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Abstract

Computational methods play a pivotal role in drug discovery and are widely applied in virtual

screening, structure optimization, and compound activity profiling. Over the last decades,

almost all the attention in medicinal chemistry has been directed to protein-ligand binding,

and computational tools have been created with this target in mind. With novel discoveries

of functional RNAs and their possible applications, RNAs have gained considerable atten-

tion as potential drug targets. However, the availability of bioinformatics tools for nucleic

acids is limited. Here, we introduce fingeRNAt—a software tool for detecting non-covalent

interactions formed in complexes of nucleic acids with ligands. The program detects nine

types of interactions: (i) hydrogen and (ii) halogen bonds, (iii) cation-anion, (iv) pi-cation, (v)

pi-anion, (vi) pi-stacking, (vii) inorganic ion-mediated, (viii) water-mediated, and (ix) lipophilic

interactions. However, the scope of detected interactions can be easily expanded using a

simple plugin system. In addition, detected interactions can be visualized using the associ-

ated PyMOL plugin, which facilitates the analysis of medium-throughput molecular com-

plexes. Interactions are also encoded and stored as a bioinformatics-friendly Structural

Interaction Fingerprint (SIFt)—a binary string where the respective bit in the fingerprint is set

to 1 if a particular interaction is present and to 0 otherwise. This output format, in turn,

enables high-throughput analysis of interaction data using data analysis techniques. We

present applications of fingeRNAt-generated interaction fingerprints for visual and computa-

tional analysis of RNA-ligand complexes, including analysis of interactions formed in experi-

mentally determined RNA-small molecule ligand complexes deposited in the Protein Data

Bank. We propose interaction fingerprint-based similarity as an alternative measure to

RMSD to recapitulate complexes with similar interactions but different folding. We present

an application of interaction fingerprints for the clustering of molecular complexes. This

approach can be used to group ligands that form similar binding networks and thus have

similar biological properties. The fingeRNAt software is freely available at https://github.

com/n-szulc/fingeRNAt.
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Author summary

We present a novel bioinformatics tool, fingeRNAt, aiming to support scientists in the

analysis of complexes of nucleic acids with various types of ligands. The software automat-

ically detects non-covalent interactions and presents them in a form that is understand-

able to both humans and computers. Such data can help decipher the nature of

interactions between nucleic acids and ligands and determine the main factors responsible

for forming such complexes in nature. fingeRNAt finds application in multiple studies,

both structure- and drug discovery-oriented. Here, we analyzed the experimentally solved

structures of RNA complexes with small molecules to determine which binding features

are most prevalent, i.e., most common interactions or their hot spots. The results of this

analysis may help elucidate the mechanisms of binding and design new active molecules.

Moreover, we propose to use the data generated by our software as a new metric for the

quantitative pairwise comparison of molecular complexes. We have shown that it is more

reliable than the currently used methods in certain "difficult" cases. We have shown that

the results of our program can be used for high-throughput analysis of molecular com-

plexes and the search for active molecules. We are confident that fingeRNAt will be a valu-

able tool for exploring the complex world of interactions of nucleic acids with ligands.

Introduction

Nucleic acids are essential bioorganic molecules present in every living organism. Although

deoxyribonucleic acid (DNA) is traditionally viewed as a mere genetic information carrier and

ribonucleic acid (RNA) as a scaffold in the protein synthesis process, their functions go far

beyond that [1–3]. Both DNAs and RNAs regulate diverse biological pathways and thus have a

central role in cellular metabolism. Non-coding DNAs constitute the majority of the human

genome and regulate protein-coding sequences by acting as a binding site for other transcrip-

tional regulatory factors, an origin of replication site, a centromere, or a telomere [4,5]. Moreover,

some non-coding DNAs can be transcribed into non-coding RNAs, which play a fundamental

role in the cell, as they build large macromolecular machines, deliver amino acids to ribosomes,

or regulate different molecular processes, e.g., by silencing genes or driving catalytic reactions.

Nucleic acids possess the ability to adopt tertiary structures and have grooves acting as

binding sites for other factors. They are capable of forming complexes with other nucleic

acids, proteins [6], ions [7–10], and naturally occurring small molecules, such as metabolites

[11]. These interactions are essential for cell functioning as they may modulate transcription

and translation processes, DNA repair, splicing, apoptosis, or stress responses. Nucleic acids

are also targets for synthetic small molecule drugs. DNAs remain a primary target for several

anticancer chemotherapeutics [12] and potential antimicrobial compounds [13]. RNA mole-

cules, such as the bacterial ribosomes or human pre-mRNA of survival of motor neuron 2

(SMN2) protein, are also known targets for a number of drugs, e.g., bacterial ribosome-target-

ing antibiotics [14,15], or risdiplam [16,17], respectively. Other RNAs, such as mRNAs [18]

and regulatory RNAs in humans [19], riboswitches in bacteria [20], and conserved non-coding

RNAs in viruses [21], are considered as promising targets for new therapeutics (for review, see

[4,22,23]).

Weak non-covalent bonds are crucial in the molecular recognition process. Their identifi-

cation and characterization help elucidate the basics of intermolecular binding and support

the rational design of bioactive compounds [24,25]. Typically, this process requires a laborious
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visual inspection of three-dimensional (3D) models of complexes by structural biologists or

medicinal chemists [26]. With the advent of computational methods, this procedure may be

supported with programs aiming at detecting and characterizing non-covalent interactions. As

most of the available programs were designed to analyze protein complexes with small mole-

cule ligands [27–31], the number of tools focusing on nucleic acids is currently very limited.

LigPlot and LigPlot+ may be used to visualize nucleic acid-ligand complexes, but they display

only hydrogen bonds and lipophilic interactions [32,33]. Arpeggio is a web server dedicated to

detecting and visualizing interatomic interactions in protein structures; however it may be

applied to DNA macromolecules [34]. The recent update of the PLIP program and its web

server introduced support for DNA and RNA receptors, enabling the detection and visualiza-

tion of several types of non-covalent bonds [35]. ProLIF is a Python library developed to gen-

erate interaction fingerprints for protein, DNA, or RNA complexes from molecular dynamics

simulations, experimentally determined structures, and molecular docking [36].

To facilitate high-throughput analysis of intermolecular interactions, detected non-covalent

bonds might be encoded in the form of Structural Interaction Fingerprint (SIFt), which

describes the existence of specific molecular interactions between all structure’s residues and a

ligand. SIFt, firstly published by Deng et al. as a method to study protein-ligand binding, trans-

lates information about 3D interactions within the complex into a 1D binary string (bit vector)

[37]. SIFt calculation consists of two main steps. First, the presence of interaction of the speci-

fied type for each residue-ligand pair is checked, and an appropriate binary value is assigned (1

if the interaction occurs and 0 otherwise). Subsequently, all calculated binary substrings are

merged into one long string—SIFt, preserving the structure’s residue order. Typical SIFt appli-

cations include post-docking analyses, such as clustering molecule’s poses from molecular

docking and comparing them with reference structures or scoring functions [38]. It is also fre-

quently applied in interpreting activity landscapes, supporting structural databases, and ana-

lyzing protein-ligand complexes to search for similarities, e.g., by calculating the Tanimoto

coefficient of bit vectors. In rational drug discovery, SIFt supports processing virtual screening

results [39,31,40] or developing new scoring functions [41,42]. With the growing importance

of artificial intelligence methods in drug discovery, new applications of interaction fingerprints

emerged. SIFt can be associated with the information about ligand’s biological activity, thus

becoming an excellent input to the machine learning algorithms. This approach was already

used, e.g., in training models to predict ligands’ activity towards protein targets [43–47].

Here we present the fingeRNAt—a Python 3 program that detects and visualizes nucleic

acid-ligand interactions. As an input, it takes a 3D structure of a nucleic acid (RNA or DNA)

and a file containing ligands that form complexes with this macromolecule (e.g., the output

from molecular docking with an external program). fingeRNAt accepts nucleic acids, small

molecules, proteins, and metal cations as ligands. The output is a fingerprint—a bit vector con-

taining information on interactions detected between interacting partners and optionally a

human-readable file containing detailed information on detected interactions. By default, it

detects nine interactions (see Implementation section in Materials and methods) but can be

easily extended to detect virtually any type of interaction using a simple plugin system; the pro-

vided sample plugin file enables detection of eight additional interactions. Moreover, accom-

panying programs allow for convenient post-processing and visualization of detected

interactions, calculation of Receptor Preferences (aka Receptor’s Interactions Hot Spots),

which represent the spatial occurrence frequency of a given interaction type in receptor atoms,

and Ligand Preferences (aka Ligand’s Interactions Hot Spots), which represent the spatial

occurrence frequency of a given interaction type in ligand binding site.

To the best of our knowledge, there are no nucleic acid-dedicated tools for detection and

classification of interactions that encode them in both machine- and human-readable formats,
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are highly customizable, and allow for exhaustive post-processing such as calculation of simi-

larity/distance metrics and interactive visualization. A detailed comparison of the fingeRNAt

features (this work) and similar software tools (Arpeggio [34], PLIP2021 [35], and ProLIF

[36]) can be found in S1 Table.

fingeRNAt is freely available to download from github.com/n-szulc/fingeRNAt. Program

installation guide, together with an extensive manual, multiple usage examples, and Sphinx

documentation, are also accessible from the repository. fingeRNAt can be used as a standalone

command-line tool, but it also has an intuitive graphical user interface with the same

functionalities.

Results and discussion

fingeRNAt is a program for detecting and classifying non-covalent interactions between a

nucleic acid (RNA or DNA; called a receptor) and ligands (metal cations, small molecules,

nucleic acids, or proteins). These data are encoded in the form of Structural Interaction Fin-

gerprints (SIFts)—a 1D bit vector indicating the presence or absence of a given type of interac-

tion, as well as in the form of a detailed listing of all detected interactions, spatial coordinates

of the interacting partners, and distances between interacting atoms or aromatic rings.

Here we present three analyses performed for RNA-ligand complexes. In all the cases, the

fingeRNAt played a pivotal role in data gathering and analysis.

Classification of interactions in experimentally solved RNA-ligand

structures

Experimentally solved structures of macromolecules and their complexes are an invaluable

source of knowledge on intermolecular interactions. At the time this publication was written,

1570 structures of RNA had been deposited in the Nucleic Acid Database, with 946 structures

of RNA complexes with small molecule ligands (as of 16-Dec-2021, [48]). The information on

statistics of interactions in RNA-ligand complexes derived from the solved structures can be

used to develop bioinformatics methods to predict the structure of such complexes. Methods

that enable an analysis of RNA-ligand interactions include docking programs (such as rDock

[49,50]) or scoring functions (such as DrugScoreRNA [51], RNAPosers [52], and developed in

our laboratory LigandRNA and AnnapuRNA [53,54]). As an output, the aforementioned

methods return the proposed binding pose with numerical score(s). Although these data offer

great help in compound prioritization processes or virtual screening, they do not explain the

nature of the binding phenomena nor give insights into the main driving forces of the investi-

gated interaction. To shed light on the landscape of interactions with small molecule ligands,

we analyzed a diversified dataset of experimentally solved RNA structures deposited in the

PDB. We determined the nature of formed non-covalent interactions, including frequency

and distance distribution for each investigated contact type.

The performed analysis reveals that the most frequently occurring interactions are hydro-

gen bonds (5026) and lipophilic interactions (3582; see Fig 1A and S2 Table). Next, with an

order of magnitude lower number, are cation-anion bonds (899), water-mediated interactions

(151), and Pi-stacking interactions (146). The number of the remaining interactions is two

orders of magnitude lower than the number of detected hydrogen bonds, with halogen bonds

being the least frequent detected interaction (6). Three metal cations that were present only in

one complex each (namely: Pb, Mn, and Sr) were removed from plots for clarity.

Statistics indicating the absolute number of interactions, although informative, may be

somehow misleading. Seven types of interactions (namely hydrogen bonds, lipophilic, cation-

anion, halogen bonds, and three types of mediated interactions) are detected between single
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atoms/groups of RNA and ligands. Thus, a single interaction point may form multiple bonds

with the partner (e.g., a single lipophilic atom of RNA may form bonds with multiple atoms of

the ligand and vice versa). Interactions involving Pi-systems (Pi-stacking and Pi-ions interac-

tions) are formed between at least one cyclic system, which due to geometrical restraints may

form only a limited number of interactions.

Fig 1. Statistics of interactions formed in macromolecular complexes. (A) Total number of interactions detected for RNA-ligand complexes (this work); (B) the

percentage of RNA-ligand complexes with at least one occurrence of a given interaction (this work); (C) number of interactions for protein-ligand complexes presented

by de Freitas and Schapira; (D) number of interactions for RNA-ligand complexes presented by Padroni et al.

https://doi.org/10.1371/journal.pcbi.1009783.g001
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To circumvent this bias, we calculated the number and the percentage of complexes with at

least one of the given interactions detected (see Fig 1B). This analysis revealed that the hydro-

gen bonds, lipophilic, and cation-anion interactions are still the most abundant, present in

over 99%, 94%, and 61% of structures, respectively. In this analysis, the role of the interactions

formed by Pi-systems is more pronounced—the Pi-stacking and Pi-cation interactions are

formed in over 30% of structures, and Pi-anion interactions are detected in 11% of structures.

The percentage of structures forming mediated interactions is lower than suggested by the

number of interactions formed (15%, 8%, and 6% for structures with water-, Mg2+-, and K+-

mediated interactions, respectively). We also counted the number of interactions formed by

unique residues of RNA (i.e., only one interaction of a given type with a given residue is

counted). Results confirm the order of the frequency of interactions revealed by our first analy-

sis (Fig 1A), but with a slightly decreased role of water-mediated interactions (S1 Fig).

In the dataset analyzed in this work, 141 structures (68%) contain at least a single water mole-

cule. Within this group, we observed the formation of a water-mediated interaction only in 22%

of structures (15% of the whole dataset). On the other hand, in a subset of eight high-resolution

structures (resolution� 1.5 Å), all complexes have water coordinates, and seven (88%) of struc-

tures form water bridges between RNA and ligand (see the discussion on the structure resolution

below). This value is very close to the data presented by Lu et al., who calculated that over 85% of

the protein-ligand complex structures have at least one bridging water molecule present at the

interface of the protein and the ligand (data from 392 high-resolution crystal structures) [55]. This

suggests that the water-mediated interactions may play a crucial role in the molecular recognition

process for RNA and small molecule ligands. However, the lack of high-quality experimentally

solved structures prevents an accurate assessment of the scale of this phenomenon.

In fingeRNAt we implemented two methods for the detection of hydrogen bonds. The

default algorithm takes into account the distance between the heavy atom of the hydrogen

bond donor and the acceptor atom (D���A, [56]). An alternative, more selective algorithm

takes into account not only the distance but also the angle between the heavy atom of the

hydrogen bond donor, the hydrogen atom, and the acceptor atom (D-H���A, [35]). This

method depends on the position of hydrogen atoms, and as most experimental structures do

not have coordinates of hydrogens, these must be added computationally before calculations.

The resulting structures may vary depending on the hydrogen-adding algorithm used (S2 Fig).

We compared the interaction statistics obtained when using the default method of hydro-

gen bond detection (based on the distance of D���A) and when using the distance and angle

variant (D-H���A) with four algorithms for placing hydrogen atoms: the fingeRNAt’s built-in

algorithms utilizing the OpenBabel and RDKit libraries, and the external software: PyMOL

and Chimera (Fig 2 and S3 Table) [57–60].

The number of detected interactions for methods that consider the position of hydrogen is

almost three times lower (ranging from 1735 to 1822) than for the default method (5026). As

expected, for the distance and angle variant (D-H���A), the number of detected interactions

depends on the hydrogen-adding algorithm and is caused by the aforementioned variability of

the location of some hydrogen atoms. A slightly higher number of detected interactions for

Chimera-added protons could be explained by the fact that—unlike for other methods—

hydrogens were added for ligands in complex with RNA, which may favor such positions of

hydrogen atoms which contribute most to the intermolecular hydrogen-bond network. This

method, however, is designed for protein-ligand complexes and may give suboptimal results

for nucleic acids. To the best of our knowledge, a method designed for adding polar hydrogen

atoms to RNA-ligand complexes currently does not exist. Applying such a tool in our analysis

could provide the most reliable results for the number of hydrogen bonds formed within

RNA-ligand complexes.
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Comparison of the RNA-ligand interactions statistics to the data derived from protein-

ligand complexes published by de Freitas and Schapira reveals that the two most frequent

interactions are the same (hydrogen bonds and lipophilic interactions), however in the

reversed order (Fig 1C) [61]. To our surprise, the Pi-stacking interactions are more pro-

nounced for protein complexes than for RNA. This observation may be explained by the fact

that only 38% of ligands in the RNA-ligand dataset contain an aromatic ring, which is a pre-

requisite for forming the Pi-stacking interaction with RNA (S3 Fig; data for protein complexes

are not published), and almost 80% of ligands with an aromatic ring is forming a Pi-stacking

interaction with RNA (see S4 Table for detailed statistics of Pi-stacking interactions, S5 Table

for hydrogen bonds, and S6 Table for cation-anion interactions).

We also compared statistics of the interactions derived using the fingeRNAt to data pub-

lished recently by Padroni et al. [62]. The authors used a proprietary software ICM to extract

contact information from a set of 37 experimentally solved structures, which covered 14

unique RNAs (data summarized in Fig 1D). They found the Pi-stacking interaction and hydro-

gen bonds as the most common type of interaction in RNA-small molecule ligand complexes,

with an almost equal number of detected interactions (764 and 762, respectively). Our analysis

also ranks the hydrogen bonds as the most frequently occurring interaction, but as discussed

above, the Pi-stacking interaction is less commonly discovered (the fifth most frequent interac-

tion detected by our method). The third most frequent contact found by Padroni et al. is the

lipophilic interaction (the second most frequent interaction detected by our method). The sub-

stantial difference in contact count values is, however, in the number of cation-anion interac-

tions. In our analysis, this is the third most frequent interaction, while Padroni et al. rank it in

the fifth position. We also detected four cases of halogen bonds, while Padroni et al. did not

observe this kind of interaction. Observed discrepancies in absolute values and frequency

ranks are especially pronounced in the high number of the detected Pi-stacking interactions

(Padroni et al. reported 764 Pi-stacking interactions detected in 37 complexes). We analyzed

the dataset of Padroni et al. using our software fingeRNAt (S4 Fig). As expected, the absolute

numbers of interactions are different from those presented in our work; however, the ranking

Fig 2. Statistics of hydrogen bonds formed in macromolecular complexes for the detection method without taking into account the position of a hydrogen atom

(the default method, based on the distance of D���A) and when using this information (the alternative method invoked when -dha flag is passed to the program,

based on the distance and angle D-H���A), calculated for four methods of adding hydrogens (OpenBabel, RDKit, PyMOL, and Chimera). (A) Total number of

hydrogen bonds detected for RNA-ligand complexes; (B) the percentage of RNA-ligand complexes with at least one occurrence of a hydrogen bond.

https://doi.org/10.1371/journal.pcbi.1009783.g002
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of interactions (in terms of the total number of detected interactions) is the same as calculated

for our dataset, with only minor differences in ion- and water-mediated interactions. This

means that these two algorithms use different methods to detect interactions, especially for Pi-

stacking interactions.

Observed differences could also result from the fact that we used protonated ligand mole-

cules as an input which more realistically reflects the ionization state of the binding partners

and their interactions, thus explaining the differences in the charge-involving interactions (cat-

ion-anion, Pi-cation interactions). The protonation model used in this analysis (the RNA and

ligands have the protonation state assigned in isolation) is, however, only the approximation

of the dynamic phenomena of protonation observed in nature. It was shown earlier that pKa of

RNA nucleotides is highly dependent on the structural environment [63,64] and can be

affected by binding small molecule ligands [65,66]. Although there are methods for predicting

protonation states for protein-ligand complexes [67,68], such a method dedicated to RNA-

ligand complexes, to the best of our knowledge, currently does not exist.

The number of detected interactions, however, must be treated as an approximation only.

As recently shown by Xu et al. for protein-ligand and protein-protein complexes, insufficient

resolution of the data deposited in the PDB may result in overlooking a significant number of

non-covalent interactions [69]. Most probably, this problem also exists for RNA-ligand com-

plexes. The diversified set of 207 structures analyzed in our work consists of structures deter-

mined by NMR and X-ray crystallography (27 and 180 structures, respectively), and the latter

are determined at various resolutions (ranging from 0.61 Å to 4.50 Å, see S5 Fig). To estimate

the role of the resolution on the type and number of detected interactions, we repeated the

analysis of interaction occurrence frequency for the seven subsets of structures: X-ray deter-

mined structures with a resolution equal to or below 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 Å, and the

structures determined by the NMR (See S6 Fig for the complete data and Fig 3 for selected

examples). In all groups of X-ray structures, the ranking of the frequency of detected interac-

tions is the same as in the complete dataset, with a single exception of the highest quality struc-

tures (resolution� 1.5 Å). In this group of eight complexes, the number of the water-mediated

Fig 3. Total number of interactions detected for RNA-ligand complexes with a given resolution. The five most frequent interactions are shown for clarity. The

number of structures in a given set is shown in parentheses.

https://doi.org/10.1371/journal.pcbi.1009783.g003
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interactions is higher than the observed number of hydrogen bonds and lipophilic interactions

(74, 62, and 42, respectively), which highly pronounces the role of water bridges in RNA-

ligand complexes. This was expected since all these high-resolution structures contain water

coordinates, and 88% of structures in this group form water bridges between RNA and ligand

(compared to 15% in the complete dataset). In the group of 27 NMR-determined structures,

the list of four most frequently detected interactions is also the same as in the complete dataset

(apart from the water-mediated interactions, which cannot be determined due to the lack of

water coordinates in the NMR structures). We may conclude that although the number and

quality of experimentally determined structures are still limited, the presented statistics are a

good estimation of the relative abundance of the non-covalent bonds in RNA-ligand

structures.

As noted earlier, the interactions formed between ligands and RNA depend on the chemical

structure of the ligand. We grouped all ligands into seven clusters (alcohols and polyols, nucle-

osides and nucleoside derivatives, amino acids, amino sugars and aminoglycosides, aliphatic

amines, heterocycles, and others) and calculated interaction statistics in each group (S1 Text).

In all groups but “others”, the most frequent interaction formed is hydrogen bond, as it was in

the case of the general population of ligands. For amino acids, nucleosides, and heterocycles,

the next most frequent contact is lipophilic interaction. For positively charged molecules con-

taining amino groups (amino sugars and aliphatic amines), the second most abundant interac-

tion is cation-anion, formed between negatively charged OP1/OP2 atoms of RNA and

protonated amine cations in ligands. This is in line with the observation made by Padroni

et al. that the frequency of interactions formed by aminoglycosides is different from the one

observed in the entire analyzed dataset, with a pronounced role of hydrogen bonding, lipo-

philic interactions, and charge-involving interactions.

We also used the data generated by the fingeRNAt to investigate the preferred distances for

detected interactions. The distribution is multimodal for hydrogen bonds and cation-anion

interactions, with two clearly distinguished peaks (Fig 4, S7 Fig, and S7 Table). Such distribu-

tion was observed earlier for strong hydrogen bonds (for data derived from structures depos-

ited in the Cambridge Structural Database (CSD) [70,71] and protein-ligand complexes [72]),

metal cations with oxygen anion [73], salt bridges in proteins [74], and Pi-anion interactions

[75]. For hydrogen bonds length distribution, the first peak is observed for the distance 2.7 Å,

which is very close to the median length observed for hydrogen bonds in data derived from the

PDB and CSD (2.75 Å and 2.9 Å for interactions of amide C = O with OH and NH, respec-

tively, [76]). We observed the second-main peak at the length 3.7 Å, which may result from

water-mediated contacts via water molecules not visible in the experimentally determined

structures.

Using the interaction statistics gathered with the fingeRNAt software, we calculated the fre-

quency of interactions formed by the individual RNA atoms. We also mapped the data into

the nucleotide structures to visualize the Interactions’ Hot Spots. For hydrogen bonds, most of

the hydrogen bonds are formed by nucleobases (61%) and phosphate group atoms (23%),

while ribose oxygen atoms are responsible only for a small fraction of the hydrogen bonds

(15%, see Fig 5 and S8 Table). This observation is in agreement with results obtained by Kligun

and Mandel-Gutfreund, indicating that nucleobases form 65%, while interactions with back-

bone atoms form 35% of RNA-ligand hydrogen bonds [77].

As expected, most hydrogen bonds are formed with a Watson-Crick and Hoogsteen face of

the nucleobase (see S9 Table). The most frequent interactions for adenine, cytosine, and uracil

are using a Watson–Crick face (31.2%, 63.0%, and 68.8% of all hydrogen bonds formed by the

given nucleotide), while guanine tends to use a Hoogsteen face (41.3%). Hydrogen bonds

formed using a sugar face of the nucleobase are the least frequent (ranging from 8.9% for
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adenine to 19.3% for cytosine). Kondo and Westhof, who analyzed 231 RNA-ligand structures,

also noted a frequent formation of hydrogen bonds involving the Watson-Crick face of RNA

and suggested that the formation of such interactions may be a key to ligand selectivity [78].

The Watson-Crick is the face most frequently forming interactions also in nucleotide-protein

complexes, while the sugar face is rarely recognized by either the side-chain or peptide back-

bone of amino acid residues [79].

Analysis performed for lipophilic interactions indicates that most contacts between RNA

and ligands are also made with nucleobase atoms (74%, Fig 6 and S10 Table). For Pi-anion

interactions, 82% of bonds are formed with nucleobases, with RNA acting as an anion acceptor

(in the remaining 18% of Pi-anion interactions, the phosphate group of RNA acts as an anion

donor; see S11 Table). Interestingly, we observed the formation of a halogen bond mostly with

the ribose atoms (5 cases, 83%) with a single interaction detected with a nucleobase atom (see

S12 Table). However, the overall number of these interactions in our dataset is low (6 interac-

tions), therefore the observed trend may not be reliable. Due to the molecular features of the

RNA, all Pi-stacking and Pi-cation bonds are formed exclusively with nucleobases. Taken

together, most of the observed interactions of all kinds are formed with the nucleobases

(60.53%, while 21.63% and 17.84% with phosphate and ribose fragments, respectively), which

highlights a vital role of this region of RNA in structure recognition (see S13 Table).

Presented data can pave the path toward a better understanding of the nature of such inter-

actions and define the main driving forces responsible for forming these complexes. Medicinal

Fig 4. A kernel density estimate plot of the distribution of lengths for four most frequently observed non-covalent interactions in a dataset of experimentally

solved RNA-ligand structures. For hydrogen bonds, the distance between the non-hydrogen donor atom and the acceptor is reported. The minimum and maximum

cut-off values for each interaction are marked with vertical lines.

https://doi.org/10.1371/journal.pcbi.1009783.g004
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chemists can directly use provided information on the preferred interaction distances and

interaction sites to support the rational design or modification of existing small molecule

ligands to improve their binding affinity or selectivity toward RNA molecules.

SIFt-based structure similarity assessment

The most widely used criterion of the accuracy of macromolecule-ligand modeling tools is the

ability to reproduce the binding mode of ligands. This is usually measured by calculating the

root-mean-square deviation (RMSD) between the non-hydrogen atoms of the ligand in the

experimentally determined structure and the corresponding atoms in the modeled pose.

Although widely used for the assessment of molecular docking programs [80], where the mac-

romolecule structure is usually kept rigid, RMSD has several shortcomings, mostly seen in

simulations involving the flexibility of both interacting partners. It may happen that although

the structure of the predicted complex is very similar to the reference structure and the binding

Fig 5. The number of hydrogen bonds formed with ligand molecules grouped by the RNA atoms (bar plots, left; vertical dashed lines separate

atoms of a phosphate group, ribose, and nucleobase) and interaction sites statistics for each atom with a percentage of all hydrogen bonds

formed by this residue (right column; the radii of spheres are proportional to the percentage values).

https://doi.org/10.1371/journal.pcbi.1009783.g005
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mode of the ligand is perfectly recapitulated, the RMSD value for the whole complex is very

high when the model is compared with the reference structure. For example, this can be caused

by the fluctuations of the receptor structure in a region distant from the binding site, which

does not influence the predicted binding mode of the ligand nor the shape of the binding

pocket but has a negative impact on the calculated RMSD value. Another example is when the

fragment of a ligand, which is not involved in the binding process (e.g., a solvent-exposed

group), deviates from the reference ligand structure and thus results in a high RMSD value

(see [81] for examples). In addition, the RMSD is ligand-size dependent, tangling direct com-

parison of RMSD values obtained for molecules of different sizes as well as using a fixed

RMSD threshold as a criterion for successful molecular docking.

To circumvent the above mentioned drawbacks of RMSD, several alternatives have been

proposed, however, they were designed and tested, to the best of our knowledge, exclusively

for protein complexes. The list includes methods such as RSR (Real Space R-factor, which

measures how well a group of ligand atoms fits the experimental electron density, [82]),

Fig 6. The number of lipophilic interactions formed with ligand molecules grouped by the RNA atoms (bar plots,

left; vertical dashed lines separate atoms of ribose and nucleobase) and interaction sites statistics for each atom with

a percentage of all hydrogen bonds formed by this residue (right column; the radii of spheres are proportional to the

percentage values).

https://doi.org/10.1371/journal.pcbi.1009783.g006
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GARD (Generally Applicable Replacement for rmsD, which takes into account relative impor-

tance to binding of atoms, [81]), TFD (Torsion Fingerprint Deviation, which compares con-

formations of molecules [83]), or SuCOS (for assessing shape complementarity and

overlapping of chemical features [84]). Also, several metrics utilizing a comparison of contacts

between proteins and ligands have been proposed. Ding et al. developed the Contact Mode

Score (CMS), a metric to assess the conformational similarity based on intermolecular pro-

tein-ligand contacts [85]. CMS is expressed as the Matthews correlation coefficient (MCC)

between contact matrices generated for the reference structure and the investigated complex.

It was shown to be a valuable metric to evaluate results of flexible docking, which at the same

time considers the changes upon ligand binding. In the IBAC approach (Interactions-Based

Accuracy Classification, [86]) proposed by Kroemer et al., the scoring is derived from the com-

parison of (manually defined) key interactions of the reference protein-ligand complex and

the docked pose. Although defining the key interactions may be perceived as subjective, the

IBAC method was proved to be a more meaningful measure of docking accuracy for the exam-

ined test set than RMSD. Balius et al. proposed an FPS score (footprint similarity, [87]) which

is derived from the comparison of electrostatic, steric, and hydrogen bonding energy profiles

for protein-ligand complexes using the Pearson correlation coefficient.

The similarity of interaction fingerprints for protein-ligand complexes was also explored as

a measure for binding mode similarity. Drwal et al. analyzed four protein targets to compare

binding modes of fragments, crystallization additives, and drug-like molecules [88]. For a

given target, they calculated a consensus fingerprint containing the relative frequency of each

interaction type with each residue. The similarity between a docking pose fingerprint and a

consensus fingerprint was calculated using the Tanimoto metric for continuous variables (and

thus, not limited to values “0” and “1”). Leung et al. benchmarked the PLIF similarity (Pro-

tein-Ligand Interaction Fingerprint) as a metric for evaluating docking of the ligands to pro-

teins [84]. They concluded that this metric, contrary to ligand-centric ones (such as the RMSD

and SuCOS), was able to capture information about interactions across multiple crystal struc-

tures of ligands bound to the same protein, making it a handy feature for experiments where

multiple protein conformations are used.

Inspired by structure-centric methods developed for assessing protein-ligand complexes,

we examined the applicability of the interaction fingerprints generated by the fingeRNAt as a

measure for RNA-ligand complexes’ similarity. As input structural data, we used predictions

submitted by participants of the RNA-Puzzles (https://www.rnapuzzles.org, [89])—a collective

experiment for blind RNA structure prediction. In the RNA-Puzzles round 23, the task was to

predict structures of a Mango-III aptamer in complex with biotinylated TO1 dye, based on the

sequence of RNA and structure of the ligand. The main criterion of the evaluation of the pre-

diction’s quality was the RMSD, deformation index (DI), and interaction network fidelity

(INF, [90]) of RNA. Seven groups submitted their models of the target complex (RNA with

ligand)—Bujnicki, Chen, Das, Ding, Dokholyan, Adamiak (code-named RNAComposer), and

Xiao. The structures of ligands provided by the last group contained structural errors, which

made it impossible to calculate RMSD values for the ligand; however, the calculation of inter-

action fingerprints was possible due to the structure-agnostic (structure-independent) nature

of the algorithm proposed in this work.

First, we compared the correlation of the RMSD and INF of RNA and RMSD of the ligand

with interaction fingerprint similarity. The similarity of interaction fingerprints (and, in gen-

eral, of bit vectors) can be expressed in a number of ways. Currently, the fingeRNAt package

offers eight methods for calculating the similarity or distance of bit vectors. Here, we used a

widely used metric for the comparison of interaction fingerprints—the Tversky similarity

[84,91]. It focuses on the recapitulation of the true interactions (formed in the reference
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complex) in the predicted model of a complex and ranges from 0 (investigated model has no

interactions which are present in the reference complex) to 1 (model has all interactions the

reference has).

We observed only a weak correlation between RMSD (of RNA or ligand), INF, and Tversky

similarity (R2 for linear least-squares regression ranges from 0.31 to 0.61; see Fig 7A and S14

Table). The detailed analysis of the rank list shows that most of the best models in terms of

RMSD, DI, or INF do not recapitulate the interaction network formed between RNA and

ligand in the experimentally solved structure (S15 Table). Only the model submitted by the

Das group (Das_07) had relatively good values of RMSD (for both RNA and ligand), DI, and

interaction fingerprint similarities (S8 Fig). Also, the mutual similarity of interaction networks

in the submitted models is relatively low (with average Tversky similarity equal 0.24 and

median similarity 0.18), indicating that in most complexes, the proposed binding mode is

unique (S9 Fig).

As a complementary experiment, we performed molecular redocking of the ligand to the

reference structure of the Mango-III aptamer. Again, we observed only a weak correlation

between RMSD of ligand and Tversky similarity of interaction fingerprints (R2 for linear least-

Fig 7. Relationship between structure-centric similarity metrics (RMSD and INF) and fingeRNAt interaction fingerprints similarity (Tversky). (A) Relationship

between RMSD of RNA, INF all of RNA, RMSD of ligands, and Tversky similarity of interaction fingerprints for models submitted for the RNA-Puzzles round 23 and

(B) for the redocking experiment. The reference structure is marked with an arrow, and the linear least-squares regression is marked with a red dashed line. (C) Selected

poses from the docking experiment with ligand RMSD and Tversky similarity of fingerprints, (D) the overlay of the benzothiazole fragment of the ligand of the reference

structure, and pose 213, and (E) the corresponding color-coded interaction fingerprint. Benzothiazole moiety was marked with a gray circle in (C) and (D).

https://doi.org/10.1371/journal.pcbi.1009783.g007
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squares regression equal 0.60; see Fig 7B and S14 Table). For the detailed analysis, we selected

two poses proposed by the docking program—one with relatively low (good) RMSD of ligand

but low (unfavorable) fingerprint similarity (pose 191) and one with relatively high (unfavor-

able) RMSD value but high (good) fingerprint similarity (pose 213) (Fig 7C). Comparison of

the two selected poses with the reference complex confirms that pose 191, despite its better

RMSD value, has a very different binding mode than the reference ligand. In this case, only six

out of 17 interactions were correctly predicted. Conversely, pose 213 with a very high RMSD

value recapitulates 13 out of 17 interactions formed by the reference structure. This is espe-

cially pronounced by the correct prediction of the position of the central benzothiazole ring,

although in a different orientation (Fig 7D).

Moreover, for the redocking data, we did not observe a strong correlation between RMSD

of the ligand and any of the eight metrics expressing similarity/distance of interaction finger-

prints (for the mutual relationship plots of RMSD and bit vector similarity/distance values, see

S10 Fig), meaning that the assessment method proposed by us is distinct from other metrics

and could be easily employed as another mean of structure’s prediction scoring. Also, lower

resolution fingerprints (SIMPLE, PBS) can be used for the rough estimation of the binding

mode—the similarity of these fingerprints does not correlate with the RMSD of the ligand as

well (S11 Fig).

This observation is also confirmed by the analysis of a larger dataset. For the redocking

experiment of 144 RNA-ligand complexes (100 docked poses + one reference pose for each

complex), we observed, in most cases, only a weak correlation between RMSD of a ligand and

interaction fingerprint similarity (see S12 Fig and S16 Table). For example, the average R2

value for Tanimoto and Tversky similarity was as low as 0.417 and 0.380, respectively, and the

average Spearman rank correlation coefficient was -0.523 and -0.491, respectively. A weak cor-

relation was also observed for other similarity metrics and rank correlation measures.

In summary, the similarity of the interaction fingerprints can be used as an alternative to

the RMSD measure for comparing structures of complexes. The proposed approach focuses

on the interactions formed between interacting partners, while the actual location of particular

atoms and groups of ligands is not considered. By using different fingerprint similarity mea-

sures, various aspects of interaction similarity can be emphasized. While the Tversky similarity

expresses the number of correctly predicted interactions, the Tanimoto similarity expresses

the overall mutual similarity of the interactions in compared complexes.

These results are in line with data obtained earlier for protein-ligand complexes. It was

shown that the interaction data could improve docking accuracy by selecting the binding pose

closer to the reference structure and recapitulate models poorly assessed by other methods

[92,93].

Fingerprints for clustering interactions and detecting preferred patterns

As stated in the previous section, RMSD is the most widely used measure for assessing the sim-

ilarity of ligands in complex with macromolecules. It may be treated as a distant proxy for

comparing interactions formed in two investigated complexes, assuming that two molecules

that are close in space will form the same (or similar) interaction network. As we showed, this

is not always true, as two ligands with low values of RMSD may form very different interac-

tions with the receptor and vice versa. Another limitation of the RMSD used for comparing the

binding modes in two complexes is the restriction that both ligands must be the same.

Although some recently published methods partially circumvent this constraint by enabling

the calculation of the RMSD of molecules sharing some structural features (LigRMSD, [94]),

application of RMSD is still limited to structurally similar compounds.
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In this experiment, we tested the applicability of SIFts for grouping small molecule com-

pounds of different chemical structures but with akin binding patterns. We hypothesized that

molecules forming similar types of interactions with the molecular target would have similar

binding properties, such as biological activity. We composed a dataset of diversified small mol-

ecule ligands with known or putative activity toward the HIV-1 trans-activation response

(TAR) element. This is a medically important and relatively well-explored RNA target with a

substantial amount of available experimental data. This includes solved three-dimensional

RNA structures and experimentally validated ligands. Also, a structure-based virtual screening

with a subsequent ligand activity validation was performed, resulting in new HIV-1 TAR bind-

ing ligands [95,96] (for a review, see [97]). The library consisted of 30 active and 1478 inactive

molecules (see Materials and methods section Datasets for the detailed description of the

library preparation). To avoid artificial enrichments observed when multiple active ligands

have a very similar chemical structure and thus possibly have an analogous binding mode (so-

called “analog bias”), we ensured that these compounds are dissimilar to each other and belong

to different chemical classes (see S13 Fig). Using molecular docking, we predicted the structure

of these compounds in complexes with HIV-1 TAR RNA and calculated SIFts for each RNA-

ligand complex.

In a pool of 1508 docked compounds, there were 1149 unique fingerprints, and 998 com-

pounds (66.2%) had a unique fingerprint (i.e., the fingerprint that is unique for this molecule

only). All 30 active compounds had a unique fingerprint. We used PCA for dimensionality

reduction and k-means clustering for grouping compounds with similar fingerprints, i.e.,

forming a similar interaction network with the target RNA. This method offers a reasonable

separation of clusters (average silhouette score of 0.516 for 15 clusters, Fig 8A and 8B; for the

performance of clustering for various numbers of clusters, see S17 Table). In five clusters, the

ratio of active compounds was significantly different than in the input dataset (p-value� 0.05,

clusters 8–12), although it did not include the cluster with the highest ratio of active com-

pounds (cluster 7, 6.67% of active compounds, p-value = 0.29, Fig 8B; for clusters composition

and statistical significance analysis, see S18 Table). In clusters 8, 11, and 12, the ratio of active

compounds is significantly higher than in the input population (with the percentage of active

compounds 2.38%, 4.51%, and 4.00%, respectively, p-value� 0.05). Thus, we conclude that

the interaction pattern present in the latter three clusters may be “favorable” for active com-

pounds. Conversely, two clusters (9 and 10) do not contain any active compounds (and this

number is significantly lower than in the input population), which could indicate that interac-

tion networks formed by members of this group are “unfavorable” for HIV-1 TAR binding

ligands.

We performed the same type of analysis for the dataset with lipophilic interactions

removed. These interactions are most common among all complexes, and we hypothesized

that they might introduce noise into the fingerprint data. If the lipophilic interactions are

removed, the separation of the clusters is even better (average silhouette score of 0.72 for nine

clusters, Fig 8C and 8D). We detected two clusters in which the ratio of active compounds was

significantly lower than in the input dataset (p-value� 0.05, clusters 1 and 6) and which did

not contain any active ligand. The ratio of active compounds in cluster 0 was 4.97%, which is

2.5 times higher than in the input dataset (however, this result is not statistically significant, p-

value = 0.08). This analysis enabled us to define nine groups of interaction patterns formed by

the ligands in complex with HIV-1 TAR, some of which are more “favorable” or “unfavorable”

for active ligands. Comparing the results of this analysis with the previous one, where all inter-

action types were present, we conclude that lipophilic interactions introduced noise to the fin-

gerprint data, making generated clusters fuzzier. On the other hand, it enabled a better

separation (more distinctive clusters) of active and inactive compounds. The moderate

PLOS COMPUTATIONAL BIOLOGY fingeRNAt—Tool for analysis of nucleic acid-ligand interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009783 June 2, 2022 16 / 35

https://doi.org/10.1371/journal.pcbi.1009783


enrichment observed in the active-containing clusters could be a consequence of the docking

program’s inability to recapitulate the correct binding pose of some active ligands. This short-

coming could be at least partially circumvented by using an optimized combination of docking

program and scoring function to capture the more realistic structure of the RNA-ligand com-

plex. Unfortunately, the availability of RNA-specific docking programs is currently very

limited.

Taken together, dimensionality reduction and clustering of fingerprints offer a high-

throughput method of analysis of structural data of complexes. As shown, it may be used to

define groups of ligands interacting with a receptor in a similar way and thus sharing similar

properties (such as biological activity or lack of thereof). This kind of analysis may also be used

in high-throughput virtual screening to generate a diversified set of compounds (in terms of

forming diverse interactions with the receptor of interest) for further testing for their biologi-

cal activity. Clustering fingerprint data may help select groups of compounds forming similar

interactions to the active compounds, thus having a higher probability of being biologically

active. It could be directly applied as a post-processing step of virtual screening with molecular

Fig 8. Interaction fingerprints used for visualization and clustering of predicted interaction patterns calculated for data from molecular docking of a set of active

and inactive compounds to HIV-1 TAR structure (PDB entry 1UTS). (A) Interaction fingerprints mapped on the 2D space using PCA with color-coded clusters for

the all-interactions dataset and (C) with lipophilic interactions removed. (B) Percentage of active compounds in each detected cluster compared to the value obtained

from the input dataset, calculated for all-interactions dataset and (D) obtained from the dataset with lipophilic interactions removed.

https://doi.org/10.1371/journal.pcbi.1009783.g008

PLOS COMPUTATIONAL BIOLOGY fingeRNAt—Tool for analysis of nucleic acid-ligand interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009783 June 2, 2022 17 / 35

https://doi.org/10.1371/journal.pcbi.1009783.g008
https://doi.org/10.1371/journal.pcbi.1009783


docking. Decomposition methods other than PCA may be used, leading to potentially mean-

ingful results (such as obtaining clusters enriched with molecules with a given property; see

S14 Fig). Contrary to the ligand-based metrics (such as the RMSD), the presented approach is

not limited to the same or structurally similar ligands.

Summary

Interactions between nucleic acids and ligands play a pivotal role in many biological processes.

Characterization of these interactions may elucidate our understanding of those phenomena

and help to explain the nature of molecular recognition. This knowledge may also be utilized

to modulate the binding process in the desired way, for example, by small molecule inhibitors

binding to RNA and preventing its interactions with a molecular partner. The presented soft-

ware tool, fingeRNAt, detects and characterizes interactions in nucleic acid-ligand complexes.

We showed its applications in different bioinformatics problems to help answer structural

biology and drug development questions. These included analyzing experimentally solved

RNA-small molecule ligand complexes deposited in the PDB database to determine the statis-

tics of non-covalent bond types and their features. We also proposed SIFts’ similarity as an

alternative measure to RMSD. Contrary to the RMSD, SIFt-based metrics do not depend on

the receptor conformation nor the ligand structure and focus on how well the interaction net-

work is recapitulated in the model compared to the reference complex. Besides, we presented

an application of molecular fingerprints for the clustering of complexes. Fingerprint data, pro-

cessed with multidimensional scaling and clustering, yields groups of complexes with similar

binding patterns. We demonstrated that these clusters might be enriched with compounds

with desired properties, such as biological activity, facilitating a high-throughput analysis of

the structure-activity relationship and visual analyses of multiple complexes. The accompa-

nying PyMOL plugin enables visualization of the detected interactions, an inspection of the

results, and preparation of publication-quality images.

fingeRNAt is relatively fast. Calculation of fingerprint type FULL for the redocking of gua-

nidine ligand to guanidine III riboswitch (RNA with 39 residues, ligand with 10 atoms, 100

ligand poses) took less than 7 seconds, while calculating the Tanimoto similarity matrix took

under 2 seconds (calculated on Ubuntu Linux 20.04 with Intel(R) Core(TM) i5-8400 CPU and

32 GB RAM; see S15 Fig and S19 Table for the detailed benchmark).

Applications of the fingeRNAt-generated SIFts significantly go beyond the ones described

in this manuscript. The program may be used to generate interaction profiles of nucleic acid

with ions, which may help understand ion binding preferences and enable comparing ion pro-

files between multiple structures. Moreover, fingeRNAt ideally fits the pipeline for analysis of

molecular dynamics trajectories, indicating forming and breaking non-covalent bonds during

a simulation. SIFts, paired with the bioactivity data for small molecules, may also be used to

develop predictive models for the molecular target of interest.

The roadmap of the software development includes detection of less frequently observed

types of non-covalent bonds, such as halogen-Pi [98], “mixed” type bonds, such as cation-

anion hydrogen bonds [99], or a separate class of anions binding to amino, imino, and

hydroxyl groups of RNA [100]. Recent publications suggest that these interactions may greatly

contribute to the molecular recognition process (for a recent review on “unusual” interactions,

see [101]). New levels of the resolution of the fingerprint will include differentiation of strong

and weak interactions (e.g., for hydrogen bonds). We also plan to define geometrical rules for

ions and water molecules to more reliably detect such interactions.

We are confident that fingeRNAt will be highly useful for the bioinformatics community

and will facilitate research on nucleic acid interactions.
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Materials and methods

The fingeRNAt method

fingeRNAt is a set of Python 3 programs for detection, classification, and analysis of interac-

tions formed within nucleic acid-ligand interactions. It consists of three main tools, each serv-

ing a different purpose.

fingeRNAt.py

fingeRNAt.py is a program for the detection and classification of non-covalent nucleic acid-

ligand interactions. It can be run from the command line or via the graphical user interface.

As an input, it takes a 3D structure of a receptor (RNA or DNA) and a file containing ligands,

which form a complex with this macromolecule. fingeRNAt.py accepts six types of ligand mol-

ecules: small molecules, proteins, metal cations, DNAs, RNAs, and LNAs (locked nucleic

acids) (Fig 9). The output is a fingerprint—a bit vector containing information on the declared

interactions detected between the receptor and the ligand.

Input. For all ligand types but metal cations, the program requires two input files: (i) a

receptor file, which is an RNA or DNA structure in the pdb format (one model per file), with

explicit hydrogens added, and (ii) a ligand file in sdf format, which may contain multiple struc-

tures. It is possible to calculate profiles of inorganic ions’ interactions with the receptor; in

such a case, only one input file containing an RNA or DNA structure in the pdb format should

be passed, and inorganic ions should be present within the same file. fingeRNAt will then treat

all inorganic ions as ligands and calculate SIFt for each residue—ion pair.

The receptor’s structure may contain water and metal cations, but any ligands or buffer

molecules must be removed prior to the analysis. Input ligand molecules must have assigned

desired protonation states and formal charges. Formal charges on the phosphate groups do

not need to be explicitly indicated in the receptor molecule, as fingeRNAt.py always treats OP1

and OP2 atoms as negatively charged anions.

Output. The output is a SIFt calculated for each nucleic acid-ligand pose, saved in a tab-

separated (tsv) file, with separate columns for each residue and interaction type. Optionally,

the human-readable file (also in tsv format) with detailed information on detected interactions

can also be created (-detail option), which includes a listing of all detected interactions, spatial

coordinates of the interacting partners, and distances between interacting atoms or aromatic

rings.

Fig 9. Combinations of receptor and ligand types accepted by the fingeRNAt.py.

https://doi.org/10.1371/journal.pcbi.1009783.g009
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Implementation. For each ligand in the input file, the program iterates over all nucleic

acid’s residues and detects interactions of a given type. If the interaction is detected, the respec-

tive bit in the fingerprint is set to “1” and to “0” otherwise. Interactions can be detected at

three resolutions: (i) low-resolution SIMPLE variant detects contacts between any atom of

each of nucleic acid residue and ligand; (ii) medium-resolution PBS variant detects interac-

tions between atoms of Phosphate, Base, and Sugar fragments of a nucleic acid residue and a

ligand; (iii) high-resolution FULL variant detects and classifies the type of non-covalent inter-

actions between a nucleic acid residue and a ligand; in this variant, fingeRNAt detects nine

hard-coded interaction types: (i) hydrogen bonds, (ii) halogen bonds, (iii) cation-anion inter-

actions, (iv) Pi-cation interactions, (v) Pi-anion interactions, (vi) Pi-stacking interactions, (vii)

metal cation-mediated: magnesium, potassium, sodium, and other metal cation-mediated,

(viii) water-mediated interactions, and (ix) lipophilic interactions. We distinguished magne-

sium, potassium, and sodium cations as those are the most prevalent metal cations in nucleic

acid complexes [102,103]; other metal cation-mediated interactions refer to interactions medi-

ated by not the aforementioned ions.

Additional interaction types can be defined by plugins encoded in a human-readable yaml

file. Interacting atoms or groups are defined by SMARTS patterns, separately for the receptor

and ligand. Interaction criteria are defined based on the distance, distance and angle, or dis-

tance and dihedral angles between atoms/groups. The sample plugin file contains a definition

of five interactions: (x) any interaction (any contact between nucleic acid and ligand), (xi)

polar interactions, i.e., hydrogen bonds without angle restraints, (xii) weak polar interactions,

i.e., weak hydrogen bonds without angle restraints, (xiii) n!π� interactions, (xiv) weak hydro-

gen bonds, and (xv) halogen multipolar interactions. Taken together, with the default configu-

ration of the fingeRNAt.py, it is possible to detect 15 different interaction types.

For the summary of fingerprints’ variants and features, see Fig 10. Geometrical criteria for

interactions were taken from the literature: ([56,104] for hydrogen bonds, [105] for halogen

bonds, [106] for cation-anion interactions, [107,108] for interactions with p-orbitals: Pi-stack-

ing and Pi-ion interactions, [109] for ion-mediated interactions, [110] for water-mediated inter-

actions, [62] for lipophilic interactions), [111] for n!π� interactions, and the PLIP algorithm

(protein-ligand interaction profiler, [30]). See S20 Table for the geometrical criteria summary.

Calculated fingerprints can be further post-processed by three wrappers: (i) ACUG for

reporting interactions for four nucleotide types of the nucleic acid (A, G, C, and U or T), (ii)

PuPy for reporting interactions for purines and pyrimidines, and (iii) Counter for reporting

the total number of occurrence of a given interaction type. The detailed description of parame-

ters accepted by the fingeRNAt is available in S21 Table.

fingeRNAt.py uses the OpenBabel Python module to parse input files and perform most

cheminformatics calculations (such as hydrogen bonds acceptors/donors detection) and the

RDKit Python module to detect aromatic rings and lipophilic atoms in ligands [57,58,112]. A

detailed description of the algorithm of fingerprints’ calculations is available in the program

manual in the code repository. The summary of detected molecular features together with

methods used can be found in S22 Table. If desired, the interaction definitions (such as dis-

tance threshold can be easily modified in a configuration file (for default values used in the

program, see S20 Table).

fingerDISt.py

In addition to the main program, we provide an auxiliary tool, fingerDISt.py, to calculate dif-

ferent types of distances between fingerprints. It supports eight metrics: Tanimoto coefficient,

Cosine, Manhattan, Euclidean, Square Euclidean, Half Square Euclidean, Soergel [113], and
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Tversky distances [91]. fingerDISt.py accepts SIFts’ tsv files generated by the fingeRNAt.py

and returns a tsv file with a distance matrix for the fingerprints (all vs. all).

PyMOL plugin

The PyMOL plugin offers a convenient method of visualization of interactions detected and

classified by the fingeRNAt program. After loading and processing the interaction file, the

plugin generates three groups of objects: (i) Interactions, with objects representing detected

interactions (Fig 11A); (ii) Receptor Preferences (aka Receptor’s Interactions Hot Spots), with

objects representing the spatial occurrence frequency of a given interaction type in receptor

atoms (Fig 11B); (iii) Ligand Preferences (aka Ligand’s Interactions Hot Spots), with objects

representing the spatial occurrence frequency of a given interaction type in ligand binding site

(Fig 11C). Occurrence frequency is represented by spheres with centers at the interacting

atoms, with the radius proportional to the ratio of interactions of a given type formed by the

given interaction site to the total number of all interactions. Additionally, an auxiliary object

representing only interacting residues of nucleic acid is created as well as a legend describing

the color code and line style used for visualization of different types of interactions and Inter-

actions Hot Spots (Fig 11D).

Known limitations

The analysis of the X-ray structures of protein-ligand complexes shows that both median, min-

imum, and maximum lengths of the hydrogen bond depend on the interacting partners and

Fig 10. Fingerprints’ variants available in the fingeRNAt.py and their output.

https://doi.org/10.1371/journal.pcbi.1009783.g010
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are correlated to the hydrogen donor strength. In the fingeRNAt program, we used the single,

fixed distance cut-off values for a given interaction type. For example, the default cut-off value

for all hydrogen bonds is 3.9 Å, and this distance does not depend on the interacting partners.

However, thanks to the plugin-ready architecture of the fingeRNAt, this limitation can be eas-

ily circumvented by defining custom hydrogen bond types for atoms/groups of interest and

with adjusted distance criteria.

The numbering of residues in the receptor structure must be unique (i.e., there should be

no residues with the same number); however, multiple nucleic acid chains are supported. Also,

fingeRNAt currently operates on strictly defined file formats (pdb for nucleic acid receptors

and sdf for ligands).

Datasets

Non-redundant RNA-small molecule ligand dataset. The non-redundant dataset of

complexes of RNA with small molecule ligands was based on the diversified dataset prepared

by Philips et al. [53]. Briefly, for RNAs with sequence identity >90%, complexed with the same

Fig 11. Three types of visualization generated by the PyMOL plugin. (A) Detected non-covalent interactions between nucleic acid and

ligand; (B) Receptor Preferences (aka Receptor’s Interactions Hot Spots), with objects representing the spatial occurrence frequency of a

given interaction type in receptor atom; (C) Ligand Preferences (aka Ligand’s Interactions Hot Spots), with objects representing the

spatial occurrence frequency of a given interaction type in ligand atoms; (D) a legend describing the color code and line styles used for

visualization of different types of interactions and Interactions Hot Spots.

https://doi.org/10.1371/journal.pcbi.1009783.g011
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small molecule ligand, only the structure with the highest resolution was used. Buffer compo-

nents and inorganic ions other than metal cations were removed. All complexes were

inspected visually, removing or correcting ligands with erroneous chemical structure, missing

atoms, or ambiguous stereochemistry. Ionization of the ligands was corrected according to the

literature data and was supported by pKa calculations with the Chemicalize platform [114].

The final dataset contains 207 RNA-ligand structures (see S23 Table).

Hydrogens were added to ligands using built-in algorithms (with the OpenBabel and

RDKit libraries) and the external software (PyMOL 2.6 h_add command and Chimera 1.14

addh command, while ligand was in complex with the RNA molecule [60]).

HIV-1 trans-activation response element activity dataset. To construct a dataset con-

taining information on active and inactive ligands towards human immunodeficiency virus

type 1 (HIV-1) trans-activation response element (TAR), an extensive literature search was

performed. Information about the chemical structures of molecules and their binding affinities

was collected and tabulated together [115–127]. Ligands, whose binding affinity was not

described precisely, or was calculated only on the grounds of cell-based assays, were not

included in the database. If the HIV-1 TAR sequence, for which the ligand’s activity is

described, differed from the sequence of experimentally solved structure 1UTS (taken arbi-

trarily) within the binding site or its proximity up to 8Å, the ligand was rejected. Structures of

the ligands were normalized, and a set of filters was applied to include only drug-like mole-

cules (molecular weight from 90 to 900 daltons, an octanol-water partition coefficient—SlogP

from -7 to 9, number of hydrogen bond acceptors up to 18, number of hydrogen bond donors

up to 18, number of rotatable bonds up to 18). Next, the PAINS (Pan-assay interference com-

pounds, [128]) filter was applied to exclude ligands for which observed activity was potentially

a result of interference with assays and not the interactions with the RNA. Finally, ligands

were assigned into one of two groups—active or inactive. The criterion was the activity

(expressed as KD, IC50, MIC, or Ki), and ligands with an activity parameter below 300 μM were

classified as active. Ligands with the activity parameter higher than 300 μM, or described by

the authors as “inactive”, were classified as inactive. This allowed us to ignore the methodologi-

cal differences associated with various activity parameters and use a binary class to compare

ligands indirectly. Afterward, to remove structurally similar compounds, both active and inac-

tive ligands were clustered using the k-medoids algorithm, and for each cluster, a representa-

tive ligand was selected. Data processing and analysis were performed using the KNIME 4.0.1

analytics platform [129]. As expected, the number of inactive compounds in the dataset was

low (10 compounds). To simulate the content of the real chemical library, where the percent-

age of active molecules is low, additional putative inactive ligands were generated using the

DUD-E methodology utilizing the dedicated web server (http://dude.docking.org/generate)

[130]. This well-established procedure enabled us to generate decoys with physicochemical

properties similar to the active compounds but with a different topology. First, for each active

ligand, a pool of decoys is generated, having a similar molecular weight, calculated logP, net

charge, number of rotatable bonds, and hydrogen bond donors and acceptors as the active

molecule. Next, a set of up to 50 most dissimilar molecules is selected from this pool (using

ECFP4 fingerprint Tanimoto similarity to the active molecule). This methodology, although

widely adopted, has its limitations: the possible presence of active compounds in a computa-

tionally generated set of decoys may cause an artificial underestimation of the enrichments of

active compounds in clusters [131]. The final dataset consisted of 30 active and 1478 inactive

compounds (for the plots showing a diversity of the generated dataset, see S13 Fig).

SIFt-based structure similarity assessment. The goal of the RNA-Puzzles round 23 was

to predict the structure of the Mango-III (A10U) aptamer bound to TO1-Biotin (PDB code:

6E8U, ligand structure: S16A Fig). RMSD values for submitted ligands were calculated for
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aligned RNA (PyMOL 2.5.0, function align with cycles = 0 parameter) using the LigRMSD

web server with FlexibleMatch option (allowing the matching of a pair of different atom and

bond types when the structure of the submitted ligand was slightly different from the reference

ligand; https://ligrmsd.appsbio.utalca.cl/, [94]). As some teams submitted only the fragment of

the ligand, for calculation of RMSD, we used the maximum common scaffold present in all

submissions—Thiazole Orange N-acetamide (SMILES: C[N+]1 = CC = C(CC2 = [N+](CC(N)

= O)C3 = CC = CC = C3S2)C2 = CC = CC = C12, S16B Fig). RMSD and INF (interaction net-

work fidelity) values for the RNA models were provided by the RNA-Puzzles’ organizers.

Molecular docking was performed with the rDock (version 2013.1; 400 poses were gener-

ated); molecular fingerprints were calculated for docked poses with RDKit hydrogens added

(-addH rdkit option of the fingeRNAt). RMSD was calculated for the complete ligand

structure.

The similarity of fingerprints was expressed as the Tanimoto coefficient (expressing the

fraction of interactions common for the reference structure and a model) and the Tversky dis-

tance (with commonly used values of α = 1 and β = 0 and thus representing the fraction of the

interactions in the reference structure which are recapitulated in a model) [91].

Computational protocols

Calculations of fingerprints. In all case studies presented in this work, the FULL variant

of interaction fingerprint was used with the -detail parameter, and its outputs were used for

further calculations.

Molecular docking. The rDock docking program (version 2013.1) was used with dock_-

solv desolvation potential and a docking radius set to 10 Å [50]. For docking of small molecule

ligands to HIV-1 TAR RNA, the 1UTS structure was used [117]; macromolecules were prepro-

cessed with the Chimera dockprep pipeline [60,132]. Fingerprint type FULL was calculated for

the best-scored pose of small molecule ligands docked to HIV-1 TAR RNA. Redocking data for

144 non-redundant RNA-ligand complexes were taken from the supplementary materials of

[54] https://github.com/filipsPL/annapurna-additional/tree/master/docking, docking with the

rDock, starting from the reference ligand structure, with 100 generated poses per complex).

Analysis of fingerprints. Fingerprint analyses and visualization were performed in the

jupyter notebook with the Python 3 kernel. Principal Component Analysis (PCA) calculation

and k-means clustering were performed using the scikit-learn Python module [133]. Optimal

clustering parameters were determined by probing a series of cluster numbers and evaluating

the quality of clustering with scores: Silhouette score, Calinski-Harabasz score, and Davies-

Bouldin score (see S17 Table). Statistical tests were performed in SciPy using the t-test for the

means of two independent samples of scores, and the two-tailed p-values were reported [134].

Clustering of chemical structures was performed in the KNIME environment, using RDKit

fingerprint with k-medoids algorithm (10 clusters), as described in [54]. Clusters containing

the same chemical classes of molecules (i.e., clusters containing amino acids, amino sugars,

and other molecules) were merged into groups (named”amino acids”, “amino sugars”, and

“other”, respectively).

Software availability. The fingeRNAt program is freely available and distributed under

the open-source GPL-3.0 License. It can be downloaded, along with a manual, collection of

helper utilities, and sample data from https://github.com/n-szulc/fingeRNAt. The program

was extensively tested on Python 3.6, 3.7, 3.8, and 3.9 under Ubuntu Linux (18.04, 20.04, and

21.10) and macOS (macOS Catalina 10.15). The supporting data presented in the manuscript

along with the code used for the analysis can be found at https://github.com/n-szulc/

fingeRNAt-supplementary.

PLOS COMPUTATIONAL BIOLOGY fingeRNAt—Tool for analysis of nucleic acid-ligand interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009783 June 2, 2022 24 / 35

https://ligrmsd.appsbio.utalca.cl/
https://github.com/filipsPL/annapurna-additional/tree/master/docking
https://github.com/n-szulc/fingeRNAt/
https://github.com/n-szulc/fingeRNAt-supplementary
https://github.com/n-szulc/fingeRNAt-supplementary
https://doi.org/10.1371/journal.pcbi.1009783


Supporting information

S1 Text. Interaction statistics for seven chemical groups of ligands: alcohols and polyols,

nucleosides and nucleoside derivatives, amino acids, amino sugars and aminoglycosides,

aliphatic amines, heterocycles, and others.

(PDF)

S1 Fig. The number of distinct RNA residues forming a given interaction. Counts for Pb,

Mn, and Sr cations, which were present only in a single complex each, were removed for clar-

ity.

(PNG)

S2 Fig. Ligand clindamycin (PDB ID: 4V7V) with hydrogens added with the fingeRNAt

internal function using RDKit library (orange spheres), OpenBabel library (magenta), and

the external software: PyMOL (cyan) and Chimera (light green).

(PNG)

S3 Fig. Percentage of structures with ligands having at least one of given molecular fea-

tures. HBA—hydrogen bond acceptor; HBD—hydrogen bond donor.

(PNG)

S4 Fig. Statistics of interactions formed in macromolecular complexes in the dataset by

Padroni et al. (A) Total number of interactions detected for RNA-ligand complexes (analyzed

with our software fingeRNAt); (B) the percentage of RNA-ligand complexes with at least one

occurrence of a given interaction (analyzed with our software fingeRNAt); (C) the number of

interactions for RNA-ligand complexes presented by Padroni et al. in their original manu-

script.

(PNG)

S5 Fig. Statistics of the structures in the analyzed dataset: (A) structures count depending on

the experimental method used; (B) resolution histogram for the structures determined by the

X-ray diffraction (0.25 Å bin size); (C) number of structures with resolution below the given

threshold.

(PNG)

S6 Fig. Statistics of interactions formed in macromolecular complexes for structures deter-

mined with a given resolution and the structures determined by NMR. (A) Total number of

interactions detected for RNA-ligand complexes; (B) the percentage of RNA-ligand complexes

with at least one occurrence of a given interaction.

(PNG)

S7 Fig. Histograms of bond lengths for non-covalent interactions in a dataset of experi-

mentally solved RNA-ligand structures. The minimum and maximum cut-off values for

each interaction are marked with gray dashed lines. Histogram bin width is set to 0.2 Å.

(PNG)

S8 Fig. The RNA-Puzzles round 23 solution and the best scored model. (A) The RNA-Puz-

zles round 23 solution and (B) the model submitted by the Das group (Das_7); (C) both com-

plexes overlayed and (D) ligands.

(PNG)

S9 Fig. Tanimoto and Tversky similarity of interaction fingerprints calculated for com-

plexes submitted to the RNA-Puzzles round 23.

(PNG)
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S10 Fig. Relationship between RMSD of ligand and various measures of the interaction fin-

gerprint similarity/distance, calculated for the data from the redocking experiment.

(PNG)

S11 Fig. Similarity vs. RMSD of ligands for structures from the RNA-Puzzles collective

experiment round 23, calculated for three different resolutions of fingerprints (SIMPLE,

PBS, and FULL). Ligand RMSD was calculated for the TO1 N-acetamide substructure com-

mon in all submitted models.

(PNG)

S12 Fig. Distribution of R2 values (left) and Spearman rank correlation values (right) between

RMSD and various metrics of SIFts similarities (y axis), calculated for a redocking experiment

of 144 RNA-ligand complexes.

(PNG)

S13 Fig. The heatmaps (upper row) and the histogram (lower row) of similarity of all ligand

pairs in the HIV-1 dataset expressed as Tanimoto coefficient (ranging from 0 to 1, the higher

the value, the more similar are the ligands) (A) for the subset of active compounds and (B) the

complete dataset.

(PNG)

S14 Fig. Interaction fingerprints calculated for data from molecular docking of a set of

active and inactive compounds to HIV-1 TAR RNA structure 1UTS mapped on the two-

dimensional space, with lipophilic interactions removed. Data was mapped using (A) Trun-

catedSVD, (B) FastICA, (C) KernelPCA, and (D) MDS.

(PNG)

S15 Fig. FULL fingerprint calculation times for docking poses of small molecule ligands of

various sizes (guanidine, ibuprofen, and sildenafil) to guanidine III riboswitch (RNA with

39 residues). The fingeRNAt executed as a python script and as a singularity image. The num-

ber of poses analyzed was 10, 100, 500, 1000, and 5000 poses. The benchmark was performed

on Ubuntu Linux 20.04 with Intel(R) Core(TM) i5-8400 CPU and 32 GB RAM.

(PNG)

S16 Fig. Structures of small molecule ligands used in modeling. (A) Structure of TO1-Biotin

solved in complex with Mango-III (A10U) aptamer (6E8U), and (B) structure of TO1 N-acet-

amide used for RMSD calculation for submitted models.

(PNG)

S1 Table. Comparison of the features of the fingeRNAt software (this manuscript) and

similar programs (Arpeggio, PLIP2021, and ProLIF).

(PDF)

S2 Table. The total number of interactions detected for RNA-ligand complexes and the

number of RNA-ligand complexes with at least one occurrence of a given interaction.

(PDF)

S3 Table. Statistics of hydrogen bonds detected in macromolecular complexes using vari-

ous methods—without (the default method) and with taking the position of hydrogen

atoms into account (hydrogens added with OpenBabel, RDKit, or PyMOL). (A) Total num-

ber of interactions detected for RNA-ligand complexes; (B) the number and (C) the percentage

of RNA-ligand complexes with at least one occurrence of a given interaction.

(PDF)
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S4 Table. Statistics of complexes and detected Pi-stacking interactions in the RNA-ligand

dataset for ligands with or without at least one aromatic ring.

(PDF)

S5 Table. Statistics of complexes and detected hydrogen bonds in the RNA-ligand dataset

for ligands with or without at least one hydrogen bond donor and acceptor.

(PDF)

S6 Table. Statistics of complexes and detected cation-anion interactions in the RNA-ligand

dataset for ligands with or without at least one charged atom.

(PDF)

S7 Table. Statistics of the lengths for observed non-covalent interactions in a dataset of

experimentally solved RNA-ligand structures.

(PDF)

S8 Table. Statistics of hydrogen bonds formed by different RNA atoms.

(PDF)

S9 Table. Total number of hydrogen bonds formed by the nucleotides and the percentage

of all hydrogen bonds formed by the given nucleotide using a given face of the nucleobase

(H = Hoogsteen, WC = Watson-Crick, S = sugar).

(PDF)

S10 Table. Statistics of lipophilic interactions formed by different RNA atoms.

(PDF)

S11 Table. Statistics of Pi-anion interactions formed by different RNA groups (when RNA

is an anion acceptor) and atoms (where RNA is an anion donor).

(PDF)

S12 Table. Statistics of halogen bonds formed by different RNA atoms.

(PDF)

S13 Table. Statistics of all types of interactions formed by different RNA atoms and

groups.

(PDF)

S14 Table. Linear least-squares regression R2 values calculated for parameters of structures

from the RNA-Puzzles collective experiment and redocking experiment.

(PDF)

S15 Table. Quality of models submitted to the RNA-Puzzles competition round 23. The

three best values in a given category are highlighted in green. Due to errors in the structure of

the ligand, it was not possible to calculate ligand RMSD for models submitted by the Xiao
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