquisition. The structural data 
was acquired with a FLASH sequence (TE =  5.4 ms, TR =  350 ms) in seven 1 mm thick slices with an in-plane 
resolution of 100 μm ×  100 μm, matrix size 280 ×  280. Diffusion data was acquired using a standard diffusion 
weighted spin echo sequence. Data was recorded in the same seven slice planes as the structural data but with a 
lower in-plane resolution of 427 μm ×  427 μm, matrix size 64 ×  64. Imaging parameters were TE =  70.6 ms, 
TR =  2700 ms, diffusion timings δ /Δ =  6/60 ms, 4 averages. Fifteen encoding directions were obtained at 
b-values of 0, 0.5, 1.0, 1.8, 2.5, 3.5 ms/μm2. The encoding directions were obtained from a 15 point spherical 
design38.

Human MRI data. Human data was acquired in one normal volunteer using a Siemens Trio 3T equipped 
with a 32 channel head coil and a double spin echo DW EPI sequence. Motion of the subject’s head during acqui-
sition was avoided by padding inside the coil. DWI data was recorded at b =  0 ms/μm2, and along 33 directions at 
b-values from 0.2–3 ms/μm2 in steps of 0.2 ms/μm2. The encoding scheme was constructed as a combination of a 
24 point spherical design38 and the nine directions identified for rapid kurtosis estimation in10. CSF suppression 
(inversion recovery) was employed as recommended in39. Imaging parameters were TR =  7200 ms, TE =  116 ms, 
TI =  2100 ms, 19 consecutive slices were acquired at isotropic resolution of 2.5 mm, matrix size 96 ×  96. SNR ~ 39 
at b =  0 evaluated using the mean signal across all tissue types.

Phantom data. The data from physical phantom was processed in two different ways. First, Eq. (1) was fitted 
to the data on a voxel-by-voxel basis producing maps of D, FA, W , and KFA as before. Secondly, voxels outside the 
stems were masked out based on the D map from the voxel-wise fit ( > . µD m1 7 /ms2  excluded). Data from each 
diffusion encoding was then averaged across this mask and the averaged data was then fit to Eq. (1) again produc-
ing estimates of D, FA, W , and KFA. Finally, parameter values from the voxel-wise fit were averaged across the 
same mask. One of the seven image planes acquired was omitted from the analysis due to partial volume effects at 
the top of the phantom.

Data processing. All data sets were evaluated visually for quality (artifacts and subject movement). No arti-
facts (eddy currents or otherwise) were observed. Due to the padding around the subjects head, image registra-
tion was found to be unnecessary. All fits were performed using non-linear least squares optimization in Matlab® .

For DKI parameter estimation Eq. (1) was fitted to the data after normalization to the b =  0 image so that the 
fitted signal S(b)/S(b =  0) was in the range 0–1. Fitting was performed using non-linear least squares (lsqcurvefit 
with the ‘trust-region-reflective’ algorithm) as implemented in Matlab® . From this fit the full tensors D and W 
were obtained, and from these all relevant metrics were calculated as described above. This analysis was per-
formed in all the data sets described above. When tissue segmentation is used FA ranges were used to segment 
the tissue into low anisotropy areas (dominantly GM) in the range 0.1 <  FA <  0.3 and high anisotropy (WM, 
0.6 <  FA <  1) as in20.

Simulating the effect of increasing tissue complexity on diffusion parameters. A voxel of high 
FA was chosen in both the rat spinal cord data and the human data set (Fig. 10B,C in Methods). Based on position 
and FA value, these voxels are assumed to contain the signal from a bundle of very uniformly oriented fibers. A fit 
of a single fiber model40 in these voxels was then used to generate DWI signals from isolated fiber bundles ori-
ented along x̂, ŷ, and ẑ. The signal was simulated along the 33 directions described above at each of the b-values 
0.1–3.5 ms/μm2 in steps of 0.2 ms/μm2. For the case of the rat spinal cord data only b-values up 5.5 ms/μm2 were 
employed in the single fiber fit. The synthesized signals (termed Sx, Sy, and Sz) were then mixed into a series of 
combined signals ranging from the signal from one single fiber direction (α  =  0) to signal containing equal 
amounts (α  =  1/3) of signal from the three fiber orientations. The mixed signals were produced in the interval 
α  =  1/3 in steps of 0.03:

α α α= ⋅ + ⋅ + − ⋅^ ^ ^ ^S b n S b n S b n S b n( , ) ( , ) ( , ) (1 2 ) ( , ) (5)mixture x y z
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The DKI model (Eq.(1)) was then fitted to each of these mixture signals and the metrics D, FA, W  and KFA were 
calculated from each based on the tensors D and W as described in the theory section. Identical simulations were 
carried out with data from the physical phantom. Here, however, signals from fiber bundles along x̂, y, and ẑ  are 
directly available. Each signal component Sx, Sy, Sz was therefore obtained from regions of interest (ROIs) contain-
ing the stalks along each of the primary directions. Data from each bundle direction was normalized and then 
averaged across voxels. The regions/voxels used in the simulations are shown in Fig. 10A–C.

To construct a volume fraction index describing the fiber mixture we set up a diagonal tensor V with the vol-
ume fractions along the x̂, y, and ẑ  axis on the diagonal. The structure of the simulated tissue may then be 
described by the volume fraction index VI calculated in complete analogy to FA (Eq. (2)) except with the matrix 
V instead of D. A VI value of one would then describe a single fiber direction whereas equal amounts of fiber 
along the three axes would result in a VI of zero. The behavior of VI in our simulations is illustrated in Fig. 10D.

Simulations for evaluation of the KFA proxy. SNR and encoding direction dependency. The fit to the 
human data described above was used for this part. From this fit W was obtained in each voxel and true KFA cal-
culated using Eq. (3). This KFA map was used as reference in the simulations. Also using this fit, the DKI model 
(Eq. (1)) was used to simulate two shell acquisitions at b1 =  1 ms/μm2, and b2 =  2.5 ms/μm2. The b-values were 
chosen to follow the recommendations in20. In this manner, several two shell data sets were generated using sam-
pling schemes with varying number of sampling directions: 3, 5, 9, 15, 25, 36, 46, 65, and 86, all sampling schemes 
generated using the tool available at http://www.emmanuelcaruyer.com/q-space-sampling.php. For each sam-
pling scheme data sets were generated with varying levels of added Rician noise using 500 noise realizations for 
each SNR level. The KFA proxy was then estimated from all generated data sets and the correlations to the ‘true’ 
KFA from the ground fit set assessed and averaged over noise realizations. Simulations were performed based on 
both data from normal human brain (Fig. 6) and fixed rat brain (Fig. 9).

b-value dependency. For the b-value optimization the same fit to the human data was used as a basis for the 
 simulations. A total of 125 random pixels across the brain were used for the simulation. Here the b-value combi-
nation was varied for a fixed number of sampling directions and a fixed SNR. For each b-value combination the 
linear correlation between the true KFA and the simulated KFA proxy over 500 noise realizations and the average 
linear correlation coefficient was then color coded onto the b1-b2-plane.

Figure 10. Panels (A–C) show the data basis for the simulations of the effect of increasing fiber orientation 
heterogeneity. Panel (A) shows the asparagus stalks in the phantom. ROIs were placed over each of the nine 
stalks and grouped by fiber orientation along x,y, and z with grouping indicated by the color coded region 
outlines. Panel (B,C) show FA maps obtained from microimaging of fixed rat spinal cord and from human  
brain respectively with the high anisotropy voxels that were used in the simulations outlined in red. Panel  
(D) illustrates the behavior of the volume fraction index (VI) with increasing fiber orientation heterogeneity.

http://www.emmanuelcaruyer.com/q-space-sampling.php
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