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Abstract

A wealth of analysis tools are available to fMRI researchers in order to extract

patterns of task variation and, ultimately, understand cognitive function. However,

this “methodological plurality” comes with a drawback. While conceptually similar,

two different analysis pipelines applied on the same dataset may not produce the

same scientific results. Differences in methods, implementations across software,

and even operating systems or software versions all contribute to this variability.

Consequently, attention in the field has recently been directed to reproducibility and

data sharing. In this work, our goal is to understand how choice of software package

impacts on analysis results. We use publicly shared data from three published task

fMRI neuroimaging studies, reanalyzing each study using the three main neuroimag-

ing software packages, AFNI, FSL, and SPM, using parametric and nonparametric

inference. We obtain all information on how to process, analyse, and model each

dataset from the publications. We make quantitative and qualitative comparisons

between our replications to gauge the scale of variability in our results and assess the

fundamental differences between each software package. Qualitatively we find simi-

larities between packages, backed up by Neurosynth association analyses that corre-

late similar words and phrases to all three software package's unthresholded results

for each of the studies we reanalyse. However, we also discover marked differences,

such as Dice similarity coefficients ranging from 0.000 to 0.684 in comparisons of

thresholded statistic maps between software. We discuss the challenges involved in

trying to reanalyse the published studies, and highlight our efforts to make this

research reproducible.
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1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) for human brain mapping

gives researchers remarkable power to probe the underpinnings of

human cognition, behaviour, and emotion. As an active field of research

for over 25 years, there are now a multitude of ways to analyse a single

neuroimaging study. The plethora of techniques and tools available are a

platform from which we have the potential to gain remarkable insight

into how the human brain works. However, high analytic flexibility has

also been pinpointed as a key factor that can lead to false-positive and

nonreproducible results (Hong et al., 2019; Ioannidis, 2005; Wager et al.,

2009). Because of this, neuroimagers must be particularly judicious:Camille Maumet and Thomas E. Nichols authors contributed equally to this study.
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choice of analysis pipeline, operating system, and even software version

may influence the final research outcome of a study.

The extent to which varying processing conditions can lead to dis-

crepancies in observed results has been highlighted throughout the

neuroimaging literature. In a study examining the use of FreeSurfer to

measure the cortical thickness and volume of structural brain images

(Gronenschild et al., 2012), a change in software version was shown

to lead to increases of over 10% in observed anatomical measure-

ment; a switch in workstation from which the software was run also

manifested significant deviations in the final result. In related work

(Glatard et al., 2015), changes in operating system lead to differences

in the results of an independent component analysis of resting state

fMRI data carried out using FSL. Here, disparities in both the number

of components determined as well as information between matched

components were found when the analysis was conducted on two

separate computing clusters. For task-based fMRI, the impact of

methodological choices has been investigated extensively. Choices for

each individual procedure in the analysis pipeline (e.g., head-motion

regression (Lund et al., 2005), temporal filtering (Skudlarski et al.,

1999), and autocorrelation correction (Woolrich et al., 2001)) along-

side the order in which these procedures are conducted (Carp, 2013)

can deeply influence the final determined areas of brain activation. In

perhaps the most comprehensive of such studies (Carp, 2012a), a sin-

gle publicly available fMRI dataset was analysed using over 6,000

unique analysis pipelines, generating 34,560 unique thresholded acti-

vation images. These results displayed a substantial degree of flexibil-

ity in both the sizes and locations of significant activation. In

combination, these examples of research shape a sombre picture for

the possibility of study reproducibility.

While each of the aforementioned studies investigated the effect

of either software version, operating system, or analysis pipeline on

analytic variability, the choice of software package for carrying out

the analysis remained fixed in each study. This is despite a vast array

of analysis packages that are now freely available to researchers. The

three most popular of these packages for fMRI data analysis are AFNI

(RRID:SCR_005927; [Cox, 1996]), FSL (RRID:SCR_002823; [Jenkinson

et al., 2012]), and SPM (RRID:SCR_007037; [Penny et al., 2011]).

While SPM is the oldest, FSL has grown in popularity and together

the three packages have been estimated to account for 80% of publi-

shed functional neuroimaging results (Carp, 2012b). Although there

are differences in how each software package models and processes

data, the analysis framework for task fMRI—now a mature research

area—is expected to be similar across software, and hence the results

yielded from each package should be comparable. We therefore seek

to answer the question: How much of the variability in neuroimaging

results is attributable to the choice of analysis software package?

In this work we reanalyse data from three published neuroimaging

studies using each of the three main software packages and quantify

differences in the results. We choose three publications with data that

have been made publicly available on the OpenfMRI database (RRID:

SCR_005031, http://openfmri.org; [Poldrack et al., 2013]), recently

relaunched as OpenNeuro (http://openneuro.org), and attempt to rec-

reate the main figure from each publication by replicating the original

analysis within each package. These particular studies were selected

on the basis that they reported clearly defined regions of brain activa-

tion and utilised analysis procedures feasible across the three soft-

ware packages. We then make a number of comparisons to assess the

similarity of our results. While a similar study from our group explored

the results produced by each of these packages after implementing

analysis pipelines using the default settings in each software (Pauli

et al., 2016), here we attempt to make the analysis pipelines as similar

as possible while still maintaining comparability across the three pack-

ages. While our primary focus is comparing standard results across

software, we also aim to address recent concerns about the multiple-

testing-corrected parametric inferences that each of these studies

used (Eklund et al., 2016). For each study, we also conduct equivalent

inference procedures (when possible) using nonparametric statistics in

each package.

Although our work has been primarily designed to understand the

differences between software packages, we also see this as an exer-

cise in computational reproducibility (Peng, 2011). In recent years, a

number of initiatives and guidelines (Poldrack et al., 2017) have

materialised to ensure research is conducted in an open and transpar-

ent fashion. For each of our analyses, we confine ourselves to the

respective publication for all information on how to process and

model the data. We discuss the challenges involved in this process,

and evaluate whether our reanalyses are a success by comparing our

results to those given in the main figure of the respective publication.

Great care has also been taken to ensure all figures and results pres-

ented here are themselves reproducible; we describe the scripts, note-

books, and other tools used to make this possible which we believe

are highly generalizable across neuroimaging studies.

2 | METHODS

2.1 | Study description and data source

We selected three functional fMRI studies for reanalysis from the

publicly accessible OpenfMRI data repository: ds000001 (Revision:

2.0.4; [Schonberg et al., 2012]), ds000109 (Revision 2.0.2; [Moran

et al., 2012]), and ds000120 (Revision 1.0.0; [Padmanabhan et al.,

2011]). Each of the datasets have been organised in compliance

with the Brain Imaging Data Structure (BIDS, RRID:SCR_016124;

[Gorgolewski et al., 2016]). These datasets were chosen following an

extensive selection procedure (carried out between May 2016 and

November 2016), whereby we vetted the associated publication for

each dataset stored in the repository. We sought studies with simple

analysis pipelines and clearly reported regions of brain activation that

would be easily comparable to our own results. Exclusion criteria

included the use of custom software, activations defined using small

volume correction, and application of more intricate methods such as

region of interest and robust regression analysis, which we believed

could be impractical to implement across all analysis software. A full

description of the paradigm for each of our chosen studies is included

in the respective publication; here we give a brief overview.
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For the ds000001 study, 16 healthy adult subjects participated in

a balloon analogue risk task over three scanning sessions. On each

trial, subjects were presented with a simulated balloon, and offered a

monetary reward to “pump” the balloon. With each successive pump

the money would accumulate, and at each stage of the trial subjects

had a choice of whether they wished to pump again or cash-out. After

a certain number of pumps, which varied between trials, the balloon

exploded. If subjects had cashed-out before this point they were

rewarded with all the money they had earned during the trial; how-

ever, if the balloon exploded all money accumulated was lost. Three

different coloured “reward” balloons were used between trials, each

having a different explosion probability, as well as a grey “control” bal-

loon, which had no monetary value and would disappear from the

screen after a predetermined number of pumps. Here we reproduce

the result contrasting the parametrically modulated activations of

pumps of the reward balloons versus pumps of the control balloon,

corresponding to Figure 3 and Table 2 in the original article.

The ds000109 study investigated the ability of people from different

age-groups to understand the mental state of others. A total of 48 sub-

jects were scanned, although 43 had acceptable data for the false belief

task—29 younger adults and 14 older adults. In this task participants lis-

tened to either a “false belief” or “false photo” story. A false belief story

would entail an object being moved from one place to another, with cer-

tain characters witnessing the change in location while others were

unaware. False photo stories were similar except involved some physical

representation, such as a photo of an object in a location from which it

had been subsequently removed. The task had a block design where

stories were represented for 10 s, after which participants had to answer

a question about one of the character's perceptions of the location of

the object. We reproduce the contrast map of false belief versus false

photo activations for the young adults, corresponding to Figure 5a and

Table 3 from the original publication.

Finally, the the ds000120 study explored reward processing across

different age groups. fMRI results are reported on 30 subjects, with

10 participants belonging to each of the three age groups (children, ado-

lescents, and adults). Participants took part in an antisaccade task where

a visual stimuli was presented in each trial and subjects were instructed

to quickly fixate their gaze on the side of the screen opposite to the stim-

uli. Prior to a trial, subjects were given a visual cue to signal whether or

not they had the potential to win a monetary reward based on their

upcoming performance (a “reward” or “neutral” trial). In this article we

reproduce the main effect of time activation map—an F-statistic for any

nonzero coefficients in the sine HRF basis—corresponding to Figure 3

and Table 1 in the original publication.

2.2 | Data analyses

All data analyses were conducted using AFNI (version AFNI_18.1.09),

FSL (version 5.0.10), and SPM (version SPM12, v6906). Computation

was performed on a cluster comprised of 12 Dell PowerEdge servers

(6 R410, 12 core 2.40 GHz processors, 6 R420, 12 core 2.80 GHz pro-

cessors) running CentOS 7.3.

2.2.1 | Pipeline

A full decomposition of the pipelines implemented within the three

packages for each study is presented in Table 1. Here, we give a brief

description of the procedures.

In AFNI, preprocessing and subject-level analyses were conducted

using the @SSwarper program and afni_proc.py. For ds000001 and

ds000109, we used the 3dMEMA program to perform a one-sample

T-test, while for ds000120 we used the 3dMVM program at the sec-

ond level to conduct a mixed-effects analysis, generating an F-statistic

for the main effect of time.

In FSL, analyses were carried out using the FMRI Expert Analysis

Tool (FEAT, v6.00). For each analysis, at the first level a separate .fsf

file was created for each scanning session. Runs were then combined

as part of a second level fixed-effects model, yielding results which

were subsequently inputted into a group analysis.

In SPM, preprocessing, subject- and group-level analyses were

conducted by selecting the relevant modules within SPM's Batch Edi-

tor. In particular, subject-level and group-level analyses were con-

ducted using the specify first-level and specify second-level modules,

respectively.

Once analyses were complete, the results for each software package

were exported as NIDM-Results packs (FSL and SPM only, [Maumet

et al., 2016]) and uploaded to a public collection on the NeuroVault

(RRID:SCR_003806, http://neurovault.org; [Gorgolewski et al., 2015])

online data repository.

2.2.2 | Common processing steps

A number of processing steps for each package were included in all of

our analyses, regardless of whether they had been implemented in the

original study. While this meant deviating from an exact replication of

the original pipeline, these processing steps were either fundamental

to ensure that results from each software package could be compared

objectively, or steps that are widely accepted as best practice within

the community. In this section we describe these steps.

Successful coregistration of the functional data to the structural

brain images—and subsequently—registration to the MNI template,

was of paramount importance to us for fair comparability of the

results. During our first attempt at analysing the ds000001 dataset

we discovered that seven subjects had essential orientation informa-

tion missing from the NIfTI header fields of their functional and struc-

tural data. As the source DICOM files were no longer available, the

original position matrices for this dataset were unable to be retrieved.

This caused coregistration to fail for several subjects across all three

software packages in our initial analysis of this data. We rectified the

issue by manually setting the origins of the functional and structural

data. OpenfMRI released a revision (Revision: 2.0.4) of our amended

dataset which we used for the analysis. Further to this, we also set a

number of common preprocessing steps within each package to be

applied in all our analyses.

Firstly, brain extraction was conducted on the structural image in

all software. We did this to improve registration and segmentation. In
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AFNI, brain extraction was carried out using 3dskullstrip, that was

called implicitly from within the @SSwarper program. The skull-

stripped anatomical volume obtained here was inputted into our

afni_proc.py scripts where further preprocessing and first-level ana-

lyses were carried out. In FSL, brain extraction was performed on both

the functional and structural data. The Brain Extraction Tool (BET;

[Smith, 2002]) was applied to each structural image from the com-

mand line before preprocessing, and for functional data with the BET

option within the Prestats module of FEAT. In SPM, brain extraction

was implemented via the segmented structural images. Grey matter,

white matter and CSF images were summed and binarised at 0.5 to

create a brain mask, which was applied to the bias corrected structural

image using the Image Calculator.

Coregistration of the functional data to the anatomy was carried out

for the most part using the default settings in each software. In AFNI,

alignment of the data was conducted using the align_epi_anat.py pro-

gram called implicitly from the align block within the afni_proc.py scripts.

We included the -volreg_align_e2a option within our scripts to specify

alignment of the functional data onto the anatomy, as by default AFNI

conducts the inverse transformation of anatomy onto functional. Fur-

ther to this, we also added the -align_opts_aea program to all of our

scripts with the -giant_move and -check_flip options to allow for larger

transformations between the images. In FSL, coregistration was carried

out within FEAT using the default linear registration methods with a

Boundary-Based Registration (BBR) cost function. The default methods

were also applied within SPM's Coregister: Estimate module, using a

normalised mutual information cost function.

Registration of the structural and functional data to the anatomical

template was executed using each packages nonlinear settings. In

AFNI, nonlinear registration of the anatomical data to the MNI tem-

plate was conducted as part of the @SSwarper program ran prior to

the afni_proc.py script. The warps computed by @SSwarper were pas-

sed to afni_proc.py using the -tlrc_NL_warpred_dsets option, and

applied to the functional data within the tlrc block using the

-volreg_tlrc_warp option. By default, the resampled functional data in

MNI space has voxel size determined from the raw 4D data; we

forced 2 mm cubic voxels with the -volreg_warp_dxyz option for com-

patibility with FSL and SPM's 2 mm default. In FSL, registration to the

MNI template was conducted using FMRIB's Nonlinear Image Regis-

tration Tool (FNIRT; [Andersson et al., 2007]), controlling the degrees

of freedom of the transformation with a warp resolution of 10 mm. In

SPM, the nonlinear deformations to MNI space were obtained as part

of the Segment module and then applied to the structural and func-

tional data within the Normalise: Write module.

As a form of quality control, we created mean and standard devia-

tion images of the subject-level MNI-transformed anatomical and

mean functional images. Alongside the subject-level data, these

images were assessed to check that registration to MNI space had

been successful. When intersubject registration failed remedial steps

were taken within each software; these are described in the software

implementation parts of the following study-specific analysis sections.

Across all software packages six motion regressors were included in

the analysis design matrix to regress out motion-related fluctuations in

the BOLD signal. Use of six or more derived motion regressors is com-

monly recommended as good practice, and we chose to use just six

regressors as this could be easily implemented across software.

Finally, we note that each software package uses a different default

connectivity criterion for determining significant clusters: 6-connectivity

for AFNI, 18-connectivity for SPM, and 28-connectivity for FSL. Since

these settings are not typically modified we have kept these defaults in

all of our analyses to reflect standard practices carried out within each

software.

We now describe the task-specific analysis procedures for each of

the three studies as carried out in the original publications, and how

these methods were implemented within each package. While we

decided to keep the above steps of the analysis pipelines fixed, for all

remaining procedures we attempted to remain true to the original

study. Any further deviations necessitated are discussed in the soft-

ware implementation sections. Notably, apart from the addition of six

motion regressors, all of our common steps relate to preprocessing,

and hence for first- and group-level analysis we attempt to exactly

replicate the original study.

2.2.3 | ds000001 analyses

In the publication associated with the ds000001 study all preprocessing

and analysis was conducted within FSL (version 4.1.6). Data on all 16 sub-

jects were available to us on OpenfMRI. In the original preprocessing,

the first two volumes of the functional data were discarded and the

highpass-filter was set to a sigma of 50.0 s. Motion correction was con-

ducted using MCFLIRT and brain extraction of the functional data was

applied with BET, after which FSL's standard three-step registration pro-

cedure was carried out to align the functional images to the structural

scan. Spatial normalisation was implemented with FMRIB's Linear Image

Registration Tool (FLIRT; [Jenkinson et al., 2002]), and data were

smoothed using a 5 mm full-width-half-maximum (FWHM) Gaussian

kernel. At the run level, each of the events were convolved using a

canonical double-gamma haemodynamic response function (HRF);

FEAT's (then newly available) outlier de-weighting was used. Subject-

level analysis of the functional data were conducted using a general lin-

ear model (GLM) within FEAT, where a selection of the regressors were

orthogonalized. The three scanning sessions for each participant were

carried out separately and then combined together at the second level.

A pair of one-sided T-tests were conducted at the group-level to test

for positive and negative effects separately. For each test, clusterwise

inference was performed using an uncorrected cluster-forming thresh-

old of p < .01, FWE-corrected clusterwise threshold of p < .05 using

Gaussian random field theory.

We opted to not use outlier de-weighting on the basis that such

methods were impractical to implement across all software packages.

AFNI implementation

Using our default procedure for the AFNI analysis, we found that cor-

egistration of the functional scans onto the anatomy failed for four

subjects. To remedy this issue, for this study we modified our afni_proc.

py scripts: Within the -align_opts_aea module, the “-ginormous move”
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option was added to align centers of the functional and anatomical vol-

umes, and the “-cost lpc + ZZ” option was used to apply a weighted

combination of cost functionals. Both of these changes are rec-

ommended for data with little structural detail. Following these modifica-

tions all coregistrations were successful.

To replicate the orthogonalization methods from the original study, a

separate orthogonalization script was ran for each subject prior to the

first-level analyses. Within this script, the (un-orthogonalized) regressors

were generated by passing the event timing files to 3dDeconvolve, after

which the 3dTproject command was used to obtain the desired projec-

tions. The orthogonalized regressor files outputted from this script were

then entered into afni_proc.py to replicate the original subject-level anal-

ysis model.

Trials were convolved with a single gamma HRF using either the

BLOCK or dmBLOCK option within the -regress_basis_multi module,

determined by whether the event file had fixed or variable duration

times respectively. The -regress_stim_types option was added to our

afni_proc.py script to specify event files for regressors which had

been parametrically modulated in the original study, and identify the

orthogonalized regressors.

At the group level, we performed a mixed-effects analysis using

3dMEMA. The critical cluster size threshold was determined by

Monte Carlo simulation with the 3dClustSim program.

FSL implementation

Implementation in FSL closely followed the original procedure

described above, with the exception that nonlinear registration was

used to transform the data to standard space.

SPM implementation

Implementation in SPM closely followed the pipeline outlined in

Table 1.

2.2.4 | ds000109 analyses

The original preprocessing and statistical analysis for the ds000109

study was carried out using SPM8. Data were shared on 36 of the

40 subjects, 21 of which were young adult subjects that had fMRI

data compatible for our reanalysis. First, functional data were

realigned and unwarped to correct for head motion and geometric dis-

tortions. After transforming the data into a standardised space, the

normalised data were smoothed with an 8 mm FWHM Gaussian kernel.

Further to this, custom software was applied to exclude functional vol-

umes where head motion had exceeded a certain limit; however, this

process was omitted from our pipelines since this feature was not avail-

able in any of the software packages. The preprocessed data were

entered into a GLM for first level analysis where trials were modelled

using a block design and convolved using SPM's canonical HRF. Each

participant's contrast images were then entered into a one-sample group

analysis using clusterwise inference, cluster forming threshold of

p < .005, 5% level FWE using random field theory; in their analysis, this

amounted to a critical cluster size threshold of 56 voxels.

AFNI implementation

Intersubject registration to the MNI atlas failed for one subject, for

which part of the frontal lobe was missing. We addressed this by

revising this study's AFNI pipeline to use the -pad_base 60 option

within the -tlrc_opts_at module included in afni_proc.py. This gave

extra padding to the MNI template so that no part of the functional

image was lost during the alignment.

The HRF was modelled with SPM's canonical HRF using the SPMG1

option for each event within the -regress_basis_multi option and passing

the duration of the regressor as an argument to the function.

At the group level, we performed a mixed-effects analysis using

3dMEMA. p-values were determined by Monte Carlo simulations with

3dClustSim.

FSL implementation

To recreate the original HRF model in FSL, we chose the Double-

Gamma HRF from the convolution options within FEAT.

SPM implementation

Implementation in SPM closely followed the original procedure

described above.

2.2.5 | ds000120 analyses

A multi-software analysis procedure was used for the ds000120

study, where data were preprocessed with FSL and then analysed

using AFNI. fMRI data were shared on OpenfMRI for 26 of the origi-

nal 30 subjects, and 17 had data available on the task of interest. This

was the only study that applied slice-timing correction, adjusting the

functional data for an interleaved slice acquisition. Functional scans

were realigned to the middle volume, and following brain extraction

with BET, registered to the structural scan in Talairach space using

FLIRT and FNIRT. Data were high-pass filtered with a sigma value of

30.0 s and smoothed with a 5 mm FWHM Gaussian kernel. Like the

previous study, further methods were used to remove functional vol-

umes with excessive motion which have been left out from our ana-

lyses due to discordance across software. Subject-level analysis was

conducted within AFNI. To allow for flexible modelling of the response

to the saccade task, this study used a HRF basis consisting of eight sine

functions with a poststimulus window length of 24.0 s. At the group

level, subjects were entered into a mixed-effect model, with subjects as

a random factor, trial type (reward, neutral) and time as within-group fac-

tors, and age group (child, adolescent, adult) as a between-group factor.

Clusterwise inference was used on the main effect of time activation

map (F_{8,142} statistic), cluster-forming threshold of p < .001, control-

ling FWE at the 5% level, obtained with Monte Carlo methods. This com-

puted critical cluster size threshold was 23 voxels.

For our replication exercise we only consider the main effect of

time. This analysis is based on the corresponding time effect contrasts

for each subject and requires a simpler model, with one random effect

(subject) and one fixed effect (time).
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AFNI implementation

Slice timing was conducted using the -tshift_opts_ts program within

afni_proc.py with the -tpattern option applied to specify an inter-

leaved slice acquisition.

The sine basis set used for the HRF was modelled using the

-regress_basis_multi module with the SIN option.

At the group level, a mixed-effect analysis was carried out with

the 3dMVM program. Following this, 3dClustSim was used to obtain

the cluster extent corresponding to the original study threshold. In

our analysis we found the cluster size threshold to be 48 voxels.

FSL implementation

The repeated-measures design used in the group-level analysis of

the original study was not feasible to implement for parametric

inference in FSL, and as such, we did not attempt an FSL reanalysis

for this study. (The FEAT manual does describes “Repeated Mea-

sures” examples, but these are based on a restrictive assumption of

compound symmetry; here this would entail assuming that all

8*7/2 = 28 correlations among the basis regression coefficients

are equal.)

SPM implementation

Slice timing was conducted using the Slice Timing module within the

Batch Editor of SPM.

Although an exact equivalent of the original HRF model was not

possible in SPM, we chose the closest equivalent using the Fourier

basis set with an order of 4, leading to a total of 9 basis functions fit

to each of the reward and neutral conditions for each of the three

runs. A set of 9 first level contrasts computed the average Fourier

coefficients over conditions and runs.

To reproduce the group-level analysis in SPM, a full factorial

design was chosen within the “Factorial design specification” module

of the Batch Editor, with a time factor (9 levels) and adding age-group

to the model using two covariates (adolescent vs. child, adult

vs. child); the main effect of time was tested with an F-contrast.

2.3 | Comparison methods

We applied three separate quantitative methods to measure the simi-

larity between the group results obtained within each software pack-

age for each of the three studies.

Firstly, Bland–Altman plots comparing the unthresholded group sta-

tistic maps were created for each pairwise combination of software pack-

ages. These plotted the difference between the statistic values (y-axis)

against the mean statistic value (x-axis) for all voxels lying inside the inter-

section of the two software's analysis masks. The plots provide an assess-

ment of the level of agreement between two software packages about

the magnitude of the statistic value observed at each voxel. If two soft-

ware packages were in perfect agreement, all points on the bland–altman

plot would lie on the x-axis, since the difference between the statistic

values at each voxel would be zero. The degree of disagreement is there-

fore evaluated by the perpendicular distance of points from the x-axis;

for example, for a “AFNI-FSL” Bland–Altman plot, points above x-axis are

where AFNI's statistic is larger than FSL's. With the difference plotted

against the average, general patterns of disagreement can be discerned.

In addition to this, we also created Bland–Altman plots to compare

percentage BOLD change maps (for ds000120, partial R2 maps) between

software. For each package, an appropriate normalisation of the group-

level beta maps was conducted to convert to percentage BOLD change

units. Due to differences in how each package scales the data, a different

normalisation was required for each of the three packages. For

ds000120, the partial R2 maps were computed via a transformation of

the group-level F-statistic images. We provide full details on how each of

these procedures were carried out in Appendix (Appendix S1. for percent

BOLD change, Appendix S2. for partial R2). In all of our Bland–Altman

comparisons, we excluded white matter and cerebral spinal fluid voxels

according to the MNI tissue probability maps thresholded at 0.5.

We also computed the Dice similarity coefficient for each pairwise

combination of the group-level thresholded statistic maps. The coeffi-

cient is calculated as the cardinality of the intersection of the

thresholded maps divided by the average of the cardinality of each

thresholded map. While Bland–Altman is interested in the similarity

between statistic values, Dice measures the overlap of voxels as a

means to assess the spatial similarity of activated clusters. The coeffi-

cient takes a value between 0 and 1, where one indicates complete

congruence between the size and location of clusters in both

thresholded maps, while zero indicates no agreement. Dice coeffi-

cients were computed over the intersection of the pair of analysis

masks, to assess only regions where activation could occur in both

packages. We also calculated the percentage of “spill over” activation,

that is, the percentage of activation in one software's thresholded sta-

tistic map that fell outside of the analysis mask of the other software.

A particular concern we had was that a pair of statistic images could

in essence be very similar, but differs by a scale factor over all voxels.

Another possibility was that one software could have greater sensitivity

for voxels where signal was present, causing differences between images

only for relatively higher statistical values. Both of these features would

not be identifiable using our previous comparison methods. To address

this, we computed the Euler Characteristic (EC) for each software's group

T-statistic map (F-statistic for ds000120), thresholded using T-values

between −6 and 6 (0–6 for ds000120; increasing with an increment of

0.2). Alongside the EC, we also computed the number of clusters in the

statistic images using the same thresholds. For a given threshold t, the EC

calculates the number of clusters minus the numbers of “handles” plus the

number of “holes” in the thresholded image. For large t, we expect the

handles and holes to disappear, and therefore the EC provides an approxi-

mation of the number of clusters in an image. For smaller t, we expect our

thresholded image to be one connected cluster with many holes and han-

dles (like Swiss cheese)—it is in this situation where the EC is clearly more

informative about differences between images than the cluster count

alone. Over all t, the EC curve provides a signature of an entire statistic

image, and provides a means to assess whether only superficial scaling dif-

ferences are responsible for disparities between a pair of images.

For a qualitative assessment of whether similar activation patterns

were displayed between packages, a NeuroSynth (RRID:SCR_006798,
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http://neurosynth.org) association analysis was conducted on each

software's unthresholded statistic maps. These analyses performed a

cognitive decoding of the unthresholded statistic image with images in

the NeuroSynth database, to find the words or phrases most strongly

associated with the activation patterns found in the statistic map.

Finally, we visually compared the corresponding slices of each soft-

ware's thresholded statistic map to those presented in the publication fig-

ure we had attempted to recreate. Ensuring we had found activation

in approximately the same regions as the original publication gave us an

indication that we had successfully replicated the study's analysis pipeline.

2.4 | Permutation test methods

For ds000001 and ds000109, in parallel to our replication analyses we

computed an additional set of group-level results applying nonparametric

permutation test inference procedures available within each software

package (a one-sample repeated measures permutation test needed for

ds000120 was not available in AFNI). The first level contrast maps

obtained from our initial replications for each subject were entered into a

group-level one-sample T-test where clusterwise inference was con-

ducted using the same cluster-forming thresholds, and then 5% level

F IGURE 1 (a) Comparison of the thresholded statistic maps from our reanalysis with the main figures from each of the three publications. Left: For
ds000001 data, thresholded T-statistic images contrasting the parametric modulation of pumps of reward balloons versus the parametric modulation of
the control balloon; beneath, a sagittal slice taken from fig. 3 in Schonberg et al. (2012). Middle: For ds000109, thresholded T-statistic maps of the false
belief versus false photo contrast; beneath, a midsagittal render from Moran et al. (2012). Right: For ds000120, thresholded F-statistic images of the
main effect of time contrast; beneath, a midsagittal render from fig. 3 in Padmanabhan et al. (2011). Note that for ds000109 and ds000120 the
publication’s figures are renderings onto the cortical surface while our results are slice views. While each major activation area found in the original
study exists in the reanalyses, there is substantial variation between each reanalysis. (b) Comparison of the thresholded statistic maps from our
reanalysis displayed as a series of axial slices. Top: ds000001’s thresholded T-statistic maps contrasting parametric modulations of the reward balloons
versus pumps of the control balloons. Middle: ds000109’s thresholded T-statistic maps of the false belief versus false photo contrast. Bottom:
ds000120’s thresholded F-statistic maps of the main effect of time contrast. This figure complements the single slice views shown in Figure 1 [Color

figure can be viewed at wileyonlinelibrary.com]
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FWE corrected thresholds were computed by permutation, using 10,000

permutations.

AFNI implementation

In AFNI, permutation inference was carried out using the 3dttest++ mod-

ule with the -ClustSim option. By applying this option, permutation gen-

erated noise realisations which 3dClustSim used to generate cluster-

threshold tables. Significant clusters in the group-activation map were

found with 3dclust, using a critical cluster size threshold extracted from

the 3dClustSim output.

FSL implementation

Permutation test inference was conducted in FSL using randomise

version 2.9 (Winkler et al., 2014). This outputted a “corrp” image

which was then used to mask the raw T-statistic image to show signif-

icant voxels for the appropriate thresholds.

SPM implementation

The Statistical nonParametric Mapping (SnPM, version SnPM13;

RRID:SCR_002092; [Nichols and Holmes, 2002]) toolbox was used to

carry out permutation tests in SPM. The “MultiSub: one-sample T-test

F IGURE 1 (Continued)
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on diffs/contrasts,” Compute and Inference modules within SnPM

were applied to obtain the final group-level activation maps.

Each of the comparison methods described in the previous

section were also applied to our permutation results to assess cross-

software differences for nonparametric inference methods. In addi-

tion, we also generated intrasoftware Bland–Altman plots and Dice

coefficients to understand differences between the parametric and

nonparametric methods applied within each package.

These methods were excluded for ds000120, since it was not pos-

sible to conduct permutation inference for an F-test within AFNI, and

parametric inference was unfeasible in FSL for this study as discussed

in the previous section.

2.5 | Scripting of analyses and figures

AFNI and FSL scripts were written in Python 2.7.14 and SPM scripts

were written in Matlab R2016b. Scripts were made generalizable,

such that the only study-specific differences for each of the analyses

in a software package were the raw data and working directory inputs,

subject- and group-level analysis templates (as well as a run-level tem-

plate for FSL), and a unique conditions structure necessary for creat-

ing the onset files for the specified study. For each analysis package, a

script was written to extract the stimulus timings from the raw data to

create event files that were compatible within the software. Subject-

level analysis templates were batch scripts created for each study

containing all processing steps of the subject analysis pipeline for the

respective software, with holding variables used where subject- or

run-specific inputs were required. The main script would take the

template as an input, and cycling through each of the subjects, replace

the holding variables with appropriate pathnames to create distinct

batch scripts for each subject. These were then executed to obtain

subject-level results for all participants in the study.

A Python Jupyter Notebook (Kluyver et al., 2016) was created for

each of the three studies. Each notebook harvests our results data

from NeuroVault and applies the variety of methods discussed in the

previous section using NiBabel 2.2.0 (Brett et al., 2017), NumPy

1.13.3 (Walt et al., 2011), and Pandas 0.20.3 (McKinney and Others,

2010) packages. Figures were created using Matplotlib 2.1.0 (Hunter,

2007) and Nilearn 0.4.0 (Abraham et al., 2014).

3 | RESULTS

All scripts and results are available through our Open Science Frame-

work (OSF; Erin D. Foster, 2017) Project at https://osf.io/U2Q4Y/

F IGURE 2 Comparison of the
unthresholded statistic maps from
our reanalysis of the three studies
within each software package. Left:
ds000001’s unthresholded T-
statistic maps of the parametric
modulation of pumps of reward
balloons versus the parametric
modulation of the control balloon
contrast. Middle: ds000109’s
unthresholded T-statistic maps of
the false belief versus false photo
contrast. Right: ds000120’s
unthresholded F-statistic maps of
the main effect of time contrast.
While areas of strong activation are
somewhat consistent across all
three sets of reanalyses, there is
substantial variation in nonextreme
values [Color figure can be viewed
at wileyonlinelibrary.com]
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(Bowring et al., 2018a), and group-level statistic maps used to create

the figures in this section are available on NeuroVault: https://

neurovault.org/collections/4110/, https://neurovault.org/collections/

4099/, https://neurovault.org/collections/4100/, for ds0000001,

ds000109, and ds000120, respectively. All analysis scripts, results

reports, and notebooks for each study are available through Zenodo

(Nielsen and Smith, 2014) at https://doi.org/10.5281/zenodo.

1203654 (Bowring et al., 2018b).

Registration of each subject's functional data onto the anatomy

was visually assessed. The mean and standard deviation images of the

MNI structural and (mean) functional data (Figure S1, note that axial

slices are slightly different between software due to different

bounding boxes of the images) substantiate that registration was suc-

cessful in all packages across the three studies.

3.1 | Cross-software variability

While qualitatively similar, variability in T-statistic values and locations

of significant activation was substantial between software packages

across all three studies.

Comparisons of the thresholded results with the published find-

ings are shown in Figure 1a, with further multi-slice comparisons

across software in Figure 1b (also in Figures S2, S4, and S6). The

ds000001 study described positive activation in the bilateral ante-

rior insula, dorsal anterior cingulate cortex, and right dorsolateral

prefrontal cortex, and negative activation in the ventromedial prefrontal

cortex and bilateral medial temporal lobe. In our reanalysis (Figure 1a, left)

all three software found activation in these set of regions, with the excep-

tion that decreases in the medial temporal lobe were unilateral in FSL and

TABLE 2 Neurosynth analyses

AFNI FSL SPM

Neurosynth analysis Corr. Neurosynth analysis Corr. Neurosynth analysis Corr.

ds000001 Anterior insula 0.359 Anterior insula 0.240 Anterior insula 0.322

Insula 0.276 Task 0.233 Anterior 0.245

Anterior 0.243 Tasks 0.203 Insula 0.240

Insula anterior 0.233 Parietal 0.190 Goal 0.229

Thalamus 0.221 Goal 0.188 Task 0.225

Goal 0.211 Working memory 0.184 Insula anterior 0.214

Pain 0.198 Working 0.181 Thalamus 0.201

Supplementary 0.197 Basal ganglia 0.173 Acc 0.199

Premotor 0.196 Ganglia 0.172 Anterior cingulate 0.196

Anterior cingulate 0.192 Basal 0.169 Ganglia 0.188

ds000109 Medial prefrontal 0.422 Medial prefrontal 0.355 Medial prefrontal 0.361

Medial 0.381 Medial 0.309 Theory mind 0.331

Default 0.366 Default 0.301 Default 0.329

Theory mind 0.348 Posterior cingulate 0.299 Precuneus 0.314

Default mode 0.341 Default mode 0.290 Default mode 0.310

Precuneus 0.334 Social 0.282 Medial 0.301

Posterior cingulate 0.327 Cingulate 0.275 Mind 0.296

Social 0.322 Theory mind 0.270 Prefrontal 0.294

Mind 0.311 Resting 0.261 Mind tom 0.289

Mind tom 0.287 Precuneus 0.259 Posterior cingulate 0.287

ds000120 Visual 0.377 Visual 0.481

v1 0.317 Occipital 0.367

Occipital 0.293 v1 0.340

Eye 0.261 Visual cortex 0.267

Eye movements 0.252 Spatial 0.248

Visual cortex 0.243 Spl 0.245

Early visual 0.241 Eye 0.242

Spatial 0.232 Early visual 0.238

Task 0.229 Lingual 0.238

Parietal 0.222 Intraparietal 0.237

The Neurosynth analysis terms most strongly associated (via Pearson correlation) to each software's group-level statistic map across the three studies.

Nonanatomical terms are shown in bold.
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SPM (left only). FSL also detected a visual response that neither AFNI or

SPM picked up on (Figure 1a, left, and Figure 1b, top, z = 0 slice).

The ds000109 study reported activations in the bilateral

temporoparietal junction. (TPJ), precuneus, anterior superior temporal

sulcus (aSTS), and dorsal medial prefrontal cortex (dmPFC). Similar

activations from our reanalyses are seen in Figure 1a, middle,

although FSL only found activation in the right TPJ and aSTS.

Further comparisons shown in Figure 1b, middle, highlight disagree-

ment in the results: AFNI and FSL detected significant deactivations

in distinct brain regions (inferior temporal gyrus for AFNI, inferior

frontal gyrus for FSL), while SPM did not determine any significant

deactivation. FSL also found a positive response in the superior tem-

poral gyrus (STG) where AFNI and SPM did not (Figure 1b, middle,

z = 0 and z = 12 slices).

F IGURE 3 (a) Cross-software Bland–Altman 2D
histograms comparing the unthresholded group-level
T-statistic maps computed as part our reanalyses of
the ds000001 and ds000109 studies within AFNI,
FSL, and SPM. Left; Comparisons for ds000001’s
balloon analog risk task, T-statistic images contrasting
the parametric modulation of pumps of the reward
balloons versus parametric modulation of pumps of
the control balloon. Right; Comparisons for
ds000109’s false belief task, T-statistic images
contrasting the false belief versus false photo
conditions. Density images show the relationship
between the average T-statistic value (abscissa) and
difference of T-statistic values (ordinate) at
corresponding voxels in the unthresholded Tstatistic
images for each pairwise combination of software
packages. While there is no particular pattern of bias,
as the T-statistic differences are centered about zero,
there is remarkable range, with differences exceeding
±4 in all comparisons. (b) Cross-software Bland-
Altman 2D histogram comparing the unthresholded
main effect of time Fstatistic maps computed in AFNI
and SPM for reanalyses of the ds000120 study. The
differences are generally centered about zero, with a
trend of large F-statistics for AFNI. (The funnel-like

pattern is a consequence of the F-statistic taking on
only positive values) [Color figure can be viewed at
wileyonlinelibrary.com]
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The original ds000120 study found extensive activations for the

main effect of time—the frontal, supplementary, posterior parietal cor-

tex, basal ganglia, prefrontal cortex, ventral striatum, and orbitofrontal

cortex all showed significant activation. Our reanalyses (Figure 1,

right) are consistent with these findings, with the exception that nei-

ther AFNI nor SPM exhibited orbitofrontal (OFC) activation (though,

the SPM analysis mask had poor OFC coverage). AFNI's F-statistic

values look to be generally larger than SPM here (Figure 1b, bottom,

z = 0 and z = 12 slices). The unthresholded statistic maps from our

reanalyses (Figure 2, Figures S7, S9, and S11) also show that while

extreme values display moderate agreement, there are considerable

differences across the brain in each given study.

NeuroSynth association analyses conducted on the unthresholded

T-statistic maps (Table 2) show that the most strongly related term to

the activation patterns displayed across all three sets of results was the

same: “anterior insula” for each software's ds000001 map, “medial pre-

frontal” for ds000109, and “visual” for ds000120. Phrases related to the

task paradigm used in each study (“goal” for ds000001, “theory mind” for

ds000109, “visual” for ds000120) were found across all software's acti-

vation patterns, alongside a range of common anatomical terms.

Figure 3a compares statistic values across packages using Bland–

Altman plots (rendered as 2D histograms) for ds000001 and

ds000109. The distribution of the pairwise differences in T-statistics

(y-axis) is generally centered about zero, indicating no particular bias;

however, there is substantial variation here, with T-statistic differ-

ences exceeding 4.0 in magnitude. Pairwise correlations ranged from

0.429 to 0.747 for intersoftware comparisons (Table 3). The Bland–

Altman plots comparing percentage BOLD change maps (Figure S13)

are more conclusive, showing a clear trend for SPM to report larger

effect estimates than the other two packages. Figure 3b presents the

Bland–Altman plot comparing unthresholded F-statistic images for

ds000120, which has a very different appearance due to F-statistics

being nonnegative. The corresponding Bland–Altman plot comparing

partial R2 values (Figure S14) for this study is similar in shape. Broadly

speaking, while there are no gross differences in sensitivity, there is a

slight tendency for AFNI's extreme statistics to exceed FSL's and

SPM's, and SPM's to exceed FSL's, most evident in ds000109.

Spatial localization of significant activation in the thresholded

T-statistic images also varied across software packages. Figure 4

shows the Dice coefficients for all pairs of analyses (parametric results

are presented in first 3 rows of larger triangles). For ds000001, the

average value of Dice coefficients comparing locations of activations

across reanalyses is 0.379. These values improve for ds000109, where

the mean Dice coefficient for positive activations is 0.512. Here, AFNI

and FSL were the only software packages to report significant nega-

tive clusters for the ds000109 study. Strikingly, these activations were

found in completely different anatomical regions for each package,

witnessed by the negative activation AFNI/FSL dice coefficient of

0. Finally, the AFNI/SPM Dice coefficient for the thresholded F-statistic

images obtained for ds000120 is 0.684; it is notable that across all stud-

ies, the AFNI/SPM dice coefficients are consistently the largest.

Spill over values, given by the grey values beneath the dice coeffi-

cients in Figure 4, are generally largest for SPM comparisons. They are

particularly prominent in the negative activation plot for ds000001,

where there is at least 30% spill over for all parametric pairwise compar-

isons, the largest being 39% for SPM/FSL. Recalling that these values

are the percentage of activation which occurred within one package

that was outside the other package's analysis mask, this is likely due to

the fact SPM consistently had the smallest analysis mask out of the

three packages, while FSL had the largest. In our ds000001 reanalyses,

SPM's group-level analysis mask was made up of 175,269 voxels, while

AFNI's had 198,295 voxels and 251,517 for FSL. For ds000109, SPM's

group-level mask contained 178,461 voxels compared to AFNI's

212,721 and FSL's 236,889. Finally, for ds000120, SPM had 174,059

voxels to AFNI's 208,340. Note FSL's mask image has slightly but con-

sistently more nonzero voxels than in its statistical result images).

Further evidence of spatial variability is also exhibited by the Euler

characteristic (EC) plots for the parametric analyses presented in

Figure 5a, top (and Figure S12 for ds000120), complemented by the

cluster count plots in Figure 5b, top. We note that because the EC

TABLE 3 Summary of test statistics mean differences and correlations for each pair of test statistic images

ds000001 ds000109 ds000120

Mean diff. Corr Mean diff. Corr Mean diff. Corr

AFNI vs. FSL Parametric 0.009 0.616 0.035 0.585

Nonparametric 0.271 0.577 0.006 0.573

AFNI vs. SPM Parametric 0.061 0.614 −0.490 0.747 0.415 0.748

Nonparametric −0.096 0.628 −0.445 0.787 n/a n/a

FSL vs. SPM Parametric −0.047 0.684 −0.529 0.429

Nonparametric −0.479 0.720 −0.439 0.438

AFNI Para. vs. NonP. 0.155 0.984 −0.048 0.981

FSL Para. vs. NonP. 0.382 0.844 −0.064 0.946

SPM Para. vs. NonP. 0.000 1.000 0.000 1.000

Mean differences correspond to the y-axes of the Bland–Altman plots displayed in Figures 3a,b, and 7. Each mean difference is the first item minus

second; for example, AFNI versus FSL mean difference is AFNI-FSL. Correlation is the Pearson's r between the test statistic values for the pair compared.

Intersoftware differences are greater than intrasoftware.
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plots were created by thresholding each software's statistic map at a

fixed range of T-values, without the computation of p-values, differ-

ences between the parametric and nonparametric EC curves are due

to the different first level models used in each case (mixed-effects for

parametric, OLS for nonparametric), and not due to the actual para-

metric and nonparametric inference procedures used to obtain p-

values. Since the EC counts the number of clusters minus the number

of “handles” plus the numbers of “holes” in an image, for large thresh-

olds we expect the EC to closely approximate the number of clusters

of significant activation present in the equivalent thresholded map.

This is confirmed by Figures 5a,b, both figures showing that across the

two studies FSL had a smaller number of activated clusters at larger

thresholds. For ds000001, the peak cluster count value (Figure 5b, top

left) occurs at a lower threshold for FSL. This plot suggests that in gen-

eral FSL's T-statistic values were more liberal here—the initial rise of the

FSL curve signifies the T-statistic image breaking up into clusters at lower

thresholds than AFNI and SPM, and then as the clusters begin to get

“thresholded out” this causes the FSL curve to dip below the other two

packages. The EC plots highlight overall topological differences in the

statistic maps: If the images were the same up to an image-wide mono-

tonic transformation, this would be revealed by the EC curves having the

same general shape but with some portions shifted or compressed. In

this sense, the distinct shapes seen in portions of the curves (e.g., for

ds000109, negative thresholds) suggest differences in the topologies of

each softwares activation pattern.

3.2 | Cross-software variability for nonparametric
inference

Consistent with the parametric inference results, activation localiza-

tion and statistic values varied greatly between packages for the per-

mutation test results computed for ds000001 and ds000109.

F IGURE 4 Dice coefficients comparing the thresholded positive and negative T-statistic maps computed for each pair of software package
and inference method for each of the three reproduced studies. Dice coefficients were computed over the intersection of the pair of analysis
masks, to assess only regions where activation could occur in both packages. Percentage of “spill over” activation, that is, the percentage of
activation in one software’s thresholded statistic map that fell outside of the analysis mask of the other software is displayed in grey; left value
for row software, right value for column software. For ds000001 increases, FSL permutation obtained no significant results, thus generating Dice
coefficients of zero; for ds000109 decreases, only AFNI and FSL parametric obtained a result and hence only one coefficient is displayed. Dice
coefficients are mostly below 0.5, parametric-nonparametric intrasoftware results are generally higher; ds000120’s F-statistic results are notably
high, at 0.684, perhaps because it is testing a main effect with ample power [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 5 (a) Euler characteristic (EC) plots for ds000001 and ds000109. On top, comparisons of the Euler characteristic computed for each
software’s T-statistic map from our reanalyses using a range of T-value thresholds between −6 and 6. Below, comparisons of the ECs calculated
using the same thresholds on the corresponding T-statistic images for permutation inference within each package. For each T-value the EC
summarises the topology of the thresholded image, and the curves provide a signature of the structure of the entire image. For extreme
thresholds the EC approximates the number of clusters, allowing a simple interpretation of the curves: For example, for ds000001 parametric
analyses, FSL clearly has the fewest clusters for positive thresholds. (b) Cluster count plots for ds000001 and ds000109. On top, comparisons of
the number of cluster found in each software’s T-statistic map from our reanalyses using a range of T-value thresholds between −6 and 6. Below,

comparisons of the cluster counts calculated using the same thresholds on the corresponding T-statistic images for permutation inference within
each package [Color figure can be viewed at wileyonlinelibrary.com]
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Before reviewing statistic map comparisons, we stress that the

goal of these nonparametric analyses is to obtain FWE-corrected clus-

ter p-values with weaker assumptions. Thus the permutation test

unthresholded statistic maps are not “nonparametric” maps, but rather

usual one-sample T-test maps that form the basis of permutation ana-

lyses. While SPM's parametric analysis uses the same one-sample T-

test, AFNI's and FSL's parametric models use a mixed-effects model

and weighted least squares. Hence all comparisons of the nonpara-

metric test statistic values (in contrast to thresholded maps) do not

convey information about nonparametric inference per se, but

compare different preprocessing and first level modelling from the

three packages while holding the second level model constant.

Quantitative assessment with Dice coefficients are shown in

Figure 4 (“perm” vs. “perm” cells) and—in accordance with the para-

metric results—are generally poor. Like the parametric analyses,

AFNI/SPM Dice values are altogether better than the other compari-

sons. For ds000001, FSL's nonparametric method found no significant

clusters, and thus all Dice coefficients connected to this analysis are

zero. However, note that the significant regions found in the other

parametric and nonparametric results for this study mostly comprise

F IGURE 6 Cross-software
Bland–Altman 2D histograms for
the ds000001 and ds000109
studies comparing the
unthresholded group-level T-
statistic maps computed using
permutation inference methods
within AFNI, FSL, and SPM.
Similar to the results obtained
using parametric inferences in
Figure 3, all of the densities
indicate large differences in the
size of activations determined
within each package [Color
figure can be viewed at
wileyonlinelibrary.com]
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of a single activation cluster spanning the lateral and medial frontal

cortex, insular cortex, basal ganglia, and brainstem—an extensive and

irregularly-shaped cluster that could easily become disconnected and

thus lose significance. As before, ds000109 Dice values are also gen-

erally better than ds000001.

The nonparametric Bland–Altman plots (Figure 6) show substan-

tial spread qualitatively similar to the parametric ones (Figure 3),

and correlations between statistics maps are similar for nonpara-

metric in congruence with the parametric comparisons (Table 3). EC

curves (Figure 5, bottom) again exhibit considerable topological vari-

ation between software packages. Notably, while AFNI and SPMs

EC curves are relatively similar across choice of inference method,

FSL permutation inference determined substantially more clusters

than parametric for low positive thresholds in both studies

(Figure 5a,b, bottom).

3.3 | Intrasoftware variability, parametric versus
nonparametric

Comparisons of parametric and permutation test inference results

within each package hold all preprocessing and first level modelling

constant, only varying the second level model and inference

F IGURE 7 Intrasoftware
Bland–Altman 2D histograms for
the ds000001 and ds000109
studies comparing the
unthresholded group-level
T-statistic maps computed for
parametric and nonparametric
inference methods in AFNI, FSL
and SPM. Each comparison here
uses the same preprocessed data,
varying only the second level
statistical model. SPM’s
parametric and nonparametric
both use the same (unweighted)
onesample T-test, and thus show
no differences. AFNI and FSL’s
parametric models use iterative
estimation of between subject
variance and weighted least
squares and thus show some
differences, but still smaller than
between-software comparisons
[Color figure can be viewed at
wileyonlinelibrary.com]
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procedure. The level of agreement between the two inferences within

each package varied greatly across software. Before making compari-

sons, we note that since SPM's parametric and nonparametric infer-

ence share the same group level model, the unthresholded statistic

images produced using each inference model are identical here.

The thresholded statistic maps are generally similar within each of

the software packages (ds000001: Figures S2 vs. S3; ds000109:

Figures S4 vs. S5), with the exception of FSL's nonparametric infer-

ence “decreases-only” finding for ds000001. Unthresholded maps are

notably more similar for ds000109 (Figures S9 vs. S10) than for

ds000001 (Figures S7 vs. S8), again noting that SPM's pairs of maps

here are identical.

Bland–Altman plots (Figure 7) reveal much greater levels of

parametric-nonparametric agreement, with AFNI displaying greater

agreement than FSL. For FSL, we selectively investigated voxels that

differed by the greatest amount, and often found individual subjects

responsible: A single subject with a large observation can drive a

conventional one-sample T-test, but when that same subject also

has large intrasubject variance FSL's mixed effect model down-

weights that subject leading to a substantially different T-test. The

increased difference in AFNI's values for ds000109 for larger statis-

tic values could also reflect a similar downweighting procedure

within the software.

The Dice coefficients comparing the thresholded permutation test

and parametric inferences are generally the best of any (Figure 4,

3-element lower diagonal). In general the origin of parametric-

nonparametric differences are parametric inference finding a slightly

larger number of clusters significant.

3.4 | Conclusion

Across all three of the studies reanalysed here we have discovered

considerable differences between the AFNI, FSL, and SPM results.

The scale of these differences has been highlighted by each of the

quantitative metrics applied to compare the group-level statistic maps:

Dice coefficients were commonly less than 50% for cross-software

comparisons, Bland–Altman plots showed that differences between

reported T-statistic values were as large as 4 for a considerable quan-

tity of voxels, and EC curves displayed a divergence in the number of

clusters being reported in each software—even at large thresholds.

In reporting these comparisons, we are not making any statements

as to which software package is better or worse. Without a gold stan-

dard to compare against no such claims can be made, and we believe

further development of well-validated pipelines by multiple groups

can encourage innovation and ultimately benefit the field. Rather, we

feel that the key contribution of our work is the quantitative measure-

ment of intersoftware differences on common datasets. Our finding

that exceedingly weak effects may not generalise across packages—

evidenced across all three of our analyses—is the primary take-home

message of this work. While larger effects were found to be more

robust—demonstrated by the similar Neurosynth association analysis

results that suggest some alignment in the final qualitative conclusions

that can be drawn from all three software's statistical maps—we stress

that our analyses have been conducted under particularly favourable

conditions: The use of studies with a strong, primary effect and exten-

sive efforts made to harmonise the three analyses. Because of this, at

best our results present an optimistic view of intersoftware dispar-

ities. To better understand the underlying differences between soft-

ware, further work on quantification of pipeline-related variation is

needed, which in the long-term will hopefully lead to harmonisation in

software implementation to reduce these differences in the future.

Another line of work would be the creation of integrative intrastudy,

ensemble learning techniques to integrate inconsistent findings. An

additional contribution with this effort is to provide generalizable

measures and metrics to enable software validation, which we hope

may benefit any further comprehensive comparison of software

packages.

4 | DISCUSSION

Our results have displayed extensive differences in the results between

the analysis pipelines of the three software packages. The low Dice

values and differences in ECs (Figures 4 and 5) are particularly salient,

showing heterogeneity in the sizes and shapes of clusters determined

across packages, indicating a strong dependance on software in terms of

the anatomical regions covered by the activation. While some authors

have pointed out the limitations of interpreting differences in the set of

voxels that make up a significant activation when using clusterwise infer-

ence (which makes assessments based on topological properties of sta-

tistical maps; Chumbley and Friston, 2009), we see merit in the use of

quantitative measurements such as Dice due to the ultimate application

of statistical maps to infer on precise areas of the brain active during a

task. While a deeper analysis on the differences between topological

aspects of images across software would be valuable, there are inherent

difficulties in this approach, such as identifying corresponding features

between maps when the number and size of activations reported are

variable across software.

It is notable that the level of variation in our analysis results also fluc-

tuated across the datasets we analysed. This is highlighted in our Dice

comparisons, where the ds000001 Dice coefficients are considerably

smaller than ds000109 for both the inter and intrasoftware comparisons.

The relatively poor performance of ds000001 may be due to the smaller

sample size for this study (16 vs. 21 for d000109), as well as the particu-

lar inference method used. For ds000001, group-level inference was

conducted using a cluster-forming threshold of p < .01 uncorrected.

A recent study (Eklund et al., 2016) found that parametric inference for a

one-sample T-test at this threshold in AFNI, FSL, and SPM resulted in

false-positive rates far exceeding the nominal level—severely for cluster-

forming threshold p < .01, modestly for p < .001—while nonparametric

permutation performed closer to the expected 5% FWE level. The results

obtained here for ds000001 are consistent with these findings: across all

three software packages, the thresholded images produced from permu-

tation test inference display fewer significant clusters than the

corresponding parametric maps. While the cluster-defining threshold

p < .005 applied in the ds000109 study was not analysed in Eklund et al.,
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consistency between packages using parametric and nonparametric

inference was greater for this study.

Notably, while all packages are purportedly using the same MNI

atlas space, an appreciable amount of activation detected by AFNI

and FSL fell outside of SPM's analysis mask (shown by the “spill over”

values displayed in grey, Figure 4). Considerable differences in mask

sizes are likely to have been a major factor for the disparities in activa-

tion and low dice coefficients seen across packages. For effects close

to the edge of the brain, a larger analysis mask allows for a larger clus-

ter volume, which can ultimately be the difference as to whether a

cluster is determined as significantly active or not. This may explain

why only FSL—which had the largest analysis mask—found an audi-

tory response in the ds000109 study, or why Dice coefficients

are generally worse for negative activations than positive in our

ds000001 renanalyses, where positive clusters were on-the-whole

reported in more central anatomical regions. Another possible reason

for poor Dice values here is that the size and number of clusters

determined for negative activations was smaller than that of positive

activations. Since Dice and spill-over values are proportional measure-

ments, this means they will have been more susceptible to differences

in cluster and mask size for the negative activations relative to the

positive. Disagreement in atlas space may have contributed to the lack

of structure in the Bland–Altman plots, however no gross mis-

alignment between packages was evident (Figure S1). While far from

perfect, the ds000120 AFNI and SPM thresholded results have the

best Dice similarity score, likely due to the use of a very strong main

effect as an outcome of interest.

Qualitative comparison of the results provide some optimism, with

certain patterns of activation found across all packages. For example,

the ds000001 parametric analyses were unanimous in determining

significant activation in the anterior insula. While there is greater dis-

cordance over the precise location of activation within the anterior

insular region, as well as the precise statistic values here, altogether

our results align. This may substantiate that the strongest effects are

robust across packages, supported by our own comparisons of the

unthresholded maps that showed moderate agreement between soft-

ware packages in areas with strong signal (many of these anatomical

regions were identified across all three package's NeuroSynth associa-

tion analyses) but greater disagreement elsewhere, ds000109 and

ds000120 displaying more consistency than ds0000001. However, in

making these qualitative comparisons, what has become most trans-

parent is the importance for researchers to—at the very least—share

their final statistical maps. The reasons for this are exhibited most

clearly by our ds000109 analyses; the visual slice comparison of our

replications of the main figure from the original study in Figure 1a,

shown alongside the publication figure itself, look remarkably similar

and could lead to the conclusion that each package's results highly

agree. It is only when analysing these results over the whole brain,

that we discover broad differences in these activation patterns, for

example, positive activation identified in the auditory cortex in FSL

that was not reported by AFNI and SPM, and significant deactivation

determined only by AFNI and FSL.

At the start of our investigations, we selected a common set of

preprocessing steps to be applied within each software package

across all studies regardless of whether they had been used in the

original analysis. This was to maximise the comparability of the

results while being consistent with best practices within the com-

munity. However, several complications arose during our analyses.

For ds000001, orientation information was missing from seven of

the subject's structural and functional scans. Because the source

DICOM files were no longer available, it was not possible to

retrieve the original position matrices. As a consequence of this, the

structural and functional images were misaligned, resulting in sub-

optimal coregistration during our analyses. Additionally, a bug in the

event-files induced during data conversion to the BIDS standard

had resulted in some of the event timings being lost. Thanks to the

cooperation of BIDS and OpenfMRI these problems were solved; a

revised dataset (Revision: 2.0.4) was uploaded to OpenfMRI and

used in our analysis.

Future efforts would be strengthened by additional sharing of

analysis scripts and statistic maps, enabling confirmation of analyses

that follow original procedures and permitting more quantitative com-

parison of statistic maps. We have made all of our analysis scripts

available and statistic maps available, and we hope more researchers

join this trend to advance openness in neuroimaging science.

4.1 | Limitations

This study has mainly focused on comparing statistic maps, since

these are the images studied to make judgments about localisation

and determine the neuroscientific interpretation of results. How-

ever, by comparing the statistic maps obtained at the end of the

pipeline, we have only assessed the net accumulation of differ-

ences across the entire analysis procedure. To illuminate the spe-

cific steps that contribute most to this variation, further in-depth

assessment of software differences at each stage of the analysis

pipeline will be required. One recent example of this was a study

that investigated differences in the prewhitening procedures con-

ducted in AFNI, FSL, and SPM, by employing an analysis pipeline

that used a single software package to carry out all other stages of

processing (Olszowy et al., 2018). Further work could consider the

factorial expansion of all possible combinations of preprocessing,

first level modelling, and second level modelling, akin to previous

efforts in assessing reproducibility over a number of pipelines

(Strother et al., 2002).

Due to the restrictive requirements of this investigation—the

necessity for published task-based fMRI data using analysis

methods compatible in AFNI, FSL, and SPM—the three studies

analysed here were found to be the only datasets hosted on

OpenfMRI suited to the aims of our investigation. Of the datasets

that were not used, the most common reasons for exclusion were

that no publication was associated to the data, that the sample size

of the study was too small, or that custom software or region of

interest analysis had been used as part of the analysis pipeline

which was not feasible across the three software packages.
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Nevertheless, a greater sample of studies will need to be replicated

across the packages to gain a more comprehensive understanding

of the variability between software and validate the results found

here. With increasing access to population neuroimaging studies,

where thousands of fMRI subject data are available, a future study

could test for nonzero software-related variation by splitting

a large dataset (e.g., UK Biobank [Alfaro-Almagro et al., 2018],

N > 10,000) into smaller subsets to generate an extensive collec-

tion of replication analyses across the three packages. This may

allow for the creation of a null-distribution from which differences

between software results could be assessed in terms of statistical

significance and confidence intervals, expanding on the raw con-

crete differences between T-statistics maps highlighted in this

effort. As simulation techniques become more advanced, there is

also the potential for creation of synthetic subject-level fMRI data

as a ground truth to which each software package's results could

be compared (Ellis et al., 2019).

Of the datasets we did use, subject data were missing from both

the ds000109 and ds000120 datasets. For ds000109, while 29 young

adults were scanned for the false belief task, only 21 were present in

the dataset; for ds000120, we analysed 17 subjects instead of 30 used

in the original study. These analyses therefore should not be com-

pared like-for-like with the published results, and have substantially

less statistical power than the original studies. Overall, our sample

sizes for the three datasets analysed (ds000001, ds000109,

ds000120) are 16, 21, and 17, respectively. While small, these sample

sizes are fairly representative of a typical functional neuroimaging

study over the past two decades—between 1995 and 2015, the

median sample size of an fMRI study increased steadily from 8 to

22 (Poldrack et al., 2017). This increase has continued, and a review of

2017 publications found a median sample size of 33 (Yeung, 2018).

Hence while our datasets are important for judging previous work, a

future comparison exercise with larger datasets would be a valuable

addition to the literature.

We have kept many parameters fixed in our analyses, such as

the use of nonlinear registration for all software packages, and the

addition of motion regressors in all our design matrices. How

changes in these variables influence the analysis results warrants

further investigation; for example, while we decided to fix a 2 mm

cubic voxel size in all packages (since this is the default in FSL,

SPM), a recent study found that alterations in this parameter can

significantly impact statistical inference (Mueller et al., 2017).

There are also many areas of the parameter space we have not

explored, such as the inclusion of analyses that use small volume

corrections, more stringent cluster-forming thresholds (Eklund

et al., 2016); (Woo et al., 2014), and two-tailed testing (Chen

et al., 2018).

Finally, the use of a wider range of software packages (e.g.,

FreeSurfer; [Dale et al., 1999]), as well as different software versions

which were not accounted for in the present study would also strengthen

any future analysis.
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