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Abstract

Listeria monocytogenes is a microorganism of great concern for the food industry and the

cause of human foodborne disease. Therefore, novel methods of control are needed, and

systems biology is one such approach to identify them. Using a combination of computa-

tional techniques and laboratory methods, genome-scale metabolic models (GEMs) can be

created, validated, and used to simulate growth environments and discern metabolic capa-

bilities of microbes of interest, including L. monocytogenes. The objective of the work pre-

sented here was to generate GEMs for six different strains of L. monocytogenes, and to

both qualitatively and quantitatively validate these GEMs with experimental data to examine

the diversity of metabolic capabilities of numerous strains from the three different serovar

groups most associated with foodborne outbreaks and human disease. Following qualitative

validation, 57 of the 95 carbon sources tested experimentally were present in the GEMs,

and; therefore, these were the compounds from which comparisons could be drawn. Of

these 57 compounds, agreement between in silico predictions and in vitro results for carbon

source utilization ranged from 80.7% to 91.2% between strains. Nutrient utilization agree-

ment between in silico predictions and in vitro results were also conducted for numerous

nitrogen, phosphorous, and sulfur sources. Additionally, quantitative validation showed that

the L. monocytogenes GEMs were able to generate in silico predictions for growth rate and

growth yield that were strongly and significantly (p < 0.0013 and p < 0.0015, respectively)

correlated with experimental results. These findings are significant because they show that

these GEMs for L. monocytogenes are comparable to published GEMs of other organisms

for agreement between in silico predictions and in vitro results. Therefore, as with the other

GEMs, namely those for Escherichia coli, Staphylococcus aureus, Vibrio vulnificus, and Sal-

monella spp., they can be used to determine new methods of growth control and disease

treatment.
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Introduction

Due to the importance of L. monocytogenes to the food industry, there is a continuous interest

in new methods of control and treatment. The development of rapid, relatively cheap genome

sequencing techniques in recent years has led to the emergence of genomic tools for identify-

ing more properties of microorganisms through the field of systems biology and its associated

computational techniques.

Genome-scale metabolic models (GEMs) are one of the newer techniques by which food-

borne pathogens are being studied. These GEMs take the genetic information contained in the

entire genome and convert it to a metabolic network that consists of metabolic reactions and

their associated metabolites. This network is then converted to a system of algebraic equations.

Using computing software, this system of equations can be used to calculate the flow of metab-

olites through the metabolic network and predict the growth of the organism under specific

conditions. The model can then be adjusted by comparing the predictions to experimental

data. A working model can then be used to study the metabolism of the organism and identify

metabolic reactions that are essential for the growth and survival of the organism. These essen-

tial reactions provide ideal targets for new methods of treatment and control. This type of

approach, using GEMs to study metabolism and identify new targets for control of foodborne

pathogens, has already been done for several foodborne pathogens, including Escherichia
coli O157:H7, Salmonella, Vibrio vulnificus, Staphylococcus aureus, Listeria monocytogenes
[1,2,3,4,5,6,7,8,9,10]. However, many genera of foodborne pathogens have not been examined

beyond a single strain through the use of computational modeling using GEMs.

The work presented here investigates the validity of using semi-automated online tool

KBase to construct the draft GEM, which can be done in a span of hours [The Department of

Energy Systems Biology Knowledgebase (KBase). Available online at: https://kbase.us]. The

semi-automated process uses publicly available genomic information alongside online data-

base tools to generate draft GEMs. The draft GEMs are then curated and expanded through an

iterative process to validate computational predictions by comparison to experimental data.

GEMs generated through use of KBase have been used to elucidate the metabolic profile of

Candidatus Homothermaceae, to reveal niche adaptation of Sinorhizobium meliloti, to reveal

diverse metabolic functions used in plant-bacterial interactions of Pseudomonas fluorescens,
and to analyze central metabolism across all microbial life through analysis of> 8,000 different

prokaryotic organisms [11,12,13,14].

The usefulness of computational models of microorganisms increases through validation

with experimental data. GEMs are commonly qualitatively validated through nutrient utiliza-

tion data for carbon, nitrogen, phosphorous, and sulfur to iteratively improve the accuracy of

in silico growth predictions. To increase the accuracy of the in silico predictions beyond the

improvements made through qualitative validation, it is necessary to quantitatively validate

the GEMs with additional experimental data.

Quantitative validation is primarily accomplished by performing aerobic batch growth

experiments that yield growth rates (h-1) and biomass yields (gDCW/g glucose) as previously

described [1]. These experimental values can be compared to in silico predictions, and allow

for adjustments to the model which improve its predictive power and accuracy for quantitative

growth measurements. The improved GEMs can then be used to predict how L. monocytogenes
will behave under a wide variety of different conditions prior to performing rigorous labora-

tory techniques. Additionally, this data can be used to generate numerical values that can con-

vert between experimentally determined data, such as viable cell counts, optical density, and

biomass. These conversion factors can be used to utilize existing L. monocytogenes growth data

for new in silico inquiry using GEMs.

Genome-scale metabolic models to compare serovars of Listeria monocytogenes
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Here we describe the use of semi-automated GEMs for studying six strains of L. monocyto-
genes, and also comparison to prior study that used a condensed GEM for L. monocytogenes
strain EGD-e to investigate listerial metabolism during intracellular replication used in the

course of invasion of a human cell to cause disease [10]. The six L. monocytogenes strains cho-

sen for this study all come from one of the three serovars most frequently responsible for

human listeriosis cases: 1/2a, 1/2b, and 4b. Strains J2-031 and JO161 come from serovar 1/2a,

which belongs to lineage II. Strains J2-064 and R2-502 belong to serovar 1/2b and lineage I.

Finally, Strains F2365 and ScottA belong to serovar 4b and lineage I. These six GEMs, validated

through comparison to experimental data, will identify new target areas for future control

mechanisms in foods and food processing environments. Additionally, the GEMs will provide

a fresh perspective on the metabolism of L. monocytogenes at a comparative genome level

through use of GEMs.

Results

A numerical comparison of the genomes of the six strains was accomplished using the RAST

(Rapid Annotation using Subsystem Technology) database (Table 1) [15]. Each strain has

approximately 3,000 genes, with 85%– 90% of those genes shared among all of the strains. Less

than 3% of the genes for each strain are unique, and none of the three serovars chosen had

more than 53 genes unique to that serovar.

Reconstruction of genome-scale metabolic models

The number of genes, metabolites, and metabolic reactions present in GEMs are important

characteristics (Table 1). The created GEMs contained just under 800 genes for each strain

(slightly more than 25% of the ORFs contained in each genome). Each GEM also contained

over 1,100 metabolites, and a cumulative total of 1,116 metabolites were contained in the six

GEMs. 1,106 of these metabolites were shared between all six of the L. monocytogenes strains.

In the work of Schauer et al. (2010), a condensed central metabolic network was reconstructed

to model listerial metabolism, and the GEM contained 155 reactions (30 are transport reac-

tions) and 167 metabolites [10]. Many of the reactions and metabolites contained in the con-

densed GEM for L. monocytogenes strain EGD-e are contained in the GEMs constructed

through K-Base as part of this work, but the GEMs reconstructed here contain >1,000 addi-

tional reactions and >900 metabolites due to extensive micronutrients contained in the

detailed biomass equation, and also through new reaction additions through comparison to

experimental data. There was also one metabolite unique to L. monocytogenes strain J2-064 (p-

Hydroxybenzaldehyde), and one metabolite unique to serovar 1/2a (Toxopyrimidine). Draft

GEMs contained over 1,050 reactions. Surveying the metabolites contained in the stoichiomet-

ric matrix of each of the GEMs for additional carbon sources added almost 200 reactions, and

the final curation added approximately 100 reactions to each GEM. The cumulative number of

Table 1. Numerical genome comparison of the six chosen strains of L. monocytogenes.

L. monocytogenes strain (ILSI #) Source Genes (% Shared) Unique Genes (% of Genome) Serovar Serovar Specific Genes

J2-031 Animal isolate (bovine) 1996 3,009 (86.6%) 49 (1.63%) 1/2a 53

JO161 Human epidemic 2000 3,024 (86.1%) 65 (2.15%)

J2-064 Food epidemic 1994 (Illinois) 2,938 (88.7%) 16 (0.54%) 1/2b 13

R2-502 Animal isolate (bovine) 1989 3,069 (84.9%) 57 (1.86%)

F2365 Food epidemic 1985 (L.A) 2,907 (89.6%) 32 (1.10%) 4b 26

ScottA Human epidemic 1993 3,016 (86.4%) 73 (2.42%)

https://doi.org/10.1371/journal.pone.0198584.t001
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reactions contained in all six GEMs was 1,335, and 1,300 of these reactions were shared among

all six GEMs (Table 2). Of the 1,335 possible reactions, one was unique to L. monocytogenes
strain F2365, seven were unique to L. monocytogenes strain J2-031, two were unique to L.

monocytogenes strain J2-064, and one reaction was unique to serovar 1/2a (Table 3). No unique

reactions were found in the GEMs for L. monocytogenes strains ScottA or R2-502.

Nutrient phenotype data

Also of interest is the degree to which the different strains and different serovars of L. monocy-
togenes differ in their nutrient utilization. Biolog™ PM plates are widely used to quickly gener-

ate large quantities of nutrient utilization data that can be used to qualitatively validate GEMs.

Upon completion of the Biolog™ PM experiments, strain and serovar specific nutrient utiliza-

tion data became available for these six L. monocytogenes strains. 95 sources of carbon, 95

sources of nitrogen, 59 sources of phosphorous, and 35 sources of sulfur were analyzed, and

the number of compounds capable of serving as the sole source of the respective nutrients was

determined (S2 Dataset). The strain-specific and serovar-specific differences in nutrient utili-

zation were also examined for the same four nutrients (Table 4), and the unique nutrients for

each strain and serovar were identified (Table 5).

Comparison between in silico predictions and experimental nutrient utilization

results. The previously described nutrient phenotype data can be compared to in silico pre-

dictions as part of the qualitative validation process. These comparisons allow the reconcilia-

tion of inaccuracies of in silico predictions, which results in optimized, validated GEMs. When

comparing in silico predictions to experimental results for utilization of nutrients, there can be

two types of disagreement: either the model predicts growth, but experimentally there was

none (termed “false positive”), or the model predicts no growth, but experimentally there was

growth (termed “false negative”).

Table 2. Gene, metabolite, and reactions contained in each version of the GEMs.

Strain Genes (% of Genome) Metabolites Draft GEM Reactions Reactions After Validation with Carbon Data Final Reactions

J2-031 770 (25.6%) 1,112 1,053 1,219 1,320

JO161 786 (26.0%) 1,115 1,055 1,221 1,320

J2-064 783 (26.7%) 1,114 1,056 1,221 1,320

R2-502 786 (25.6%) 1,114 1,057 1,223 1,322

F2365 780 (26.8%) 1,110 1,053 1,219 1,318

ScottA 779 (25.8%) 1,110 1,053 1,219 1,318

https://doi.org/10.1371/journal.pone.0198584.t002

Table 3. Enzymes catalyzing strain and serovar-specific metabolic reactions.

Strain (Serovar) Unique Enzymes

J2-031 (1/2a) S-Adenosyl-L-homocysteine hydrolase

rxn00257_c0

Isocitrate glyoxylate-lyase, alpha-D-Glucose-1-phosphate:alpha-D-glucose-1-phosphate

Xanthosine-5’-phosphate:L-glutamine amido-ligase (AMP-forming)

rxn01615_c0

4-amino-5-hydroxymethyl-2-methylpyrimidine synthetase_c0

J2-064 (1/2b) 4-hydroxybenzaldehyde:NAD+ oxidoreductase

4-hydroxy-benzyl-alcohol dehydrogenase

F2365 (4b) Adenosyl cobinamide kinase

J2-031 and JO161 (1/2a) ATP:4-amino-5-hydroxymethyl-2-methylpyrimidine 5-phosphotransferase_c0

https://doi.org/10.1371/journal.pone.0198584.t003
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A comparison of agreement between draft and final models for carbon source utilization

shows a drastic improvement in agreement following gapfilling and manual curation (Fig 1).

The draft model contains the initial nutrient utilization predictions, while the final model con-

tains predictions generated following manual curation and gapfilling. 57 carbon sources found

in the PM1 plates were also present in the GEMs, allowing comparison between in silico pre-

dictions and experimental data for utilization of these nutrients, and of these glucose, fucose,

glycerol, acetate, and citrate were investigated with the condensed L. monocytogenes GEM in

previous work from Schauer et al. [10]. In this study, 18 of these carbon sources (N-acetyl-D-

glucosamine, L-proline, D-trehalose, D-mannose, D-serine, D-gluconic acid, D-mannitol, L-

glutamate, D-fructose, D-glucose, uridine, L-glutamine, amylotriose, adenosine, glycyl-L-

aspartate, D-cellobiose, glycyl-L-glutamate, and glycyl-L-proline) resulted in agreement

between in silico predictions and experimental results for all strains. It was found that draft

GEMs agreements ranged from 48.3% to 69.0%. Following manual curation, the final GEMs,

agreements ranged from 80.7% to 91.2%, and each strain had a minimum of four false nega-

tives and one false positive (Fig 1).

After manual curation and gapfilling to improve the agreement between carbon utilization

experimental data and the corresponding in silico predictions, a similar comparison was made

for nitrogen (Fig 2). 62 nitrogen sources found in the PM3 plates were also present in the mod-

els, allowing comparisons to be made. It was found that agreement ranged from 59.7% to

66.1%, and all strains had at least five false negatives and at least 15 false positives (Fig 2). In

Table 4. Number of strain and serovar specific nutrients.

Carbon Sources Nitrogen Sources Sulfur + Phosphorus Sources

All strains 11 7 3

No strains 24 82 87

Unique to J2-031 3 0 0

Unique to JO161 4 0 0

Unique to J2-064 1 0 0

Unique to R2-502 3 0 1

Unique to F2365 4 0 0

Unique to ScottA 0 1 0

Unique to 1/2b 1 1 2

https://doi.org/10.1371/journal.pone.0198584.t004

Table 5. Unique nutrient sources metabolized by a single L. monocytogenes strain or serovar.

Strain/Serovar Unique Carbon Sources

J2-031 Formic Acid, D-Aspartic Acid, M-Tartaric Acid

JO161 D-Melibiose, D-Threonine, Glyoxylic Acid, L-Serine

J2-064 Glycyl-L-Proline

R2-502 Adonitol, M-Inositol, L-Lyxose

F2365 Sucrose, α-Hydroxy Glutaric Acid-γ-Lactone, Fumaric Acid, Tyramine

1/2b p-Hydroxy Phenyl Acetic Acid

Strain/Serovar Unique Nitrogen Sources

ScottA L-Threonine

1/2b D-Valine

Strain/Serovar Unique Phosphorus/Sulfur Sources

R2-502 2-Hydroxyethane Sulfonic Acid

1/2b Thiosulfate, Tetrathionate

https://doi.org/10.1371/journal.pone.0198584.t005
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Fig 1. Comparison of in silico predictions to experimental results for 39 individual carbon sources. The 39 carbon sources

displayed are those with at least one disagreement.

https://doi.org/10.1371/journal.pone.0198584.g001
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Fig 2. Comparison of in silico predictions to experimental results for 62 individual nitrogen sources.

https://doi.org/10.1371/journal.pone.0198584.g002
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contrast to carbon, GEMs were not manually curated to improve agreement for nitrogen,

phosphorous, or sulfur sources since the genes and reactions for many of metabolic pathways

for many of these nutrients is not known for L. monocytogenes, and may be addressed in future

studies to improve and update these GEMs for more accurate utilization of these nutrients.

Comparisons between in silico predictions and experimental results for phosphorous and

sulfur utilization were made in conjunction with the nitrogen comparisons (Figs 3 and 4). For

phosphorous, 22 compounds enabled comparisons. For these 22 compounds, agreement ran-

ged from 18.2% to 27.3%, and each strain had at least 16 false positives. However, none of the

strains had any false negatives (Fig 3). For sulfur 11 compounds were found in both the PM4

plates and the GEMs. For these 11 compounds, agreement ranged from 72.7% to 81.8%, and

each strain had at least one false negative and one false positive (Fig 4).

Agreement comparison to other genome-scale metabolic models. It is worthwhile to

compare the GEMs generated by this work to those previously created for other organisms in

order to assess the validity of the semi-automated model creation approach. In the work of

Schauer et al. (2010), the condensed GEM for L. monocytogenes strain EGD-e was used to

investigate network robustness and predict extreme pathways and elemental nodes for metab-

olism of glucose, fucose, glycerol, acetate, and citrate as carbon sources, but no experimental

validation for utilization of these carbon sources was conducted [10]. Of the six L. monocyto-
genes strains chosen in this this study that had GEMs reconstructed and updated through com-

parison to nutrient utilization experiments, revealed more strain to strain variability in

utilization of glucose (6/6), fucose (5/6), glycerol (3/6), acetate (2/6), citrate (3/6) as a sole

source of carbon. The carbon agreement of the six newly created L. monocytogenes GEMs was

compared to the carbon agreement (determined through use of Biolog phenotypic arrays) of

16 previously published GEMs (Fig 5), nitrogen agreement was compared to six previously

published GEMs (Fig 6), and phosphorus and sulfur agreements were compared to four previ-

ously published GEMs (Fig 6) [1,3,16,17,18,19,20,21,22,23].

Essential reactions

Finally, the number of reactions essential to the survivability and viability of L. monocytogenes
were predicted in simulations reflecting glucose minimal media as well as five high risk foods

(Table 6). The five high risk foods simulated were queso fresco, chicken breast, smoked

salmon, cantaloupe, and romaine lettuce. There were approximately 370 predicted essential

reactions when glucose minimal media was simulated, and this number decreased to approxi-

mately 300 in the high risk food simulations. Additionally, at least one unique essential reac-

tion was predicted and identified in every simulation for L. monocytogenes strains J2-031, J2-

064, and F2365, as well as serovar 1/2a (Tables 6 and 7). In the work of Schauer et al. the data

from a combination of experimental genome-scale screening, and in silico extreme pathway

and elementary mode analysis using a condensed GEM of L. monocytogenes strain EGD-e

demonstrated a critical role of glycerol, fucose, and purine metabolism and synthesis of gluta-

thione, aspartate semialdehyde, serine and amino acids during intracellular replication in

human cells [10]. When compared to the essential reaction predictions for L. monocytogenes
GEMs in food environments from this study, some essential reactions utilizing glycerol or

other glycerol containing metabolites, purines, and aspartate semialdehyde were also identi-

fied, thus indicating a critical role for cellular replication in both foods and intracellular repli-

cation in human cells. In comparison to the nutrient limited conditions encountered by L.

monocytogenes during intracellular replication, food environments are more nutrient rich

environments containing all of the amino acids, and therefore the essential reactions for

amino acid biosynthesis for L. monocytogenes GEMs in foods was not observed. Future studies

Genome-scale metabolic models to compare serovars of Listeria monocytogenes
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Fig 3. Comparison of in silico predictions to experimental results for 22 individual phosphorus sources.

https://doi.org/10.1371/journal.pone.0198584.g003
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with the GEMs constructed from this current study to determine the effects of gene mutations

and corresponding predicted essential reactions may lead to new control targets for L. monocy-
togenes in foods.

Determination of defined minimal growth media

In order to utilize batch growth experimental data to quantitatively validate the GEMs created

in this study, the media used to perform the batch growth experiments must be chemically

defined so that the nutrient amounts can be accurately used for in silico growth simulations.

Therefore, growth curves were generated to test several chemically defined media to determine

which media would support growth of the six strains of L. monocytogenes for subsequent batch

growth assays. IMM was the first medium tested, and growth was inconsistent across strains

Fig 4. Comparison of in silico predictions to experimental results for 11 sulfur sources.

https://doi.org/10.1371/journal.pone.0198584.g004
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(S1A Fig). Strain ScottA was particularly problematic, but growth was only observed in strains

J2-064 and JO161, with late growth in strain F2365. The second medium tested was MWB.

Similar to IMM, growth was inconsistent (S1B Fig). Again, growth was not supported for

strain ScottA, and strain F2365 was also not supported. However, growth was supported for

the four remaining strains. Finally, MWB supplemented with 3% BHI was tested. This medium

supported growth of all six strains (S1C Fig), and was; therefore, used for subsequent batch

growth experiments.

Conversion factors

The data generated by the batch growth experiments included data for viable cell counts, opti-

cal density, and biomass. Since this data was obtained for each of the six strains, it was possible

to calculate conversion factors to convert one type of data to another. Calculated conversion

factors were determined to compare and convert viable cell counts to biomass and optical den-

sity to biomass, which are the two most important conversions for subsequent model valida-

tion (Table 8).

Fig 5. Comparison of carbon source utilization agreement between this study and previous studies. The carbon source utilization agreements of the six genome-

scale metabolic models created in this study (green) are compared to the same agreements in 16 previously created models (blue).

https://doi.org/10.1371/journal.pone.0198584.g005
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Batch growth and qualitative in silico refinement

Experimental growth rates (h-1) were calculated using linear regression on the four, hourly dry

cell weight measurements taken for each strain. The initial in silico growth rate predictions

were obtained by first using the optical density to biomass conversion factors (Table 8) to

approximate the initial biomass at the start of each of the batch inoculum. The duration for

completion of batch growth in silico was then adjusted to reflect the amount of time deter-

mined experimentally. The correlation between the experimental growth rates and in silico
growth rate predictions was neither strong, nor significant (Pearson correlation test statistic

yields p< 0.32). Therefore, the scalar differences between the experimental growth rates and

the initial predictions were used to multiply the predicted biomass values in order to better

reflect experimental growth rates. After introduction of the scalar factors determined for each

strain, the correlation between the experimental growth rates and in silico predictions was

Fig 6. Comparison of nitrogen, phosphorus, and sulfur utilization agreement between this study and previous studies. The nutrient utilization agreements of the

six genome-scale metabolic models created in this study (dashed box) are compared to the same agreements in six previously created models for nitrogen (red), and

four for phosphorus (green) and sulfur (purple).

https://doi.org/10.1371/journal.pone.0198584.g006
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much stronger and significant (p< 0.013). Similarly, the correlation between the experimental

growth yields and the initial in silico predictions were neither strong, nor significant (p<

0.36). However, after using the scalar factors to adjust the models, the correlation became

much stronger and significant (p< 0.0015).

Table 6. Essential reaction summary for the simulation of conditions representing glucose minimal media, queso fresco, chicken breast, smoked salmon, canta-

loupe, and romaine lettuce.

Glucose Minimal Media

Strain Total (% Shared) Unique (%) Serovar Serovar Specific Reactions

J2-031 369 (95.1%) 7 (1.90%) 1/2a 3

JO161 371 (94.6%) 0 (0%)

J2-064 368 (95.4%) 2 (0.54%) 1/2b 0

R2-502 368 (95.4%) 0 (0%)

F2365 367 (94.6%) 1 (0.27%) 4b 0

ScottA 367 (95.6%) 0 (0%)

Queso Fresco

J2-031 297 (93.6%) 9 (3.03%) 1/2a 1

JO161 295 (94.2%) 0 (0%)

J2-064 306 (90.8%) 7 (2.29%) 1/2b 0

R2-502 294 (94.6%) 0 (0%)

F2365 293 (94.9%) 1 (0.34%) 4b 0

ScottA 293 (94.9%) 0 (0%)

Chicken Breast

J2-031 297 (94.3%) 7 (2.36%) 1/2a 1

JO161 298 (94.0%) 0 (0%)

J2-064 309 (90.6%) 7 (2.27%) 1/2b 0

R2-502 297 (94.3%) 0 (0%)

F2365 296 (94.6%) 1 (0.34%) 4b 0

ScottA 296 (94.6%) 0 (0%)

Smoked Salmon

J2-031 297 (94.3%) 7 (2.36%) 1/2a 1

JO161 298 (94.0%) 0 (0%)

J2-064 309 (90.6%) 7 (2.27%) 1/2b 0

R2-502 297 (94.3%) 0 (0%)

F2365 296 (94.6%) 1 (0.34%) 4b 0

ScottA 296 (94.6%) 0 (0%)

Cantaloupe

J2-031 295 (94.9%) 5 (1.69%) 1/2a 1

JO161 298 (94.0%) 0 (0%)

J2-064 309 (90.6%) 7 (2.27%) 1/2b 0

R2-502 297 (94.3%) 0 (0%)

F2365 296 (94.6%) 1 (0.34%) 4b 0

ScottA 296 (94.6%) 0 (0%)

Romaine Lettuce

J2-031 297 (94.3%) 7 (2.36%) 1/2a 1

JO161 298 (94.0%) 0 (0%)

J2-064 309 (90.6%) 7 (2.27%) 1/2b 0

R2-502 297 (94.3%) 0 (0%)

F2365 296 (94.6%) 1 (0.34%) 4b 0

ScottA 296 (94.6%) 0 (0%)

https://doi.org/10.1371/journal.pone.0198584.t006
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A graphical of representation of the growth characteristics obtained experimentally and

predicted in silico was obtained (Fig 7). Data generated by the model before the scalar factors

were introduced (data not shown), due to the stronger correlation between the experimental

results and the predictions after the scalar factors were introduced.

Discussion

When the content of predicted ORFs is compared, it is clear that much of the genome contents

are shared by all six L. monocytogenes strains (Table 1). The genomes are all very similar in

length, and greater than 85% of each genome is shared between all strains. This degree of con-

servation was expected, since most evidence suggests that the genomes of modern L. monocy-
togenes strains are highly conserved [24].

Table 7. Enzymes catalyzing strain and serovar-specific essential reactions in simulations reflecting glucose minimal media (MM), queso fresco (QF), chicken breast

(CB), smoked salmon (SS), cantaloupe (C), or romaine lettuce (RL).

Strain/Serovar Unique Enzyme MM QF CB SS C RL

J2-031 S-Adenosyl-L-homocysteine hydrolase + + + + + +

Oxalosuccinate:NADP+ oxidoreductase (decarboxylating) - + - - - -

Isocitrate glyoxylate-lyase + + + + + +

alpha-D-Glucose-1-phosphate:alpha-D-glucose-1-phosphate + + + + + +

Xanthosine-5’-phosphate:L-glutamine amido-ligase (AMP-forming) + + + + + +

Maltose:orthophosphate 1-beta-D-glucosyltransferase + + + + - +

Adenosine:orthophosphate ribosyltransferase + + + + + +

Isocitrate:NADP+ oxidoreductase (decarboxylating) - + - - - -

beta-D-Glucose 1-phosphate 1,6-phosphomutase + + + + - +

J2-064 4-hydroxybenzaldehyde:NAD+ oxidoreductase + + + + + +

ATP:thiamine phosphotransferase + + + + + +

2-Methyl-4-amino-5-hydroxymethylpyrimidine-diphosphate:4-methyl-5- - + + + + +

ATP:4-amino-2-methyl-5-phosphomethylpyrimidine phosphotransferase - + + + + +

4-amino-2-methyl-5-phosphomethylpyrimidine synthetase - + + + + +

thiazole phosphate synthesis - + + + + +

4-hydroxy-benzyl-alcohol dehydrogenase - + + + + +

F2365 Adenosyl cobinamide kinase + + + + + +

1/2a L-threonine ammonia-lyase_c0 + - - - - -

O-Acetyl-L-homoserine acetate-lyase (adding methanethiol)_c0 + - - - - -

2-Amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine:4-_c0 + + + + + +

https://doi.org/10.1371/journal.pone.0198584.t007

Table 8. Experimentally determined conversion factors.

Strain Viable Cells (CFU/mL) to Biomass (gDCW/L) ± SDa OD600 to Biomass (gDCW/L) ± SD

J2-031 - - -b 1.27 x 10−1 ± 4.40 x 10−2

JO161 2.8 x 10−10 ± 3.3 x 10−11 3.78 x 10−1 ± 2.17 x 10−1

J2-064 4.4 x 10−11 ± 1.7 x 10−11 9.38 x 10−2 ± 4.79 x 10−2

R2-502 1.3 x 10−10 ± 6.4 x 10−11 2.27 x 10−1 ± 8.70 x 10−2

F2365 4.6 x 10−11 ± 1.2 x 10−11 8.19 x 10−2 ± 3.91 x 10−2

ScottA 4.3 x 10−11 ± 2.1 x 10−11 1.03 x 10−1 ± 7.60 x 10−2

a Standard Deviation
b Viable cell count was not taken for strain J2-031

https://doi.org/10.1371/journal.pone.0198584.t008
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Interestingly, the amount of serovar specific genes is on the same scale as the amount of

genes unique to each strain. This is represented by the fact that the number of serovar specific

genes is similar to the number of unique genes (Table 1). The low frequency of serovar specific

genes could possibly indicate that a new method of classification could be more representative

of actual differences between strains.

As GEMs were curated and validated through comparison to experimental data, the num-

ber of genes, metabolites, and metabolic reactions for each of the GEMs at each stage of their

development increased (Table 2). The models were very consistent in the number of genes,

metabolites, and reactions. The vast majority of the metabolites (99.1%) and reactions (97.4%)

were shared between all six of the GEMs. However, three of the strains (L. monocytogenes
strains J2-031, J2-064, and F2365) had at least one unique reaction, as did serovar 1/2a. These

unique reactions may have important implications, because they may give these strains a com-

petitive advantage in specific environments, or may explain the isolation source of the strain.

The level of diversity in the metabolic genes and corresponding content was not too surpris-

ing. This is because L. monocytogenes is a non-spore forming bacteria, and similar studies with

other non-sporulating bacteria that compare different strains of the same organism, such as E.

coli or Staphylococcus aureus, saw similar levels of differentiation in metabolic gene/reaction

content [1,2,9]. In terms of the numbers of these components (genes, reactions, and metabo-

lites), the GEMs created in this study are very comparable to other GEMs not based on E. coli
[4,6]. In contrast, when compared to models of E. coli, the models created in this study involve

fewer genes, metabolites, and metabolic reactions, many of which are due to E. coli having an

additional outer membrane and periplasm, which requires numerous additional transport

and metabolic reactions for in silico inquiry [1,2]. In addition, E. coli K12 is the most studied

bacterium in the world, and approximately 70% of functions of the genes in the genome have

been experimentally characterized in the last century. In contrast, a paucity of research exists

for the characterization of genes encoding metabolic enzymes and transporters specific to L.

monocytogenes.

Fig 7. Comparison of experimental and in silico growth rates and growth yields including experimental standard deviations.

https://doi.org/10.1371/journal.pone.0198584.g007
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The nutrient utilization experimental data generated as part of this study is some of the first

large-scale metabolic data for numerous strains of L. monocytogenes (S2 Dataset). The com-

pounds uniquely utilized by each strain could give some insight on why that particular strain

was isolated from its corresponding environment. For example, formic acid is a compound

commonly used as a preservative in animal feed. Strain J2-031 was isolated from a bovine host

[25], and was the only strain capable of metabolizing formic acid. It is possible that the utiliza-

tion of formic acid as a carbon source from the animal’s feed provided a competitive advantage

for J2-031 in a bovine host. Another example of unique nutrient metabolism is L-serine utiliza-

tion as a carbon source by strain JO161. L-serine is a nonessential amino acid in humans,

meaning it can be synthesized by the body. Since strain JO161 was isolated as a clinical sample

from a human patient [25], it could be that utilization of excess L-serine may provide strain

JO161 a competitive growth advantage in its host environment. Other examples are sucrose,

fumaric acid, and tyramine as carbon sources for strain F2365. Sucrose is added to many

foods, tyramine in naturally found in many foods, and fumaric acid is an approved food addi-

tive. Since strain F2365 was isolated from a food epidemic [25], utilization of one or more of

these compounds could have contributed to its successful survival and proliferation.

The nutrient utilization data also shows trends of metabolic similarities between strains.

For example, of the 95 carbon sources tested, 35 had identical utilization across all of the

strains, but just 15 were unique to one strain, and only one was serovar specific. This means

that 44 of the compounds providing sole sources of carbon were used by some combination of

strains. Analysis of these combinations, while beyond the scope of this study, could provide

valuable insight into the metabolism of L. monocytogenes. In contrast, the metabolism of nitro-

gen, phosphorus, and sulfur was much more consistent across all six strains. 89 of the 95 nitro-

gen sources had the same utilization among all strains, and 90 of the 94 phosphorus and sulfur

sources were consistent across strains, thus supporting a high level of conservation in the met-

abolic capabilities for these nutrients.

Using phenotypic microarray plates to experimentally determine carbon source utilization

phenotypic data is a very common method to validate GEMs for qualitative predictive accu-

racy. 57 of the carbon sources tested on Biolog™ PM1 plates were also present in the set of

metabolites contained in the GEMs, thereby allowing comparisons of in silico and experimen-

tal nutrient utilization to be made. In the case of E. coli K12, multiple iterations have expanded

the contents of the series of GEMs for this organism, and each iterative metabolic reconstruc-

tion has led to improvement of the accuracy of nutrient utilization predictions from 70% to

98% [1,16,26]. This indicates that the models created in this study are comparable to those

already published, and, as such, they can be used in similar ways that these other models have

been used, for example, simulating complex environments such as foods or host niches for

determination of predicted essential reactions.

Nitrogen source utilization experiments are another common method used to assess the

validity of GEMs for qualitative growth predictions. These results are not as promising as the

carbon source utilization results; however, a more thorough review of the available genomic

metabolism information could reveal possible opportunities for improvement since many of

these nitrogen utilization pathways have not been extensively researched for L. monocytogenes
strains. Because carbon source utilization is the most common form of validation of GEMs,

the focus of this study was to focus on the accuracy of carbon utilization agreement, but nitro-

gen, phosphorus, and sulfur were also included to investigate how well GEMs created with

semi-automated tools can predict utilization of these nutrients. Therefore, less attention was

paid to manual curation to improve the predictive accuracy of L. monocytogenes GEMs for

nitrogen metabolism, and these values could serve as a baseline for future studies to identify

ways to improve genome-scale metabolic reconstruction pipelines.
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In addition to carbon and nitrogen source utilization experiments, phosphorus and sulfur

experiments are also performed and compared to in silico GEM predictions. Four previous

GEMs were found that performed these experiments as part of the experimental validation

process and their agreement can be seen in Fig 6. These GEMs had an average phosphorus

agreement of 78.0 ± 42.0% and an average sulfur agreement of 45.3 ± 24.3%. In this study,

there were 22 phosphorus and 11 sulfur sources for which comparisons were possible. How-

ever, a comparably low phosphorus agreement (15%) was seen in one of the studies, so low

phosphorus agreement is not unique to this study, and is likely due to the paucity of experi-

mental studies that focus to characterize genes and reactions involved in unique non-phos-

phate phosphorous sources. Conversely, the sulfur agreement is considerably better than that

of the four comparison GEMs, (Fig 6). Much like the nitrogen metabolism, phosphorus and

sulfur metabolism received less vigorous curation, and, while the sulfur agreement is promis-

ing, the phosphorus agreement could potentially be improved. Both phosphorus and sulfur

agreements, like nitrogen, could serve as baselines for future work.

At the forefront of the possible applications for the use of GEMs is the identification of new

methods for control for pathogens. This is primarily accomplished through the prediction of

essential reactions. These metabolic reactions are those that are required for the organism to

produce biomass and are likely necessary for viability and/or growth. They are identified by

running in silico gene/reaction simulations: systematically simulating removal of one meta-

bolic reaction at a time. These simulations attempt to optimize biomass production with the

knocked out reaction. If no biomass is able to be produced, the reaction is considered essential.

This approach has been successfully used with a GEM of Vibrio vulnificus to identify new con-

trol targets, and through screening of metabolite analog libraries of compounds, led to new

ways to kill and prevent the growth of V. vulnificus [6].

In this study, essential reaction simulations were first determined using the final, manually

curated and validated GEMs in conditions simulating a glucose minimal media. Then, chemi-

cal compounds present the analytical composition of five of the foods most frequently recalled

for L. monocytogenes contamination were added to the simulation medium, and essential reac-

tion predictions were determined for each of these simulated environments. The five foods

chosen were queso fresco, chicken breast, smoked salmon, cantaloupe, and romaine lettuce.

Summaries of the essential reaction predictions can be seen in Table 8. Simulations run on

the glucose minimal media predicted the most essential reactions (average = 368.3 ± 1.5).

This was expected, since the food matrices that were simulated had additional nutrients avail-

able, which would allow the organism to compensate with alternative catabolic methods

when certain metabolic reactions were eliminated. All of the essential reaction simulations

done on foods predicted similar numbers of essential reactions (average = 298.3 ± 4.8). This

was also expected, because the models did not contain all of the different nutrients available

in each of the different foods, and; therefore, the compositions of the simulated media were

very similar.

The predictions of essential reactions generated by this study can be used by future studies

to identify new methods of control for a broad spectrum of L. monocytogenes strains. The logi-

cal next step from this analysis is for future studies to experimentally validate the essentiality of

the metabolic reactions. This can be accomplished by performing gene knockout experiments,

similar to previous studies which combined mutant library screening and metabolic modeling

to identify new roles of genes important for L. monocytogenes strain EGD-e during intracellu-

lar replication [10]. Knocking out, or preventing the expression of, the genes associated with

the predicted essential reactions should be lethal to the organism. Once the essentiality of the

reactions has been confirmed, new drugs, such as chemical analogs that mimic metabolites

that irreversibly bind to the essential enzyme, or other control methods, can be developed to
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target the genes and their associated reactions. There has been success for using GEM essential

reaction predictions to aid in the development of drugs targeting foodborne pathogens, specif-

ically Vibrio vulnificus [6].

The importance of running qualitative batch growth experiments on chemically defined

media cannot be understated. Without a precise, known nutrient composition, the environ-

mental conditions used for the growth simulations will not be accurate, which undermines the

accuracy with which the GEMs can make accurate predictions. Difficulties arose in achieving

consistent growth on both IMM and MWB. Multiple trials were run for each media, but little

consistency across strains and the inability to reproduce the work of Phan-Thanh et al. [27]

and Premaratne et al. [28] resulted in the decision to supplement MWB media with 3% BHI.

This is likely due to minute requirements of vitamins or cofactors absent in the previously

described minimal media recipes. While this slightly compromises the chemical composition

of the media, it resulted in consistent overnight growth in the media, which made the qualita-

tive batch growth experiments feasible.

Some degree of variation in the conversion factors was observed (Table 8). One potential

reason for the uncertainty is the relatively few measurements taken of dry cell weight (4) and

viable cell concentration (1). While these measurements, taken in triplicate, allow for the gen-

eration of necessary growth rates and growth yields, the values for determination of conversion

factors may be improved by increasing the number of time points used. However, the values

used here to determine in silico growth rates and growth yields had a strong correlation to

experimental values and were determined to be statistically significant. Therefore, these values

provide new tools for the field of systems biology and for future studies performing in silico
work with L. monocytogenes strains.

When comparing the conversion factors generated in this study to those previously pub-

lished [1], it can be seen that the optical density to viable cell concentration factors are on simi-

lar scales (average = 0.168 and 0.418 for L. monocytogenes and E. coli, respectively). This was

expected, since it is a comparison of two bacteria. Conversely, the conversion factors for viable

cells to biomass differ by several orders of magnitude (average = 1.09 x 10−10 and 3.27 x 10−7

for L. monocytogenes and E. coli, respectively). The degree to which the viable cells to biomass

conversion factors differ is not surprising, since E. coli is Gram negative and L. monocytogenes
is Gram positive and the additional outer membrane and periplasm found in Gram negative

bacteria may account for some of these differences.

Batch growth experiments were conducted in order to make several comparisons between

six L. monocytogenes strains representing the three serovars (1/2a, 1/2b, and 4b) used in this

study. The first comparison made was of experimental growth rates and growth yields between

the six strains representing the three serovars. It was determined that there was no statistically

significant (student’s t-test statistic yields p> 0.16) difference in growth rate between any of

the strains or any of the serovars. A trend was observed in which serovar 4b had a lower growth

rate (average = 0.00569 h-1) than either serovar 1/2a (0.01580 h-1) or 1/2b (0.01359 h-1), but the

difference was not significant (p> 0.42). Similarly, there was no significant difference observed

(p> 0.13) in growth yields between strains or serovars. As with growth rates, there was a trend

that indicated serovar 4b had lower growth yields (average = 0.00528 g/g glucose) than either

serovar 1/2a (0.01210 gDCW/g glucose) or 1/2b (0.00966 gDCW/g glucose), but again, the dif-

ference was not significant (p> 0.40).

The second comparison was of the initial in silico predictions of growth rates and growth

yields between serovars. As was seen with the experimental values, there was no significant

(p> 0.06) difference between any of the serovars for either growth rate or growth yield. Again

reflecting the experimental values, an observed trend indicating serovar 4b had a lower growth

rate (average = 0.02857 h-1) and growth yield (average = 0.01270 gDCW/g glucose) than either
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serovar 1/2a (0.05835 h-1 and 0.02594 gDCW/g glucose) or 1/2b (0.07500 h-1 and 0.03333

gDCW/g glucose). However, neither of these trends were significant (p> 0.06).

Next, we sought to compare the experimental growth rates and growth yields and the initial

in silico predictions of these values. This was in order to see how close the initial in silico pre-

dictions were to the experimental results. This comparison revealed that the initial predictions

were considerably inaccurate. Initial growth rate predictions were all at least one standard

deviation above the experimental average, and for several of the strains, the predictions were

much more than one standard deviation above. Similarly, all of the initial growth yield predic-

tions were at least one standard deviation above the experimental average, except for strain

JO161, which was just inside one standard deviation. These results, while good in that all

strains were consistently over-estimated, indicated that steps needed to be taken to improve

accuracy of quantitative in silico growth predictions, namely the introduction of scalar factors

similar to the work with E. coli K12 GEMs [29].

Next, we sought to determine differences through comparison of the in silico predictions

for growth rate and growth yield after the introduction of the scalar factors. Similar to the

experimental and initial model comparisons, there was no significant (p> 0.48) difference

between serovars. The trends indicating that serovar 4b had the lowest growth rate (aver-

age = 0.00205 h-1 vs. 0.00848 and 0.00379 h-1) and growth yield (average = 0.00302 gDCW/g

glucose vs. 0.00768 and 0.00498 gDCW/g glucose) were less pronounced after the introduction

of the scaling factors. Therefore, it was not unexpected that the trends, like those for experi-

mental and initial model comparisons, were not significant (p> 0.48).

To improve quantitative in silico predictions, we compared the experimental and in silico
values for growth rate and growth yield after the introduction of scalar factors into the FBA

algorithm. As shown, the determination and implementation of the scalar factor greatly

improved the accuracy of the in silico predictions (Fig 7). With the use of the scaling factors to

multiply the biomass value, all of the in silico prediction values for growth yields correlated

with the experimentally determined values, and all fell within one standard deviation from the

average. Similarly, all but one of the in silico prediction values for growth rates correlated with

the experimentally determined values, and fell within one standard deviation from the average.

The one exception was strain F2365, which was just outside of one standard deviation from

the experimental average. These results, combined with the strong, significant (Pearson corre-

lation test statistic yields p< 0.013 and p< 0.0015) correlation between the experimental val-

ues, indicate that using the scalar factors was a valid method for improving the predictive

accuracy of the GEMs. This is similar to the work conducted with various iterations of E. coli
K12 GEMs, which has been useful for bioengineering strains for production of commodities

and examining the evolutionary relationships of numerous pathogenic and nonpathogenic

E. coli strains [1,16,26]

Conclusions

This study describes the creation, multi strain comparison, and qualitative experimental vali-

dation of six GEMs for L. monocytogenes. Nutrient utilization comparisons were made for sole

sources of carbon, nitrogen, phosphorous, and sulfur. The models were then curated to better

agree with the experimental results for carbon utilization, since that is the method most com-

monly used to validate GEMs. It was found that the final carbon source utilization agreement

of the newly created models was comparable to the agreement seen by previously published

models. Additionally, the nitrogen and phosphorus agreements were lower than previously

published models, but the sulfur agreement was higher than previously published models.

Quantitatively validating the GEMs as laboratory tools was done using batch growth
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experiments, and determination of scalar factor adjustments resulted in growth rate and

growth yield predictions that were much more accurate, and were significantly correlated with

the experimental results. The potential essential reactions identified by this study provide

promising directions for future studies improving the safety of foods commonly contaminated

by L. monocytogenes, including cheese, deli meats, salads, and fruit. The models could also be

used for future iterations of GEMs for L. monocytogenes. These results indicate that GEMs gen-

erated by semi-automated tools provided by KBase, followed by manual curation and experi-

mental validation, can also become successful predictive tools for use in the laboratory.

Materials and methods

Stock culture maintenance

The six strains chosen for this study represent a variety of isolation sources as well as each of

the three most prevalent serovars in terms of human listeriosis cases (Table 1). Culture stocks

were kept at -80˚C for long term storage. Strains were streaked onto brain heart infusion

(BHI) agar plates (Becton, Dickinson, and Company, Sparks, MD) and stored at 4˚C. The

refrigerated cultures were re-streaked onto fresh BHI agar plates every two weeks as needed.

Generation of genome-scale metabolic models

Six Listeria monocytogenes strain genomes (F2365, J2-031, J2-064, JO161, R2-502, and Scott A)

were downloaded in GenBank genome files obtained from the National Center for Biotechnol-

ogy Information (NCBI) database [30,31,32,33,34]. These genomes were then uploaded to

KBase, an online genome-scale metabolic reconstruction pipeline sponsored by the U.S.

Department of Energy, and draft GEMs were created using the semi-automated tools provided

by KBase [Department of Energy Systems Biology Knowledgebase (KBase), http://kbase.us]

that is built with the same bioinformatics pipeline as the ModelSeed [35]. In the first step of

the Model SEED or K-Base pipeline, the assembled genome sequence is annotated by the

Rapid Annotation using Subsystem Technology (RAST) server [15] and imported into the

SEED analysis system. Next, a preliminary GEM is generated consisting of intracellular and

transport reactions associated with genes on the basis of RAST annotations, spontaneous reac-

tions and an organism-specific biomass reaction. In the gap-filling step of the pipeline, addi-

tional intracellular and transport reactions are added to create an analysis-ready GEM capable

of simulating biomass production using only transportable nutrients.

To make GEMs functional, it is a common practice to identify missing reactions required

for metabolic pathways that are known to be functional based on experimental evidence, but

the gene encoding the reaction may have not yet been identified. This gap-filling process was

required in this study to fill in missing metabolic reactions required for the utilization of D-

glucose, a compound that is known to be able to be metabolized by L. monocytogenes and

nearly all free living bacteria. Therefore, using KBase, gap-filling was performed on the draft

L. monocytogenes models for D-glucose under both aerobic and anaerobic conditions. Then

the draft models were downloaded in systems biology markup language (SBML) file format,

curated through comparison to experimental data, and provided here as validated SBML Level

3 fbc format files (S1, S2, S3, S4, S5 and S6 Files) with provision of upper and lower bounds

used for Flux Balance Analysis (FBA) simulations (S1 Dataset). The high level modeling system

for mathematical optimization GAMS (General Algebraic Modeling Software) and CPLEX

solver was used to conduct computational analysis using established methods such as Flux Bal-

ance Analysis, dynamic FBA, and Gene/Reaction essentiality predictions from the COBRA

toolbox [36]. Cellular growth rate (or biomass production) is often used as an objective func-

tion for FBA, and was used for FBA analyses performed in this study. The biomass equations
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for each model were identical as provided by K-Base and are based on the analytically deter-

mined amount of metabolites from the E. coli biomass equation to comprise 1 g of cellular dry

cell weight [16,37], and growth and non-growth associated ATP requirement values, and PO

(number of ATP molecules produced per pair of electrons donated to the electron transport

system) ratio were used for all models as previously described [16].

In vitro nutrient utilization

Biolog™ PM1, PM3, and PM4 plates (Biolog, Inc., Hayward, CA) were used for all in vitro
nutrient utilization experiments. When preparing Biolog™ plates, three isolated colonies from

each refrigerated culture plate were inoculated into separate test tubes containing 9 mL of BHI

broth. The BHI tubes were then incubated at 37˚C overnight. After incubation, two tubes for

each strain were chosen and 300 μL from each tube were taken and inoculated onto separate

Biolog Universal Growth plus sheep’s Blood (BUG+B) agar plates in triplicate (6 plates per

strain). The BUG+B plates were then incubated at 37˚C overnight. After incubation, one

BUG+B plate was harvested using a sterile cotton swab, and cells were placed in 15 mL conical

tubes containing 1.8 mL of IF-0 solution, prepared as directed by the manufacturer. 150 μL of

cell suspension was removed, placed in a new 15 mL conical tube, and the OD590 was then

adjusted to 0.171 ± 0.020 by diluting with fresh IF-0 solution. After OD590 adjustment, 1.8 mL

of the diluted cell suspension was added to 15 mL conical tubes containing 9 mL of IF-0+ solu-

tion that had been prepared according to manufacturer instructions. For PM3 and PM4 plates,

108 μL of 100X ferric citrate/sodium succinate solution was added to each conical tube con-

taining cellular suspension. The resulting solution was then transferred to a sterile reservoir,

and then transferred to separate wells of Biolog™ plates, separate plates for each replicate of

each strain (12 total), in 100 μL aliquots. 640 nm absorbance values were then taken at 0, 12,

24, 48, and 72 hour time points using a ChroMate1 Microplate Reader (Awareness Technol-

ogy, Inc., Palm City, FL).

In silico nutrient utilization prediction and reconciliation

GAMS is an optimization software package and was used to perform flux balance analysis

(FBA) on each of the models to determine predicted nutrient utilization capabilities using

methods previously described [36]. FBA is a technique frequently used while studying GEMs.

This is because FBA makes growth rate predictions possible by calculating the flow of metabo-

lites through the network [38]. The foundation of FBA is the translation of a metabolic net-

work into a matrix of stoichiometric coefficients, the S matrix. This matrix includes each

metabolite in the network as a separate row and each metabolic reaction as a separate column.

Representing the metabolic network in this fashion places constraints on the system in the

form of a steady state mass balance, that is, the rate of consumption of metabolites cannot

exceed the rate of production. Additional constraints, such as maximum or minimum values

for reaction fluxes, can also be implemented [38]. The function of these constraints is to

restrict the possible range of reaction fluxes into a defined solution space. Growth rate predic-

tions are enabled by representing the production of biomass as a metabolic reaction, which

serves as the objective function, and adds a column to the S matrix. This allows the optimiza-

tion of the objective function by calculating the flux distribution that results in the maximum

flux through the biomass reaction [38]. In terms of nutrient utilization, when the optimized

biomass reaction results in zero flux, it is determined that the organism cannot utilize that

nutrient as a sole source of carbon, nitrogen, phosphorous, or sulfur.

After the initial nutrient utilization predictions, the metabolites contained in the GEMs

were surveyed to identify compounds matching those present on Biolog™ plates that did not
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already have corresponding transport reactions in the draft GEMs. After identifying the miss-

ing compounds, the models were manually curated to add the required reactions in order to

generate predictions for in silico nutrient utilization. These predictions were then compared to

in vitro nutrient utilization experiments using Biolog™ plates.

Comparisons of in silico predictions to in vitro results generated a list of disagreements nec-

essary to reconcile for validation of GEMs predictive accuracy. The GEMs were then manually

curated to remove transport reactions associated with compounds for which in vitro results

showed no growth but in silico predictions predicted growth (false positives). Compounds for

which in silico simulations predicted no growth, but in vitro experiments showed growth (false

negatives) were reconciled by first using KBase to gapfill the draft models on those compounds

to identify any necessary missing metabolic reactions. The reactions in the resultant secondary

draft models were then used as templates by which the manually curated models could be

updated. This step was necessary because the manually curated models could not be re-

uploaded to KBase and repeatedly gapfilled. The gapfilling, manual curation, and Biolog™
experimental validation techniques presented here are common methods used to validate and

optimize GEMs [1,37,39,40].

Essential reaction predictions

Essential reactions are those required by a microorganism for viability and/or growth in a

given environmental condition. Therefore, determination of essential reactions identifies

metabolic reactions and corresponding genes as ideal targets for control of viability and

growth. Predictions of essential reactions can be accomplished in silico by adding additional

constraints to the FBA simulations of GEMs. The constraints introduced during essential

reaction prediction simulations serve to restrict the flux through each metabolic reaction one

at a time. FBA then re-optimizes the objective function (biomass production) while the sin-

gle reaction is restricted. If, lacking the specific metabolic reaction, the predicted biomass is

zero, the restricted reaction is deemed essential. This approach for predicting essential

reactions with GEMs is well established [1,41]. Using a similar approach, where essential

metabolites were predicted Kim et al. were able to identify successful metabolite-mimicking

drugs that had a bactericidal effect on the opportunistic foodborne pathogen, Vibrio vulnifi-
cus [6].

Essential reaction predictions were performed after final reconciliation between in silico
predictions and in vitro experimental results. GAMS was used to simulate gene knockouts,

eliminating one metabolic reaction at a time by constraining the flux to zero in order to iden-

tify which of those reactions were essential to the survivability and viability of each of the six

strains of L. monocytogenes. Essential reactions were determined by a prediction of zero bio-

mass generation associated with the removal of the reaction. Essential reaction predictions

were first performed in conditions reflecting the nutrients present in a minimal media with

glucose as the sole energy source (H2O, PO4
3-, CO2, NH3, Mn2+, Zn2+, SO4

2-, Cu2+, Ca2+, H+,

Cl-, Co2+, K+, Mg, cob(I)alamin, Na+, Fe2+, Fe3+, O2, and D-glucose). Subsequently, the chemi-

cal composition of five of the foods most commonly recalled for L. monocytogenes contamina-

tion was obtained from the United States Department of Agriculture (USDA) nutrient

database. Using this chemical composition, compounds that were both present in the foods

and present in the models were added to the environmental simulations in reported analytical

amounts (S1 Dataset) to see if any differences in essential reaction predictions arose when

growth was simulated on each food item. The five food items for which essential reaction pre-

dictions were generated were queso fresco, chicken breast, smoked salmon, cantaloupe, and

romaine lettuce (Table 9).
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Growth assays

The strains of L. monocytogenes used for quantitative validation are the same six strains used

for qualitative validation (Table 1). To ensure the successful growth of these strains of L. mono-
cytogenes in the selected minimal media, growth curves were generated using 96 well plates

and the BioTek1 Epoch 2 Microplate automated spectrophotometer (BioTek Instruments,

Inc., Winooski, VT). Three chemically defined media were tested. The first was an improved

minimal medium (IMM) described by Phan-Thanh et al. [27]. The second was Modified Wel-

shimer’s Broth (MWB), as described by Premaratne et al. [28]. The final, and most successful,

medium tested was MWB supplemented with 3% BHI broth. When generating a growth

curve, four isolated colonies were inoculated into separate test tubes filled with 9 mL of the

chosen chemically defined medium. These tubes were then incubated at 37˚C for 24 hours

with shaking at 250 rpm. After incubation, three of the samples for each strain (18 total) were

transferred to sterile 15 mL conical tubes, and the OD600 was adjusted to 0.040 ± 0.010 using

fresh media. After the OD600 adjustment, 200 μL of each sample was placed into separate wells

of a 96 well plate, along with triplicate wells of fresh, uninoculated media as the negative

growth control. The 96 well plate was then placed in the plate reader, where OD600 measure-

ments were taken every 10 minutes for 48 hours at 37˚C. Every six readings were then

Table 9. Nutrients added to essential reaction simulations to reflect high-risk foods.

Nutrient Queso Fresco Chicken Breast Smoked Salmon Cantaloupe Romaine Lettuce

L-Glutamate + + + + +

Glycine + + + + +

L-Lysine + + + + +

L-Aspartate + + + + +

L-Arginine + + + + +

L-Glutamine + - - - -

L-Serine + + + + +

L-Methionine + + + + +

L-Tryptophan + + + + +

L-Phenylalanine + + + + +

L-Tyrosine + + + + +

Sucrose - - - + -

D-Fructose - - - + +

L-Cysteine + + + + +

Choline + + + + +

L-Leucine + + + + +

D-Alanine + + + + +

L-Histidine + + + + +

L-Proline + + + + +

L-Asparagine + - - - -

L-Valine + + + + +

L-Threonine + + + + +

Maltose - - - + -

Palmitate + + + + +

Riboflavin + + + + +

Thiamin + + + + +

L-Isoleucine + + + + +

Vitamin B12 + + + - -

https://doi.org/10.1371/journal.pone.0198584.t009
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averaged to generate a growth curve with hourly time points. Inconsistent growth was

observed with the first two chemically defined media tested (IMM and MWB), but growth was

supported by MWB supplemented with 3% BHI.

Batch growth experiments

In order to grow L. monocytogenes in sufficient quantities to perform dry cell weight measure-

ments, batch spargers, as described by Sutton et al. [42], were used. The day prior to the experi-

ment, MWB supplemented with 3% BHI broth (MWB3) was prepared and pipetted in 15 mL

aliquots into nine sterile test tubes. These tubes were then each inoculated with an isolated col-

ony of the L. monocytogenes strain to be tested. The tubes were incubated overnight at 37˚C

with shaking at 250 rpm.

MWB3 was prepared fresh prior to the start of each experiment and 600 mL aliquots were

placed into three separate, sterile 1 L glass sparger bottles. Additionally, 50 mL were prepared

for use as spectrophotometer blanks. A 100 μL sample of the overnight culture was taken and

diluted so that the OD600 was 0.040 ± 0.010. Then, the remaining overnight culture was used

to inoculate the three batches of 600 mL MWB3 such that the dilution was equivalent to the

dilution required to obtain the desired OD600 in the 100 μL sample. A sample from each of the

batch spargers was then taken, and its OD600 measured. Subsequent OD600 measurements

were taken hourly for each of the batches for the duration of the run.

Dry cell weight measurements

Dry cell weight measurements were performed in conjunction with the aerobic batch growth

experiments. 12 (3 batches x 4 time points) Whatman™ glass microfiber filters (GE Healthcare

Bio-Sciences, Pittsburgh, PA) were labeled and placed in an 80˚C oven and left overnight to

dry. One hour prior to beginning dry cell weight experiments, the dry filter weight was mea-

sured and recorded as described by Baumler et al. [1]. The first time point for the dry cell

weight experiment was when the OD600 of the batch growth spargers reached 0.100.

When the OD600 reached 0.100, approximately 60 mL was extracted from each batch. 50

mL of each sample was vacuum filtered through its corresponding pre-weighed filter paper.

After the culture was filtered, the paper was washed with approximately 5 mL of sterile DI

water, left to dry for two minutes, and washed again with approximately 5 mL of sterile DI

water. When all three of the filter papers for the time point were finished, they were placed in

an 80˚C oven to dry for a minimum of 24 hours. This process was repeated hourly for a total

of four time points. 24 hours after the last time point, the filters were re-weighed, and the dry

cell weight was determined from the difference between the pre-weighed filter mass, and the

post-filtration mass.

Viable cell counts

At the second dry cell weight time point, a CFU/mL count was determined for each of the

three batches. Duplicate samples from each batch were taken and serially diluted to 10−9. The

six highest dilutions (10−4–10−9) were then plated on BHI agar plates, incubated at 37˚C for 24

hours, and enumerated.

In silico quantitative adjustment

Following the completion of the batch growth dry cell weight experiments, the experimental

data was used to adjust the models and improve the accuracy of the in silico predictions for

biomass corresponding to growth rate. First, the data was used to generate conversion factors
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between biomass and optical density and between biomass and viable cell counts. Subsequent

analysis of the data generated experimental growth rates (h-1), which were compared to in sil-
ico predicted growth rates to generate a scaling factor as previously described for the E. coli
K12 GEMs [29]. This scaling factor was then used as a multiplier of biomass for FBA and

dynamic FBA to improve the accuracy of in silico growth predictions. Initial in silico growth

rates were determined by adjusting in silico glucose uptake rates until the duration of the

batch growth matched experimental values. These glucose uptake rates were then held con-

stant when the scaling factor was introduced, allowing the scaling factor to increase the accu-

racy of predictions of biomass used to generate values for growth rate and growth yield.

Statistical analysis

Student’s t-test and Pearson correlation statistics in this study were conducted using Microsoft

Excel.
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