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Abstract: The most prevalent malignant bone tumor, osteosarcoma, affects the growth plates of long
bones in adolescents and young adults. Standard chemotherapeutic methods showed poor response
rates in patients with recurrent and metastatic phases. Therefore, it is critical to develop novel and
efficient targeted therapies to address relapse cases. In this regard, RNA interference technologies
are encouraging options in cancer treatment, in which small interfering RNAs regulate the gene
expression following RNA interference pathways. The determination of target tissue is as important
as the selection of tissue-specific promoters. Moreover, small interfering RNAs should be delivered
effectively into the cytoplasm. Lentiviral vectors could encapsulate and deliver the desired gene into
the cell and integrate it into the genome, providing long-term regulation of targeted genes. Silencing
overexpressed genes promote the tumor cells to lose invasiveness, prevents their proliferation, and
triggers their apoptosis. The uniqueness of cancer cells among patients requires novel therapeutic
methods that treat patients based on their unique mutations. Several studies showed the effectiveness
of different approaches such as microRNA, drug- or chemotherapy-related methods in treating the
disease; however, identifying various targets was challenging to understanding disease progression.
In this regard, the patient-specific abnormal gene might be targeted using genomics and molecular
advancements such as RNA interference approaches. Here, we review potential therapeutic targets
for the RNA interference approach, which is applicable as a therapeutic option for osteosarcoma
patients, and we point out how the small interfering RNA method becomes a promising approach for
the unmet challenge.

Keywords: gene silencing and knockdown; lentiviral vectors; osteosarcoma; RNAi; shRNA; siRNA;
miRNA

1. Introduction

Bone cancer irregulates cell growth in the bone. It can come in many forms depending
on the type of bone cell transformed. Osteosarcoma is the eighth most common childhood
malignancy, comprising 2.4% of pediatric cancers, including leukemia (30%), brain and
nervous system cancers (22.3%), neuroblastoma (7.3%), Wilms tumor (5.6%), non-Hodgkin
lymphoma (4.5%), rhabdomyosarcoma (3.1%), retinoblastoma (2.8%), and Ewing sarcoma
(1.4%) [1,2]. Osteosarcoma, which has a bimodal age distribution, results from the cells
mutated in osteoblastic lineage depending on their susceptibility during osteoblastic dif-
ferentiation [1]. Osteosarcoma cells from osteoblastic lineage induce mesenchymal bone
marrow cells into cancer-associated cells [3]. Osteosarcoma affects the pediatric group
(mostly 10–14 years old age) accounting for the first osteosarcoma peak and the older
adulthood group (older than 65 years of age) for the second osteosarcoma peak [2]. The
incidence of osteosarcoma is higher in males (5.4 per million persons per year) than in
females (4.0 per million persons per year). Among populations, black people have the
highest incidence of osteosarcoma (6.8 per million persons per year), followed by Hispanics
(6.5 per million) and Whites (4.6 per million). The most common site of osteosarcoma is
commonly in the long bones near the metaphyseal growth plates; the femur (42%; 75% of
tumors in the distal femur), the tibia (19%; 80% of tumors in the proximal tibia), and the
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humerus (10%; 90% of tumors in the proximal humerus). Additionally, osteosarcoma may
occur in the skull or jaw (8%) and the pelvis (8%). Regarding mortality rates, bone and joint
malignancies accounted for 8.9% of all childhood and adolescent cancer deaths [2].

Studies have shown that somatic copy number changes, along with recurrent point
mutations, often lead to the development of osteosarcoma [4,5]. In recent years, the preva-
lence of germline mutations among pediatric cancer patients has reached 7.9%, which
is associated with several cancer predisposition disorders such as autosomal dominant
Li-Fraumeni and hereditary retinoblastoma, and autosomal recessive Werner, Bloom,
Rothmud–Thompson, and Rapadilino syndromes [6]. Taking all into consideration, it
is important to improve an effective treatment for osteosarcoma. Chemotherapy, radio-
therapy, and surgical resections have been widely used to treat bone tumors; however,
these techniques have some disadvantages. For instance, they cannot quickly determine
the unknown vulnerabilities, such as chaotic chromosomal rearrangements causing the
amplification of oncogenes or loss of tumor suppressors [7], in osteosarcoma tumors [8].
On the other hand, gene-silencing approaches appear to be more promising therapies
because of the potential to target a specific gene to up or downregulate permanently. Gene
regulation approaches under gene therapy are considered an effective, safe, fast, and
one-time treatment method to prevent the poor prognosis of cancer and other diseases
compared to chemotherapeutic methods. In vitro experiments have demonstrated that
silencing the protein-coding genes decreases messenger RNA (mRNA) production and
protein expression while inducing apoptosis in osteosarcoma cells [9]. Furthermore, in vivo
experiment results have revealed that gene-silencing reduced cell proliferation and tu-
mor growth in a murine osteosarcoma model [10]. The genome-wide sequence studies
show that the genome of osteosarcoma is complicated since the genome profiles differ
significantly among osteosarcoma patients [5]. This finding causes a significant obstacle
to identifying the etiology of osteosarcoma and interferes with the development of ef-
fective treatment. Unlike synovial and Ewing sarcomas, characterized by chromosomal
translocation, osteosarcoma accounts for various molecular alterations and cytogenetic
instability. Thus, identifying prognostic and genetic markers and drivers is challenging to
develop targeted therapies [11]. Therefore, genome-informed targeted therapies require
more experiments to improve their therapeutic efficacy in osteosarcoma and to establish
more personalized therapies.

To date, ribonucleic acid interference (RNAi) is a promising approach to silence
overexpressing genes, which directly affects mRNA degradation pathways (Figure 1) [9].
In the RNAi approach, long mRNA transcripts are diced by the Dicer enzyme to create
short double-stranded RNAs (dsRNAs), and these dsRNAs are loaded onto RNA-induced
silencing complex (RISC) comprising Argonaute and transactivation response RNA-binding
protein. After cleaving one strand, the guide strand is paired with its complementary
mRNA target via RISC. Following binding, the mRNA is silenced via two pathways:
RNase-mediated degradation or translational repression [12–15]. RNAi approach has four
types: small interfering RNA (siRNA) and microRNA (miRNA) mimics, short hairpin
RNAs (shRNAs), and Dicer substrate RNAs (dsiRNAs), which are non-coding RNAs
(ncRNAs) and post-transcriptionally regulate protein synthesis. siRNA is a short double-
stranded ncRNA, having 20–25 nucleotides loaded onto RISC, and they degrade and cleave
mRNAs containing specific nucleotide sequences before being translated. miRNA having
19–25 nucleotides is another double-stranded ncRNA loaded onto RISC to regulate gene
at the posttranscriptional level by targeting mRNA sequence [16,17]. shRNA requires
nuclear processing and is most upstream, while dsiRNA requires Dicer processing. siRNA
and miRNA pathways are the most direct; however, their silencing outcome is different
because siRNAs are 100% complementary of mRNA target sequences, but miRNAs are
not. miRNAs induce translational repression, while siRNAs induce Argonaute2-mediated
degradation [12]. All four types of RNAi approaches are delivered by inserting into either
nanoparticles or viral vectors or alone currently in clinical trials [12]. As a part of the
natural cellular process, siRNAs are administered directly into cells, tissue, or organisms;
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however, shRNAs that provide siRNA are transported into cells through a vector, and
siRNA is expressed when shRNA is processed [18]. Murine experiments demonstrated
that viral vectors could be potential therapeutic agents for treating genetically acquired
diseases [19] or diseases transmitted by genetic predisposition [10,20,21].
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Figure 1. RNA interference pathways. The upstream process starts with short hairpin RNA (shRNA)
or pri-microRNA (pri-miRNA) addition, which requires nuclear processing, followed by transporta-
tion into the cytoplasm. Upon arrival, shRNA and Dicer substrate RNA (dsiRNA) are digested into
short interfering RNA (siRNA) or microRNA (miRNA). To produce siRNAs, the dicer enzyme cleaves
double-stranded RNA (dsRNA) sequences into small double-stranded siRNA, and RISC elements
transport them to mRNA targets that recognize guide-stranded RNA (gsRNA), which results in
mRNA cleavage and degradation. In the process of microRNA (miRNA) delivered into cytoplasm,
RISC binds this target sequence, which results in translational repression and successive segregation
into p-bodies for degradation [12–14,18]. Adapted from “RNAi mechanism”, by BioRender.com
(2022). Retrieved from https://app.biorender.com/biorender-templates.

Here, we mainly focus on the lentiviral gene delivery RNAi approach and its effective-
ness in potential molecular targets of osteosarcoma. This review aims to compare molecular
targets and to show the effectiveness of gene-silencing therapy in osteosarcoma treatment.

2. Molecular Targets in Osteosarcoma Treatment
2.1. Ubiquitin-Specific Protease 1

Dysfunction and dysregulation of the ubiquitin–proteasome system affect nearly all
vital cellular processes, from gene transcription and DNA repair to cell cycle regulation and
apoptosis [22], and profoundly induce tumor progression [23]. Ubiquitination and deu-
biquitination, the most important posttranslational modifications, regulate the metabolic
reprogramming in cancer cells [24]. Ubiquitin-specific protease 1 (USP1) is a subtype of
deubiquitinating enzymes involved in DNA damage and repair the response by deubiqui-
tinating the proliferating cell nuclear antigen, Fanconi anemia group D2 and group 1 [23].
Studies have shown that USP1 is highly expressed in malignant tumors including osteosar-

https://app.biorender.com/biorender-templates
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coma, colorectal cancer, and non-small cell lung cancer (NSCLC) [9,25,26]. Liu et al. (2016)
described 30 osteosarcoma patient samples and the commercial human osteosarcoma cell
line (U2OS) stained for USP1 expression. The results confirmed that USP1 was overex-
pressed in 26 samples, and the highest USP1 expression was demonstrated in cartilage
tumor tissues and osteosarcoma tissues compared to normal bone tissues. To validate the
role of USP1 overexpression in osteosarcoma, U2OS cells were transduced with a lentivi-
ral vector carrying a USP1-silencing siRNA sequence. Real-time PCR and Western blot
analysis showed that USP1-siRNA transduction effectively reduced both USP1 mRNA and
protein expression levels, and the knockdown of USP1 downregulated the expression of
SIK2, MMP-2, GSK-3β, Bcl-2, Stat3, cyclin E1, Notch1, Wnt-1 and cyclin A1, most of which
contribute to the tumor growth and development. Furthermore, the silencing of USP1
inhibited tumor growth and colony-forming while reducing the invasiveness of U2OS cells.
USP1-siRNA-transduced U2OS cells exhibited decreased cell viability as gene silencing,
resulting in reduced colony formation and increased apoptosis. USP1 gene silencing also
prevented U2OS invasion [9].

Salt-inducible kinase 2 (SIK2) played critical roles in bipolar spindle formation and
cAMP response element-binding protein (CREB) mediated gene transcription. Overexpres-
sion of SIK2 on several tumors, including osteosarcoma, suggested a potential role in cancer
development [27]. SIK2 also regulates mitotic progression and transcription in prostate
cancer [28]. Consequently, the relationship between USP1 and SIK2 was investigated. The
silencing of USP1 also inhibited SIK2 expression, while using MG132 (proteasome inhibitor)
led to its increase. Silencing SIK2 by the lentiviral vector-delivered USP1-shRNA resulted in
increased apoptosis and poor invasiveness of U20S cells, supporting their use as a potential
therapeutic target [9]. Furthermore, Williams et al. showed that USP1 regulates mesenchy-
mal stem cells (MSCs) and osteosarcoma cells by deubiquitinating the inhibitors of DNA
binding (IDs), which maintain and regulate stem cell differentiation [29]. Transcriptionally
induced IDs have four types; ID1, ID2, ID3, and ID4, which antagonize the basic helix-
loop-helix proteins. Bone morphogenic proteins, platelet-derived growth factor, epidermal
growth factor, and T cell receptors ligation are inducers of IDs [30]. Following MG132
treatment, ID2 accumulation was shown in 293T cells. To identify the effect of USP1 on ID2,
293T cells were transfected with USP1-carrying plasmid and analyzed by ID2 abundance.
Results showed that while the half-life of ID2 in the cells transfected with the control vector
was about 2 min, overexpressed USP1 increased the half-life of ID2 to approximately 80 min,
which validates that USP1 stabilizes ID2. Then, they validated osteoblastic differentiation in
the USP1 knockdown osteosarcoma xenograft model. USP1 knockdown reduced ID1 and
ID2, whereas it promoted the expression of differentiation markers, including osteonectin,
RUNX2, SPP1/osteopontin, osterix, and BGLAP/osteocalcin [29].

Moreover, a recent study has revealed another role of USP1 in OS: that USP1 mediates
the stabilization of transcriptional co-activator with PDZ-binding motif (TAZ) via K11
and K29 ubiquitylation, which affects the downstream Hippo signaling pathway. In this
study, the researcher identified that the depletion of USP1 resulted in diminished TAZ
translocation into the nucleus. This was validated by co-immunoprecipitation, showing
that USP1 depletion inhibits the interaction between TEAD transcription factors and TAZ
in OS cells. In addition, USP1 depletion also reduced the downstream components of the
Hippo signaling pathway level, such as CYR61, c-Myc, and RUNX2 [23].

There are some other deubiquitinating genes targeted as those in USP1. A study
showed that ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), a subtype of deubiquiti-
nases, could act as an oncogene, which was elevated in osteosarcoma cells compared to
healthy bone tissues. The expression level of UCHL1 influenced tumor size, high lung
metastasis rate, and short survival time. Silencing of UCHL1 by lentiviral vector led to the
inhibition of cell proliferation and increased cell population in the G1 phase. Additionally,
the knockdown of UCHL1 reduced cyclin D1, cyclin E1, and CDK6 promoting G1/S phase
transition, inhibiting cell invasion, and inducing cell apoptosis. The correlation found
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between UCHL1 and Akt/ERK signaling pathway pointed out that UCHL1 accelerated the
osteosarcoma progression mediating the Akt signaling pathway [31].

BRCA1-associated protein 1 (BAP1) is another nuclear-localized deubiquitinating
enzyme, the dysregulation of which was unknown in osteosarcoma. A study reported a
reduced amount of BAP1 in 30 osteosarcoma patients compared to control subjects. To
investigate the biological function and molecular mechanisms of BAP1, MG-63 and SJSA-1
osteosarcoma cell lines were transiently transduced with a lentiviral vector to overexpress
BAP1 and then stably transfected with the plasmid carrying sgRNA by CRISPR-Cas9 to
knockdown BAP1. The overexpression of BAP1 reduced the proliferation of MG63 and
SJSA-1 cells, whereas the silencing of BAP1 promoted the proliferation of MG63 and SJSA-1
cells. As a result, it was illustrated that BAP1, by inhibiting phosphoinositide 3-kinase/Akt
signaling, suppressed cell proliferation, apoptosis, migration, and invasion of osteosarcoma
cells [32].

Ubiquitin-specific peptidase 7 (USP7) is another critical member of the deubiquiti-
nating enzyme family. In a study, a high level of USP7 was reported in 45 osteosarcoma
samples, and it induced epithelial-mesenchymal transition (EMT) in osteosarcoma cells by
activating the Wnt/β-catenin signaling pathway [33].

Taken all together, deubiquitinases might be potential diagnostic and therapeutic
targets in osteosarcoma treatment.

2.2. ErbB Receptor Family

Erythroblastic leukemia oncogene homolog (ErbB) receptors are a family of receptor
tyrosine kinases responsible for regulating critical cell signaling pathways and gene expres-
sion levels [34]. They also play an essential role in developing and progressing many cancer
types [10,35]. Some of these receptors are in the nucleus, where many oncogenes can be
upregulated, including cyclinD1, B-myb, cyclooxygenase-2, and iNOS/NO [36]. There are
four members of the ErbB family: ErbB1 [epidermal growth factor receptor (EGFR) HER1],
ErbB2 (HER2), ErbB3 (HER3), and ErbB4 (HER4) [36].

ErbB1 and ErbB2 promote tumor development, while ErbB2/ErbB3-signaling pro-
motes cell growth and tumor cell invasion via the PI3K/Akt pathway. However, the role of
these receptors in soft tissue tumors and sarcomas remains unclear [21,37,38]. N. Jullien et al.
reported that ErbB3 expression is significantly higher in U2OS, MG63, and SaOS2 osteosar-
coma cell lines than in normal primary osteoblast cell lines (N976 and N704). ErbB3 protein
levels in human osteosarcoma cells were higher than those in normal human primary os-
teoblast cells [21]. Furthermore, higher expression of ErbB3 was associated with increased
metastases and recurrent disease. To silence the ErbB3 expression, a pLKO.1-anti-ErbB3
shRNA (shErbB3) was designed and added into lentiviral vectors. K7M2 cells (aggressive
murine osteosarcoma cells) were transduced to determine the role of ErbB3 in osteosarcoma
cell growth [10]. Knockdown of ErbB3 resulted in a significant decrease in the proliferation
ratio in K7M2 cells, although apoptosis did not increase. K7M2 are apoptotic-resistant
cells with enhancer aldehyde dehydrogenase (ALDH) activity, a well-known cancer stem
cell marker, which confer, among others, resistance to apoptosis-mediated cell death [39].
Despite the above, the silencing of ErbB3 expression inhibited the invasion and migration
of both metastatic K7M2 cells and bone tumor cells treated in this study [10]. Detailed
studies on the tumoral microenvironment should be addressed to know the therapeutic
impact of these strategies, given the persistence of these tumoral cells.

Another study has revealed that Wnt3a downregulates ErbB3, and this causes Wnt-
induced osteoblast differentiation in MSCs [21]. MSCs differentiate between bone-forming
osteoblasts and cartilage-forming chondrocytes, promoting the healing process. BMP, Wnt,
and Notch signaling pathways affect MSC differentiation and proliferation [40]. Targeting
of Wnt signaling in MSCs induces MSC osteoblast differentiation for bone regeneration. The
study indicated that neuregulin 1 (NRG1), a member of the epidermal growth factor family
of receptor tyrosine kinase, has been upregulated by Wnt3a signaling when osteoblast
differentiation is induced in primary human MSC and murine model (C3H10T1/2) MSCs.
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Furthermore, NRG1 did not affect alkaline phosphatase (ALP) activity, indicating osteosar-
coma differentiation. To determine the gene expression profile in both murine C3H10T1/2
cells and human mesenchymal cells, lentiviral vectors carrying pLKO.1-anti-ErbB3 shRNA
(shErbB3) with or without 15% Wnt3a conditioned medium were adopted. The results
showed that Wnt3a signaling increased NRG 1 and ET 1 mRNA levels in both hMSCs and
murine pluripotent mesenchymal C3H10T1/2 cells, suggesting that these two genes are
similarly targeted by Wnt signaling. Moreover, shErbB3 and Wnt3a increased ß-catenin
transcriptional and ALP activities in MSC. The study also investigated the interaction
between Src and ErbB3 signaling, in which Src proteins controlled the differentiation of
Wnt3a-induced osteoblasts; when the ErbB3 gene was silenced, Src levels increased [21].
Additionally, the neuroglin/ErbB3 signaling was constitutively activated in clear cell sar-
coma of soft tissues, in which when ErbB3 lost the kinase activity, ErbB2 was induced with
an autocrine stimulation [21].

Huang et al. (2019) investigated ErbB receptor family amplification in primary os-
teosarcoma and their correlation with clinicopathological and prognostic values [38]. Ninety
samples were collected through surgical resections from primary osteosarcoma patients,
thirty of which were non-neoplastic bone tissues. Western blot and reverse transcription–
quantitative polymerase chain reaction (RT-qPCR) analyses verified EGFR protein and
mRNA overexpression and higher amplification levels of EGFR, ErbB3, and ErbB4 in
osteosarcoma tissues compared to non-neoplastic tissues. Another study result was that
the elevated ErbB3 signaling and ErbB3-EGFR co-amplification levels in tumorigenesis,
tumor progression, and drug resistance were associated with poor chemotherapy response,
distant metastasis, and poor progression, which further verified that ErbB3 is a significant
therapeutic target in osteosarcoma treatment [38].

Many in vivo studies have been performed to evaluate gene-silencing effects on os-
teosarcoma growth. In a murine allograft model, murine K7M2 cells were transduced with
an ErB3 silencing shRNA and placed into BALB/C mice [10]. The analysis revealed that
ErbB3 silencing dramatically decreased the number and size of tumors, but increased apop-
tosis was not found. This indicates that ErbB3 silencing affects cell number by inhibiting
cell proliferation in mice [10].

2.3. Lysophosphatidic Acid Acyltransferase ß (LPAATβ)

LPAATβ, an enzyme converting intracellular lysophosphatidic acid (LPA) to phospha-
tidic acid (PA), regulates osteosarcoma cell proliferation. The studies revealed that LPA
stimulates cell proliferation, migration, and survival. PA is another biologically active phos-
pholipid that affects most signal transduction pathways, such as mTOR and Raf-1. LPAATβ
is currently the most preferred target for osteosarcoma research [41,42]. In research, Song
et al. (2017) examined 40 osteosarcoma patients aged 13 to 46 years to detect the expression
level of LPAATβ and other related proteins and studied whether the silencing of LPAATβ
expression has an impact on osteosarcoma with cisplatin resistance. Furthermore, for
further experiments, cisplatin-resistant samples were chosen by real-time polymerase chain
reaction (RT-PCR) and Western blotting. siRNA silencing LPAATβ is inserted into the
lentiviral vector and then administered to the cisplatin-resistant osteosarcoma cells both
in vitro to detect the effect of this specific enzyme on cell viability and in vivo to detect
tumor growth with cisplatin treatment. The results indicated that cisplatin-resistant sensi-
tivity decreased when the PI3K/Akt/mTOR signaling pathway was activated. Moreover,
tumor growth was inhibited by silencing LPAATβ in the xenografts nude mouse model
with cisplatin-resistant osteosarcoma cells [42]. Most studies showed that abnormal activa-
tion of this signaling pathway causes the cells to be transformed into the malignant type
and be resistant to chemotherapy by regulating multidrug resistance gene 1/P-glycoprotein
(MDR1/P-gp) [42]. For instance, Ma et al. indicated that rapamycin-mediated mTOR
inhibition reversed MDR in the colorectal cancer cell. Therefore, autophagy and apopto-
sis increased, whereas the expression of MDR1 was reduced in rapamycin-resistant cells
treated with adriamycin [43]. A study implied that cytotoxic drugs led to cytotoxic stress;
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thus, the Akt signaling pathway was downregulated. This led to the hypophosphorylation
of translational repressor 4E-BP (eukaryotic initiation factor) and the decrease in eIF4E
availability. The downregulation of eIF4E due to cytotoxic stress decreased the translation
efficiency of the MDR1 mRNA -structure [44]. Another study mentioned that the inhibition
of PI3K by PI103, PI3K/mTOR inhibitor, enhances doxorubicin (DOX)-induced apoptosis
with the help of the effective interaction of PI103 with DOX in sarcoma cells. This interaction
activated the proapoptotic protein Bax, a well-known mitochondrial-dependent apopto-
sis trigger [45]. Overall, the activation of the PI3K/Akt/mTOR pathway has inhibited
cisplatin-induced apoptosis and improved cancer cells to become cisplatin-resistant [42,46].

The role of LPAATβ has been investigated in 158 human ovarian cancer cases, of which
68 cases were in an advanced stage, by immunohistochemistry (IHC) for the LPAATβ ex-
pression in the local tumor and distant metastases. Ninety out of all one hundred and
fifty-eight ovarian tumors overexpressed LPAATβ. Out of 68 advanced-stage tumors,
49 overexpressed LPAATβ [47]. Thirty-three out of one hundred and fifty-eight sam-
ples showed highly aggressive histology depending upon LPAATβ expression, in which
progression-free survival (PFS) and overall survival decreased [47]. Moreover, gynecologic
research illustrated that LPAATβ was elevated in gynecologic malignancies, associated
with reduced survival in ovarian cancer and earlier disease progression in ovarian and en-
dometrial cancer. However, inhibiting LPAATβ by siRNA or selective inhibitors (CT32521
and CT32228) induces apoptosis in human ovarian and endometrial cancer cell lines. Apart
from that, LPAATβ inhibition, by either siRNA or these inhibitors, increased the survival
of mice bearing ovarian tumor xenografts [48].

2.4. Notch Signaling Pathway

The Notch signaling pathway regulates cell-to-cell signal transduction, in which
the signal is produced when Notch signal-related ligands of adjacent cells bind with
the receptors in the receiver cell. The ligand–receptor interaction makes conformational
changes in the notch protein in the signal-receiving cell. Then, the Notch intracellular
domain (NCID) is cleaved from the cellular membrane and released to the receiving cell
nucleus. This translocation induces transcription of Notch target genes [49–51]. There
are five Notch ligands (Jagged 1 and 2, Delta-like (DLL) 1, 3, and 4) and four Notch
receptors (Notch 1-4) mainly composed of mammalian Notch signaling (Figure 2). Notch
signaling has pivotal roles in cell fate, proliferation, apoptosis, and cell migration [51].
Notch signaling affects skeletal development and homeostasis. Mutations in Notch genes
are associated with a selected group of genetic skeletal disorders, and dysregulated Notch
signaling occurs in osteosarcoma and osteoarthritis. Modeling these diseases in mice has
provided new insight into disease pathogenesis and established the importance of Notch
signaling in skeletal development and function [52].

Cao et al. (2017) showed that the Notch signaling pathway promoted osteogenic
differentiation and proliferation of mesenchymal stem cells by inducing bone morphogenic
protein 9/Smad (BMP9/Smad) signaling and by upregulating ALK2 expression, respec-
tively [51]. Furthermore, this study focused on the Notch signaling effects on BMP9-induced
early and late osteogenic differentiation in MSCs. In early osteogenic differentiation of
MSCs, the Notch activity of MSCs was inhibited with γ secretase inhibitor (DAPT) and
adenoviral vectors carrying dnNotch1 (dominant-negative mutant of Notch 1) to down-
regulate and DLL1 (Delta-like receptor 1) to upregulate the Notch signaling were used.
The results revealed that BMP9-induced alkaline phosphatase activity (ALP) was signifi-
cantly inhibited by DAPT and Ad-dnNotch1, while Ad-DLL1 enhanced BMP9-induced
ALP activity, which was evident that the Notch signaling enhanced the BMP9-induced
early osteogenic differentiation of MSCs. ALP activity is a critical osteogenic marker at
early osteogenic differentiation and bone formation; however, osteopontin (OPN) and
osteocalcin (OCN) markers are critical for the late stage of osteogenic processes [51,55].
Therefore, the effects of Notch signaling on the expression of BMP9-induced late osteogenic
markers were investigated. In this regard, the combination therapy with Ad-BMP9 and
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DAPT considerably decreased the OCN expression. In addition to that, Ad-dnNotch1
treatment decreased the expression of OCN and OPN in MSCs. On the contrary, treatment
with Ad-DLL1 enhanced the matrix mineralization induced by BMP9, which proved that
the Notch signaling promoted BMP9-induced late osteogenic differentiation [51].
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Another study showed that Notch signaling increased BMP9-induced ectopic bone
formation in 4-week-old athymic nude mouse models. The Notch signaling had a pivotal
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role in enhancing the BMP/Smad signal transduction induced by BMP9 in MSCs while
regulating BMP9-induced osteogenic factors depending on different receptor/ligand re-
sponses. That is why the expression of activin receptor-like kinase 1 (ALK1) and activin
receptor-like kinase 2 (ALK2) induced by BMP9 was experimented with MSCs to detect the
Notch signaling influences. ALK2 was downregulated by Ad-notch1 combined with BMP9-
conditioning media (BMP9-CM) in mouse embryonic fibroblasts. Ad-DLL1 combined with
BMP9-CM also increased the percentage of mouse embryonic fibroblasts in the S phase,
compared to Ad-RFP in combination with BMP9-CM. The percentage of cells in the G0/G1
phase decreased significantly, which indicated that the proliferation of MSCs may be facili-
tated in the presence of BMP9-CM [51]. BMP9 has critical roles in liver fibrosis [56], iron
metabolism [57], cartilage formation [58] and angiopoiesis [59,60]. BMP9 is more potent in
inducing osteogenesis and chondrogenesis of MSCs than other BMPs [58,61]. Moreover,
BMP9 elevated the expression of type II collagen (COL2A1) mRNA and increased the
expression of aggrecan and cartilage oligomeric matrix proteins [61].

The Notch signaling activation inhibited cell differentiation and resulted in bone
osteopenia in the osteoblastic lineage. The studies showed that Notch1 inhibited osteoclas-
togenesis and bone resorption while Notch2 enhanced [52]. Increased notch expression
(Notch1-2), higher levels of DLL1 mRNA and the Notch target gene HES1, and loss of
p53 protein were associated with osteosarcoma, and the long-term activation of the Notch
pathway in osteoblasts led to osteosarcoma in the mouse model [62,63]. The expression of
Notch1 in newly formed osteoblast was sufficient to drive the formation of bone tumors,
including osteosarcoma, which was accelerated in the mouse model when Notch activation
was combined synergistically by the loss of p53. The experiments to show this synergy
between Notch and p53 concluded that the Notch gain-of-function mutation promoted the
progression of osteosarcoma induced by the loss of p53. This research also highlighted that
Notch oncogene and p53 mutation had a dual dominance in osteosarcoma development.
The activation of Notch signaling at any stage could induce the proliferation of immature
osteoblasts while inhibiting their differentiation into mature osteoblasts [63].

2.5. Extracellular Matrix Molecules

The dysregulation and abnormal remodeling of the extracellular matrix (ECM) are
notable for the disease progression and healing process, and it has gained prominence
recently for osteosarcoma and other cancer types [64]. For most cancers, the tumor microen-
vironment (TME), which comprises blood vessels, fibroblasts, immune and endothelial
cells, signaling molecules, extracellular vesicles, and mostly the ECM, has been found to
affect the progression and metastasis [65]. The ECM can prevent cancer initiation at the
early stages. In addition to that, it drives disease progression toward malignancy. The
studies showed that the composition of the extracellular TME was growing evidence for
the detection of clinical prognosis [66]. Bergamaschi et al. (2008) analyzed the matrix
composition of 28 primary breast carcinomas regarding the morphology and differential
expression of ECM-related gene profiles [67]. According to the results, 278 ECM-related
genes and their expression profile were examined, in which ECM was classified into four
main branches (ECM 1-4). Of twenty-eight samples, eight were grouped into ECM 1,
which was associated with the PI3K pathway, lymphoid infiltration, and the upregulation
of adhesion molecules and collagens; eight were involved in ECM 2, in which glucose
metabolic pathways were overexpressed, and the hyaluronan was found to have a high
level of expression among the extracellular protein-coding genes. Seven accounted for ECM
3 because of the enriched gene profile regulating Wnt-β-catenin pathways and membrane
integrins, which had roles in connective tissue maintenance. Finally, five samples were
included in ECM 4 tumors, where the genes involved in endoplasmic reticulum pathways
and inflammation were upregulated. All ECM 1 and ECM 2 groups showed poor outcomes,
while ECM 3 and 4 were less aggressive [67].

ECM comprises collagens, fibronectin, laminins, and proteoglycans, including bigly-
can, decorin, lumican, versican, and hyaluronan [68]. The studies indicated that colla-
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gen (type I, III, IV, V, and XVIII) affected invasion, metastasis, chemotherapy resistance,
angiogenesis, adhesion, anti-angiogenesis, and cell growth in osteosarcoma. While the
expression of collagen type XVIII diminished, the expression of other collagens elevated in
osteosarcoma. Moreover, fibronectin and laminin expression in osteosarcoma increased.
Laminins provided osteosarcoma cells to be adhesive and invasive, while fibronectins
made osteosarcoma cells resistant to chemotherapy and rolled to metastasis, adhesion, and
invasion [65]. Proteoglycans (PGs) are critical ECM components containing glycosamino-
glycan (GAG) chains attached to the protein core. The GAGs play essential roles in cell
signaling, modulating several biological processes such as cell growth and proliferation,
adhesion, anticoagulation, and wound repair. Depending upon the core protein to which
the GAG is bound, there are four types of GAGs: heparin/heparan sulfate (HS), chondroitin
sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS), and hyaluronic acid (HA) [69].
Sasisekharan et al. mentioned that HS has both tumorigenic in which it regulates autocrine
signaling loops causing unregulated cell growth and anti-tumorigenic effects; HS facilitates
the immune response against the growing tumor as a protective barrier and, in contrast,
develops new blood vessels around the growing tumor depending on the location and
sequence [70]. HSPGs have been categorized into two categories: cell-surface PGs, includ-
ing syndecans, glypicans, and basement membrane PGs containing perlecan, agrin, and
collagen type XVIII. The presence of HSPGs promotes cell adhesion, while their absence
advances tumor growth, invasion, and metastasis [71].

The role of CSPGs In cancer progression and cell signaling is associated with both
normal and pathological conditions since they regulate proliferation, apoptosis, migration,
adhesion, invasion, and ECM assembly [71]. The research data showed that stromal versi-
can regulated tumor growth by promoting angiogenesis. Several cancer cell lines have been
used in the study, and tumors sourced from these cells had versican expression at high lev-
els. However, in the case of Lewis lung carcinoma, both tumor and stroma had high-level
versican expression [72]. Many studies have shown that some specific CSPGs, such as versi-
can, are overexpressed in malignant tumors’ stroma [73,74]. On the contrary, recent research
indicated that decorin, a type of CSPG, was a promising anticancer agent in osteosarcoma.
The study showed that decorin affects cell motility due to the interaction of cells with matrix
proteins. Although the inhibition of decorin expression by a decorin-specific siRNA did
not affect MG-63 cell growth, it reduced cell motility [75]. Decorin (DS) is overexpressed
in colorectal carcinoma, melanoma, osteosarcoma, and basal cell carcinoma; however, the
expression of decorin decreased in other malignant tumors. This is due to the antiprolifera-
tive properties of decorin, which is a natural inhibitor of TGFβ, and the inhibition of this
growth factor limits tumor bioavailability. Overall, CS functions in lipoprotein modification
accumulation, inflammatory cell adhesion, chemokines binding, growth factor signaling,
cell phenotype, and elastic fibers assembly, implicated in cancer progression and atheroscle-
rosis development [65,76]. Additionally, the upregulation of some versican isoforms by
TGFβ causes osteosarcoma cells to have aggressive behavior [77]. The chemical structure
of GAGs, such as the presence of L-iduronic acid and sulfation type, affects cell growth of
both osteosarcoma cells and osteoblastic lineage cells in a concentration-dependent manner.
For instance, heparin significantly inhibited the proliferation of both normal osteoblasts
and transformed osteoblastic cells at concentrations ≥1 uL/mL [78].

2.6. MicroRNAs and Protein Interactions

MicroRNAs (miRNAs) have been shown to function in tumorigenesis and tumor
progression. For instance, miR-363 suppressed cancer in a variety of tumors, including
gastric cancer [79], lung adenocarcinoma [80], and the metastasis of colorectal cancer [81].
In the case of osteosarcoma, miR-363 inhibited the proliferation, colony formation, and
cell viability, promoting cell apoptosis and G1/S arrest in osteosarcoma [82]. Here, we will
discuss the interaction of miRNAs and some proteins required for cellular processes.
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2.6.1. NOB1

NOB1, located on the human chromosome 16q22.1, expresses NOB1 protein in the
nucleus of mammalian cells. RNA-binding protein NOB1 is a ribosome assembly factor
that maintains cellular homeostasis by controlling protein degradation. Furthermore,
NOB1 was shown to be essential for the cleavage of the 20S pre-rRNA into the mature
18S rRNA [83,84]. It is a part of a pre-40S ribosomal particle that is transported to the
cytoplasm and subsequently cleaved at the 3′ end of mature 18S rRNA (D-site) [83]. In a
study, a point mutation was designed in the NOB1 gene and the cells naturally expressing
this protein failed to process the 20S pre-rRNA. Overall, this gene is a key factor for
ribosomal biogenesis and affects RNAi and nonsense-mediated mRNA decay [84]. The
relationship between miR-363 and NOB1 gene was investigated in osteosarcoma tissue
specimens. The results illustrated that the downregulation of miR-353 upregulated NOB1
in osteosarcoma tissue specimens. The miR-363 overexpression had a detrimental effect on
cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). The
study emphasized that NOB1 could be a potential target mediated by miR-363 since the
expression of NOB1was reversely correlated with the inhibitory effect of miR-363 on cell
migration and invasiveness [85].

The studies indicated that the proteasome inhibiting drugs, including bortezomib and
thiazole antibiotic thiostrepton, suppress the growth and induce apoptosis in osteosarcoma
cell lines and xenografts, which is evident that NOB1 could be a potential therapeutic target
for bone cancer [86–89].

The role of NOB1 gene silencing has been investigated in osteosarcoma, and the results
demonstrated that the gene expression of NOB1 in human osteosarcoma cell lines, including
SF-86, Saos-2, MG63, SW1353, and U2OS, was determined with Western blot analysis, in
which Saos-2 and U2OS cells moderately expressed NOB1. This gene was knocked down
by lentivirus-mediated shRNA to downregulate the NOB1 expression, and cell growth has
been evaluated in MTT, colony-forming, and cell cycle assays. The results showed that
the silencing of NOB1 significantly inhibited cell growth and caused osteosarcoma cells
to arrest in the G2/M phase. This inhibition decreased cell migration while increasing
the expression of tumor suppressor genes E-cadherin and β-catenin in U2OS cells. Both
E-cadherin and β-catenin have been reported to associate with the metastatic progression of
several types of cancer [86]. The potential role of the NOB1 gene was also explored in U251
and U87-MG higher-grade glioblastoma cell lines using a lentiviral vector (Lv-shNOB1).
NOB1 expression and cellular localization were evaluated in 56 surgical glioma specimens.

NOB1 protein was localized in both the nucleus and cytoplasm in U251 cells, which
was not associated with the malignancy level of glioma. Downregulation of NOB1 con-
siderably inhibited cell proliferation and colony formation in human glioma cells. NOB1
silencing by Lv-shNOB1 induced G0/G1 phase arrest leading to cell apoptosis and sup-
pressing cell migration in U251 and U87-MG cell lines. In conclusion, the regulation level
of NOB1 may determine the aggressiveness of gliomas [84].

2.6.2. HMGB1

High mobility group box 1 (HMGB1) is a highly conserved non-histone nuclear protein,
which regulates transcription and is involved in the organization of DNA. It has pivotal
functions in inflammation, cell differentiation, and tumor cell migration [90].

Furthermore, HMGB1 is located in the nucleus; however, it is translocated in cyto-
plasms to activate autophagy by binding to beclin1 [91]. The studies showed that HMGB1
might also induce metastasis and chemotherapy resistance in lung cancer [92], which sup-
ported that HMGB1-mediated autophagy led to chemotherapy resistance in osteosarcoma
both in vitro and in vivo HMGB1 interaction with beclin1-PI3KC3 complex [93].

Moreover, doxorubicin, cisplatin, and methotrexate, the most used anticancer drugs,
promoted HMGB1 expression in osteosarcoma cells, indicating the upregulation of HMGB1
during chemotherapy. The suppression of this gene caused sensitivity to chemotherapy,
while the overexpression of HMGB1 increased resistance to chemotherapy in vitro. Knock-
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down of HMGB1 by shRNA increased the sensitivity of osteosarcoma cells to chemotherapy
in NOD/SCID mice, in which autophagy decreased, whereas apoptosis increased in re-
sponse to HMGB1-specific shRNA treatment [93]. The upregulation of autophagy was
also observed in several cancer types, such as lymphoma, melanoma, leukemia, and breast
cancer, in which it promoted or inhibited antitumor drug resistance. A study showed that
the upregulation of HMGB1 promoted autophagy during chemotherapy in osteosarcoma
cells, followed by drug resistance [94].

HMGB1 was expressed in bone and bone marrow at high levels. Bone marrow space
closely interacts with the bone and immune cells, which play essential roles in cytokine
intercellular signaling pathways. Outside the cells, HMGB1 acted as an immune response
to pro-inflammatory cytokines when interacting with the receptor for advanced glycation
end products (RAGE). Immunocytochemical analysis revealed that HMGB1 and RAGE
were expressed in osteoblasts and osteoclasts [95].

Recently, new therapeutic approaches have displayed the modulation of HMGB1 by
miRNAs in osteosarcoma cells, one of which used miR-505 to downregulate HMGB1 in
human osteosarcoma. The study compared miRNA expression levels of 37 osteosarcoma
samples and neighboring healthy cells. A total of 12 miRNAs were significantly upregu-
lated, while 14 were downregulated, where miR-505 was involved. Decreased miR-505
levels were an indicator of poor clinical prognosis in osteosarcoma patients. In addition to
that, HMGB1 mRNA levels were investigated, and the results showed that HMGB1 was
overexpressed in osteosarcoma cells compared to the adjacent non-cancerous tissues. The
gene expression of HMGB1 was negatively correlated with miR-505 levels in osteosarcoma
samples. miR-505 suppressed the proliferation, migration, and invasion of MG63 cells
in vitro, downregulating HMGB1 [96].

2.6.3. MIF

Macrophage migration inhibitory factor (MIF), which regulates macrophage func-
tion, is a cytokine that modulates inflammation via counter-regulation of glucocorticoids
and is involved in cell-mediated immunity, immunoregulation, cell proliferation, and tu-
morigenesis. MIF and JAB1 protein as a complex may have a role in integrin signaling
pathways [97,98]. The human miR-451 is a type of miRNA located on chromosome 17q11.2.
MiR-451 has acted as a tumor suppressor in many cancers, including nasopharyngeal
carcinoma by targeting MIF [99] human glioma by downregulating the PI3K/Akt pathway
through the calcium-binding protein 39 (CAB39) [100], and lung cancer by targeting ras-
related protein 14 (RAB14) [101]. In a study, the expression of miR-451 in osteosarcoma
tissue samples (hFOB and osteoblasts) and cell lines (U2OS and MG-63) were analyzed.
MiR-451 was downregulated in osteosarcoma tissues and cell lines. Additionally, biological
functions of miR-451 in osteosarcoma were explored by inducing miR-451 overexpression
with miR-451 lentiviral vector transduction into U2OS cells, the results of which showed
that the cell growth was attenuated in MiR-451 overexpressing osteosarcoma cells com-
pared to the control group. This overexpression suppressed the proliferation and migration
of osteosarcoma cells and inhibited the angiogenesis of the HUVEC cells. Cell apoptosis
rates increased depending upon the upregulation of miR-451. In the in vivo part of the
study, the growth inhibitory effect of miR-451 was investigated in nude mice in which
LV-miR-451-U2OS cells were inoculated. Following three weeks, the overexpression of
miR-451 suppressed tumor growth in nude mice. The critical point here was how miR-
451 inhibited osteosarcoma cell growth and migration. For this purpose, the molecular
targets of miR-451 were examined, in which MIF was found as a direct target of miR-451.
Moreover, the silencing of MIF made similar changes in the proliferation, migration, and
angiogenesis compared to the miR-451 mimic-transfected group. Overall, the upregulation
of the miR-451 could inhibit proliferation and migration in osteosarcoma cells and induce
apoptosis by the downregulation of MIF expression [102].
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2.7. DNA-PKcs

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a nuclear serine/
threonine-protein kinase, a target of apoptosis protease. There is a correlation between the
occurrence of apoptosis and the activity of DNA-PKcs, in which the activity of DNA-PKcs
decreases following apoptosis. This may prevent the repair of doubled strand breaks to
provide a smooth process for apoptosis. DNA-PK is required to be associated with DNA
to have catalytic activity. This association is provided through Ku autoantigen, a DNA
binding component [103].

The inhibition of DNA-PKcs caused tumor formation to decrease in vitro, reduced
growth of human intracranial glioblastoma (GBM) xenografts in mice, sensitized the GBM
xenografts to radiotherapy, and led to tumor regression in glioblastoma xenografts [104].
DNA-PKcs played a critical role in maintaining cell homeostasis. The effects of DNA-
PKcs inhibition were investigated in the growth, migration, invasion, and apoptosis of
osteosarcoma. A total of 57 osteosarcoma patients’ tumors and adjacent normal tissues
were analyzed. The results indicated that the level of mRNA and protein expression of
DNA-PKcs increased in osteosarcoma tissues compared to the neighboring healthy tissues.
Furthermore, nine cases were with metastasis phase in osteosarcoma, and twelve cases
were with lung metastasis among these patient samples. These samples with metastasis
in osteosarcoma showed the highest mRNA expression level of DNA-PKcs compared to
patients without metastasis. To confirm the effect of DNA-PKcs in osteosarcoma, DNA-
PKcs was inhibited by siRNA-DNA-PKcs in MG63 cell lines, which illustrated a decreased
mRNA and protein expression of DNA-PKcs. Silencing of this gene also decreased the
expression of Cyclin D1, PCNA, and Bcl-2, whereas it increased Bax compared with control
groups. Knockdown of DNA-PKcs suppressed the proliferation, migration, and invasion
of MG-63 osteosarcoma cells; however, it promoted apoptosis of MG-63 [105]. Moreover,
subcutaneous tissues of two nude mice inoculated with MG-63 cells after siRNA-DNA-
PKcs treatment showed progress, in which tumor take and diameter were lower than in
blank and siRNA control groups. The weight and size of tumor nodules on the lung surface
were lower in the siRNA-DNA-PKcs than in the control groups.

2.8. GREM1

GREM1, bone morphogenetic protein antagonist, is a member of the BMP family,
which regulates organogenesis, body patterning, and tissue differentiation [20]. Studies
indicated that the overexpression of GREM1 was associated with the progression of tumors
by facilitating invasiveness, including colorectal cancer [106], colon cancer [107], breast
cancer [108], and mesothelioma [109]. Moreover, the silencing of GREM1 inhibited cell
viability, migration, invasion, and EMT in glioma cells [110].

Based on the role of GREM1 in other cancers, the expression and function of GREM1
in osteosarcoma cells also was studied by Gu et al. Unlike other cancers mentioned
before, GREM1 overexpression by lenti-GREM1 suppressed the cell viability, proliferation,
invasion, and migration in U2OS and Saos-2 osteosarcoma cell lines. The GREM1 expression
level was tested in hBMSC, hFOB1.19, Saos-2, MG63, and U2OS cell lines and the results
showed the downregulation of GREM1 in Saos-2, MG63, and U2OS compared to others.
Knockdown of GREM1 promoted the proliferation, invasion, and migration of U2OS and
Saos-2 cells transfected with pLKO.1-GREM1 compared to the control group, although
not affecting the apoptotic ability of these cell lines. In addition, the expression of matrix-
degrading enzymes (metalloproteinase 2 and 9) and Id1 (inhibitor of DNA binding 1)
was inhibited by GREM1 overexpression in U2OS, while overexpressed by the silencing
of GREM1. The study elucidated that the upregulation of GREM1 could suppress the
migration and invasion of HUVECs and inhibit endothelial cells from acquiring angiogenic
ability. In in vivo experiments, nude mice were inoculated with U2OS cells to confirm
the effects of GREM1 on osteosarcoma progression. Based on the measurement of tumor
volumes, silencing of GREM1 increased the tumorigenesis of osteosarcoma cells, while the
upregulation of this gene inhibited the proliferation of osteosarcoma in vivo [20].
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3. Discussion

Osteosarcoma, which has a detrimental effect on the growth plate proliferation areas
of long bones, is the most common bone cancer, commonly affecting people younger than
20 years old [111]. RNA interference (RNAi) is the post-transcriptional process, in which the
gene expression leading to the disease has been regulated through the interference of mRNA
where the genetic codes for the new protein synthesis are carried [12]. RNAi technologies
provide a potential for treating genetic disorders, viral infections, and especially cancer,
in which overexpressed or altered proteins may be regulated through RNAi. The critical
prospect of this advance is to select correct sequences and synthesize appropriate RNAi [13].
This paper has reviewed studies using siRNA, shRNA, and miRNA in corporations with
mostly lentiviral vectors applied to in vitro and in vivo, and potential molecular targets in
osteosarcoma treatment.

As a cancer therapeutic agent, RNAi has demonstrated an effective treatment in phase
I and II studies by silencing disease-causing genes [9,10,20]. Nevertheless, there have
been several obstacles regarding safely and efficiently delivering synthesized RNAi types.
Most researchers indicate that the efficient delivery of RNA-related gene products is an
unmet challenge in many therapeutic approaches due to the instability of RNA. Therefore,
carrying RNA gene products by viral vectors or nanoparticles is more reliable than using
the naked RNAi approach [112]; however, these carriers still require optimizations to
be able to use as therapeutics. Additionally, there are several studies focusing on the
synthesis and chemical modification of siRNA to reduce side effects, in which siRNA
nucleotides are modified chemically to develop chemically stable and efficacious RNAs,
to increase target cell specificity, to reduce immune reaction and to decrease off-target
effects [113,114]. Furthermore, the studies revealed that compared to other methods, viral
vectors provide a broad tissue-specific tropism and high efficiency when the gene is silenced
for a long term, in addition to the capability to encapsulate and deliver into the cell [13,115].
Lentiviral vectors provide a stable and long-term expression unlike other vectors [116]. The
target specificity of the vector determines the siRNA concentration in the targeted tissue.
Therefore, the disease-causing gene is blocked, and treatment efficiency increases. The
off-targets in RNA delivery is another challenging field, and the studies showed that this
might be overcome using specific receptors and peptides [115]. Another study showed
that liposomes modified with YIGSR peptide targeting tumor cells prevented primary lung
metastasis and angiogenesis [117]. Peptide selection to increase the affinity of a vector to
the target tissue is crucial since it binds to a molecule of interest. In other words, the affinity
of a peptide for the target increases therapeutic efficacy. Recent research indicated that
phage display was a promising approach to choosing specific peptides with high affinity,
increasing efficacy, and reducing off-target effects. Herein, the study also emphasized that
three specific peptides bound to cultured chondrocytes were isolated with the help of the
phage display method [118]. Taking all together, the approaches used in gene therapy
should maximize the therapeutic effect.

Osteosarcoma has a complexity based on prognostic factors and risk groups, which
adversely affects the development of new therapies [11]. Therefore, it is essential to note
that next-generation sequencing of each osteosarcoma will guide effective treatment in
pediatric groups. Guimaraes et al. showed that 50% of all osteosarcoma patients (84 in
total) had somatic variants with TP53, MYC, CDK4, RB1, and PDGFRA genes. Moreover,
MYC copy number variants were detected more frequently in tumors from patients under
10 years old (p = 0.023) [11]. Considering the age group of patients, early recognition
and diagnosis improve the quality of life and protect patients from osteoblastic lineage
mutations. It was shown that osteosarcoma cells directly induce bone marrow mesenchymal
stem cells to cancer-associated fibroblasts in vitro, and Notch and Akt signaling pathways
regulate this differentiation [3]. These data still need to be explored in mice and then
human models to prevent metastasis in different tissues. Studies confirmed the efficiency
of individualized therapies both in vitro and in vivo. For example, the investigation of the
USP1 gene on 30 osteosarcoma patients showed that 26 had similar properties resulting



Int. J. Mol. Sci. 2022, 23, 12583 15 of 19

from the overexpression of the USP1 gene while four were different, although all patients
were already diagnosed with osteosarcoma. However, the knockdown of the USP1 gene
by a lentiviral vector carrying USP1-specific shRNA suppressed mRNA expression and
the translational process of this gene in U2OS cells [9]. Furthermore, the dysregulation of
long non-coding RNAs (LncRNAs) affects cancer progression due to their adverse effect
on cell growth, metastasis, apoptosis, and differentiation. Knockdown of GHET1, one of
the lncRNAs upregulated in osteosarcoma, by naked siRNA improved tumor growth and
metastasis in vivo [119].

The regulation of cancer-related genes will change based on patient physiology. In-
stead of administering the same approach to all patients, individuals should be evaluated
for a tailor-made medicine, since tumor cells are unique for each patient. For this purpose,
molecular methods such as polymerase chain reaction and sequencing are excellent ap-
proaches for early diagnosis and treatment combined with histological analysis. The use of
the RNAi approach with a well-designed delivery option may provide effective treatment
on the target site.
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