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CORRESPONDENCE

Methylome analysis and whole‑exome sequencing reveal that brain 
tumors associated with encephalocraniocutaneous lipomatosis are 
midline pilocytic astrocytomas
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Introduction

Encephalocraniocutaneous l ipomatosis  (ECCL; 
[MIM:613001]) is a rare sporadic RASopathy due to one of 
two mutually exclusive fibroblast growth factor receptor 1 
(FGFR1) mutations p.N546K or p.K656E. These activating 
hotspot mutations are identified in affected tissues, but not 
in the peripheral blood of ECCL patients, and are likely the 
result of post-zygotic constitutional mosaicism promoting 
locally constitutive activation of the RAS-MAPK pathway 
[1]. The same FGFR1 mutations occur in subgroups of spo-
radic low-grade gliomas (LGG) [7, 10, 12] indicating prob-
able intersection between ECCL and tumorigenesis, possi-
bility further substantiated by reports of brain tumors in nine 
ECCL cases with wide-ranging histopathological subtypes 
[1–3, 5, 6, 8, 9, 13].

To evaluate the pathological and genetic landscape of 
these brain tumors in ECCL, we acquired five of these cases 
(Suppl. Table 1 Online Resource 1 and 4), representative 
H&E and MRI for each provided in Suppl. Fig. 1 (Online 
Resource 3). Four were originally reported as LGG, either 
pilocytic astrocytomas (PA) (ECCL1, ECCL2) [3, 13], 
papillary glioneural tumor (PGNT) (ECCL3) [9], or dys-
embryoplastic neuroepithelial tumor (DNET) (ECCL5) [6], 
while ECCL4 was reported as a glioblastoma [5]. Blinded 
histopathological review resulted in re-classification of the 
PGNT/ECCL3 as a pilomyxoid astrocytoma (PMA), and the 
DNET/ECCL5 as PA. DNA methylation analysis [4] using 
hierarchical clustering and t-SNE analysis with 75 reference 
cases representing nine tumor subclasses [11] revealed that 
three out of five tumors are midline PAs, and subcluster 
with FGFR1-mutated midline PAs (Fig. 1a; Suppl. Fig. 2 
Online Resource 3): ECCL1 and ECCL2 showed high clas-
sifier scores for PA (0.98 and 1.00, respectively). ECCL3 
had a low score (0.09) likely due to normal tissue, but still 
reliably clustered with PAs. ECCL4 clustered with the rare 
subgroup of recently described methylation class anaplastic 
astrocytoma with piloid features (MC-AAP) [11], a clas-
sification further substantiated by the CDKN2A/B deletion 
identified in this sample (Suppl. Fig. 3 Online Resource 3). 
ECCL5 received the highest methylation classifier score 
for PA (0.43). Hierarchical clustering further suggested an 
FGFR1-mutated midline PA, while on t-SNE analysis, this 
tumor resembled DNETs (Suppl. Fig. 2 Online Resource 
3), mirroring the histological dilemma between DNET and 
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PA for this tumor, two entities of the spectrum of FGFR1-
mutant brain tumors.

Whole-exome sequencing on these five tumors and 
matched peripheral blood available from three patients 
(ECCL1, 2, 4) identified FGFR1 K656E (ECCL1, ECCL2) 
and FGFR1 N546K (ECCL3, ECCL4, ECCL5) (Suppl. 
Fig. 4 Online Resource 3, Suppl. Table 2 Online Resource 
2). All five tumors showed additional concurrent alterations 
in FGFR1/RAS/MAPK pathway genes, including NF1, 
KRAS, PTPN11, and FGFR1 mutations (Fig. 1b). Two 
cases harbored a second mutation in FGFR1: ECCL3 had 
confirmed in cis FGFR1 N546K/K656N mutations (Suppl. 
Fig. 5 Online Resource 3); ECCL1 had concurrent somatic 
FGFR1 K656E/V561M mutations possibly also in cis 
based on a previous report of similar in cis FGFR1 com-
bination in an ECCL PA [1], even if we could not confirm 
this due to unavailability of material. ECCL2 had PTPN11 
E69K and ECCL5 KRAS Q61H mutations, both previously 
identified in sporadic PAs [11, 14]. Also, co-occurence of 
FGFR1/PTPN11 mutations has been described in a small 
subset of PAs [7]. In ECCL4, we identified two addi-
tional somatic NF1 K2375N and ATRX Q254X mutations 
(Fig. 1b, Suppl. Table 2 Online Resource 2), a pattern 
which, in addition to CDKN2B/A deletion, the high-grade 
histological features and older age of ECCL4 is concordant 
with what has been described in MC-AAPs [11].

Finally, somatic mosaicism and non-hereditary nature 
of FGFR1 mutations in ECCL patients and their parents 
were confirmed in two cases using targeted sequencing. In 
ECCL1, FGFR1 mutations were absent in blood DNA in the 
patient and mother (Suppl. Fig. 6 Online Resource 3, Suppl. 
Table 2 Online Resource 2). In ECCL2, co-occurrence of 
FGFR1 and PTPN11, mutations were exclusive to the brain 
tumor while the skin lipoma had only the FGFR1 mutation, 
suggesting the need for a “second hit” in the MAPK pathway 
in the brain (Suppl. Fig. 6 Online Resource 3).

In summary, integrating histology and molecular data on 
the largest cohort of ECCL-associated brain tumors assem-
bled to date shows that these are midline PAs. A degree 
of glioneuronal differentiation may lead to a diagnosis of 
DNET, while ECCL4 originally diagnosed as glioblastoma 
would have been diagnosed as MC-AAP based on recent 
findings. The initial FGFR1 mutation requires additional 
somatic alterations in the FGFR1/RAS/MAPK pathway to 
drive tumorigenesis towards development of distinct sub-
groups of PAs in ECCL. Thus, even if additional molecular 
follow-up studies are needed to confirm these observations, 
pathogenesis of ECCL-associated PA is possibly distinct 
from that of sporadic PAs where typically one hit is needed 
[8]. Moreover, the use of novel therapies targeting FGFR1 
may prove less effective as some of these second hits are 
downstream of the receptor. In conclusion, our data reinforce 

Fig. 1  DNA methylation classification and mutations identified in 
five ECCL-associated brain tumors. a Hierarchical clustering of 
methylation data from five ECCL tumors (black) with 75 reference 
cases of nine established glioma methylation classes indicated by 
different colors. Reference classes: MC-AAP methylation class ana-
plastic astrocytoma with piloid features; MC-AAP MUT with FGFR1 
mutation; DNET dysembryoplastic neuroepithelial tumor; DNET 

ITD internal duplication of FGFR1; EVN extraventricular neurocy-
toma; EVN FUS with FGFR1:TACC1 fusion; NORMAL normal 
brain; PA MID midline pilocytic astrocytoma; PA MID MUT with 
FGFR1 mutation. b Summary of ECCL patient clinical and molec-
ular characteristics. Red boxes indicate presence and gray boxes 
absence of a given genetic alteration
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the acquired genetic trait and mosaic nature of ECCL and 
further emphasize the need for in-depth molecular analysis 
to refine and ensure accuracy of pathological diagnosis and 
clinical decision-making approaches for affected patients.
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