
RESEARCH Open Access

Heterozygous genome assembly via binary
classification of homologous sequence
Paul M Bodily*, M Stanley Fujimoto, Cameron Ortega, Nozomu Okuda, Jared C Price, Mark J Clement, Quinn Snell

From The 11th Annual Biotechnology and Bioinformatics Symposium (BIOT-2014)
Provo, UT USA. 11-12 December 2014

Abstract

Background: Genome assemblers to date have predominantly targeted haploid reference reconstruction from
homozygous data. When applied to diploid genome assembly, these assemblers perform poorly, owing to the
violation of assumptions during both the contigging and scaffolding phases. Effective tools to overcome these
problems are in growing demand. Increasing parameter stringency during contigging is an effective solution to
obtaining haplotype-specific contigs; however, effective algorithms for scaffolding such contigs are lacking.

Methods: We present a stand-alone scaffolding algorithm, ScaffoldScaffolder, designed specifically for scaffolding
diploid genomes. The algorithm identifies homologous sequences as found in “bubble” structures in scaffold
graphs. Machine learning classification is used to then classify sequences in partial bubbles as homologous or non-
homologous sequences prior to reconstructing haplotype-specific scaffolds. We define four new metrics for
assessing diploid scaffolding accuracy: contig sequencing depth, contig homogeneity, phase group homogeneity,
and heterogeneity between phase groups.

Results: We demonstrate the viability of using bubbles to identify heterozygous homologous contigs, which we
term homolotigs. We show that machine learning classification trained on these homolotig pairs can be used
effectively for identifying homologous sequences elsewhere in the data with high precision (assuming error-free
reads).

Conclusion: More work is required to comparatively analyze this approach on real data with various parameters
and classifiers against other diploid genome assembly methods. However, the initial results of ScaffoldScaffolder
supply validity to the idea of employing machine learning in the difficult task of diploid genome assembly.
Software is available at http://bioresearch.byu.edu/scaffoldscaffolder.

Background
Efficient and accurate genome assemblies facilitate effective
data-driven solutions in fields such as personalized medi-
cine, genetic engineering, and even next-generation digital
information storage [1]. A genome contains all of the
genetic information needed for an organism to live and
represents a trove of data for seeking to understand the
complex mechanisms governing all life. Proper analysis of
these data presupposes a correctness of the reconstructed
genomic sequence, which continues to motivate the need
for assembly algorithms which produce assemblies from

next-generation sequence data with greater completeness
and correctness.
Genome assemblers have traditionally been designed

to assemble haploid genomes [2-4]. This was motivated
in the first place by the vast array of monoploid bacter-
ial genomes being sequenced and then later on by the
ease with which the two haplotypes of many diploid
species could be made homogenous or homozygous
enough (via inbreeding) to nearly approximate a mono-
ploid specimen. Thus initial de novo assembly algo-
rithms were designed to essentially ignore any variation
that may have existed between haplotypes.
Several attempts have been made to assemble highly-

polymorphic genomes [5-9]. Obtaining a homozygous
* Correspondence: paulmbodily@gmail.com
Computer Science Department, Brigham Young University, 3361 TMCB PO
Box 26576, Provo, UT, 84602-6576, USA

Bodily et al. BMC Bioinformatics 2015, 16(Suppl 7):S5
http://www.biomedcentral.com/1471-2105/16/S7/S5

© 2015 Bodily et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://bioresearch.byu.edu/scaffoldscaffolder
mailto:paulmbodily@gmail.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

diploid specimen can in some cases make the specimen
inviable, not to mention the time, resources, and ethical
concerns that are also often inherent in the inbreeding
process. In all of these cases, traditional assembly techni-
ques are poorly equipped to handle the challenges posed
by heterozygosity [10]. Of increasing importance are the
questions targeting minute genetic variations that are ulti-
mately responsible for a phenotype or disease in popula-
tions as well as individuals. These emphases issue a
renewed challenge to develop algorithms to produce high-
resolution diploid genomes, including phased haplotypic
variation (phasing is the process of ensuring that variants
on the same haplotype are assembled together).
There exist three primary classes of approaches to this

problem. The first approach is to solve haplotype phasing
problem, which takes (unphased) haplotype data (e.g.,
SNP chip data) and generates phased haplotypes using
parsimony or maximum-likelihood estimation methods
[11-13]. In doing so, population data may be used to esti-
mate haplotype frequencies, as well as to impute ungeno-
typed loci [14].
A second common approach is to address the challenge

in terms of the haplotype assembly problem [15] or simply
the individual haplotyping problem [16], which takes reads
as input in order to first call variants and then phase them.
Variants are generally called through mapping or aligning
reads (based on sequence similarity) to a previously
assembled reference sequence for the individual’s species
[17-20]. Most methods generally do not involve assembly
(see [21] for an exception), but rather determine small-
scale variation based on loci where the aligned reads sug-
gest a different nucleotide than that present in the refer-
ence [22,23]. The primary advantage of the haplotype
assembly approach is its use of a reference to ensure
access to all regions of a complete, highly manicured refer-
ence. However, results from even just the mapping phase
vary widely both by algorithm and based on parameter set-
tings [24]. Mappability is also affected by sequencing
errors and heterozygosity [25]. Mapping to a reference
also fails to capture large-scale rearrangements.
Because of the problems inherent in mapping and in

using a reference, the problem of true de novo diploid
genome assembly, meaning the complete assembly of two
haplotypes from sequenced reads without the use of a
reference, has begun recently to see increased emphasis
(e.g., see Discovar [26] and Hapsembler [27]). We present
ScaffoldScaffolder, a diploid genome assembly approach
which includes a newly developed scaffolding module to
resolve haplotype-specific scaffolds.

Genome assembly background
All DNA sequencing technologies to date have imposed
constraints on the length of fragments that can be
sequenced. This then requires the genome to be broken

into small pieces and then algorithmically reassembled
again from the sequenced fragments. There are two
broad families of assembly or contigging algorithms: those
which employ an Overlap Layout Consensus (OLC) and
those which employ a de Bruijn Graph [4]. OLC algo-
rithms, such as Newbler (454 Life Sciences), attempt to
reconstruct larger sequences (termed contigs) by maxi-
mally overlapping reads. This approach generally pro-
duces more complete, accurate assemblies, but is O(n2),
meaning the runtime increases exponentially with the
size of the input data. De Bruijn Graph assemblers, such
as SOAPdenovo [28], are O(n), meaning their run-time
increases linearly with the size of the input data, however,
the results are often more fragmented than OLC assem-
blers. This speed-accuracy tradeoff is a non-trivial deci-
sion in each de novo assembly.
OLC assemblers have historically been favored as well

for their flexibility with handling errors or heterozygosity
(i.e., variation between haplotypes). Whereas de Bruijn
Graph assemblers must sacrifice a great deal in effi-
ciency in order to consider mismatches or insertion/
deletions (indels) in an overlapped read, OLC assem-
blers can be parameterized to efficiently align mis-
matched regions. Errors and heterozygosity can thus be
easily ignored by simply accepting the most common
nucleotide at a given locus from those present in the
pileup (hence consensus).
Neither assembly approach is natively designed to be

able to resolve repetitive sequence or to overcome defi-
ciencies in data sampling. Thus, regardless of the
method used, the contigging algorithm produces a set of
contigs that is considerably larger than the haploid
number that would be ideally recovered. To reduce the
set of sequences further, contigs can be positioned and
oriented relative to one another using long “anchoring”
fragments. These paired-read fragments, whose length is
approximately known, are too long to be sequenced end
to end, but short snippets can be sequenced from either
end. Inasmuch as these end sequences find matches in
the contig set, the paired-read fragment can “anchor”
two contigs at an approximate distance and in a specific
relative orientation (see Figure 1). This process is
termed scaffolding or meta-contigging.
The set of contigs and their scaffoldings can be mod-

eled as a graph from which must be elucidated the subset

Figure 1 Paired Read. Shown is a 400-bp insert whose ends have
been sequenced. When aligned to the contig set, the sequenced
ends aligned at specific locations in Contigs A and B, allowing
inference about the relative orientation of and distance between
the two contigs.

Bodily et al. BMC Bioinformatics 2015, 16(Suppl 7):S5
http://www.biomedcentral.com/1471-2105/16/S7/S5

Page 2 of 10

of non-conflicting, highly-supported scaffoldings that
represent the correct genomic reconstruction. The graph
is made complex by an array of confounding effects
including: inaccurate contig assembly; erroneous scaf-
folding evidence deriving from error-prone read sequen-
cing; the collapsing of highly-repetitive DNA elements
into single contigs; possible sample contamination; insuf-
ficient data sampling; and insufficient paired read
evidence.

Methods
Our method involves two steps: 1. assembling reads so
as to preserve haplotype-specificity in the assembled
contig set and 2. scaffold contigs into linear haploid
scaffolds using a modified scaffolding algorithm.

Assembly
In cases where the haplotypic variation is significant, het-
erozygosity can be preserved by requiring very stringent
overlaps in the OLC process. As overlap stringency para-
meters are often relaxed in order to merge haplotypes,
requiring near perfect overlaps will disallow the merging
of haplotypes in favor of more accurate, complete diploid
contig assembly. This is essentially equivalent to assum-
ing that haplotypes represent different–though similar–
molecules (which they do), and should therefore assemble
separately. In theory this optimization lends itself nicely
to using de Bruijn graph assemblers which perform opti-
mally when perfect overlaps are assumed.
Imposing more strict overlap requirements during

assembly produces a contig set which contains a more
biologically accurate representation of the genome: a set
of contigs which represent sequence that is homozygous
between haplotypes (homotigs) and a set of contigs
which represent sequence unique to one haplotype in
regions where the genome is heterozygous (heterotigs).
Some of the homotigs may represent repetitive
sequence. Nonetheless, by ensuring coverage that is suf-
ficiently high, we may assume that by this approach,
every sequence in the genome (whether it belongs to a
homozygous or heterozygous region) is assembled in
tact in our set of contigs.

Scaffolding
We need to state a few more assumptions about the
dataset at this point. First, to simplify the problem, we
will assume that there are no large-scale rearrangements
between haplotypes. Although such rearrangements hap-
pen and several can be algorithmically identified [29],
our proposed solution assumes that variation between
haplotypes is small-scale. Essentially this allows us to
assume that heterozygous sequence that is sequentially
similar will be reconstructed in the same orientation at
the same position on opposite haplotypes.

This leads to our second assumption, which is that for
each heterotig a in the contig set (deriving from haplo-
type A), there exists exactly one homologous heterotig
b, representing the reconstructed sequence on haplotype
B opposite a. We will say that two such heterotigs a
and b represent a homolotig pair.
Third, we will assume that each homolotig pair exists

in the larger context of a heterozygous “bubble” [30,31],
meaning that both heterotigs in the pair are flanked by
a common homotig on their 5’ end and by a different
common homotig on their 3’ end (see Figure 2). This
assumption is based on the general practice of assembly
algorithms to discontinue contig elongation when the
read pileup is suggestive of two possible reconstructive
paths, as would happen at the junction between homo-
zygous and heterozygous sequence. We assume that as
long as contiguous sequence is homologous it will be
constructed into a single homotig. Where there is het-
erozygosity, there will be a bifurcation into two homolo-
gous heterotigs. Where there is no longer variation
between haplotypes, the reconstruction of the two hap-
lotypes will re-merge as a single homotig, thus complet-
ing the bubble.
The diploid heterozygous genome assembly problem

thus takes on the form of elucidating from the noisy,
bidirected scaffold graph an interleaving pattern of sin-
gle homotigs and homolotig pairs. It should be noted
that contigs representing repetitive DNA elements pose
a particularly difficult challenge and where such contigs
are identified (both by contributive read coverage and
by abnormally high total vertex degree in the scaffold
graph), we do not attempt to include them in the recon-
structed genome.

ScaffoldScaffolder
ScaffoldScaffolder was originally developed as a greedy,
stand-alone scaffolding algorithm [32]. In expanding its
functionality, we have introduced a module capable of
scaffolding diploid heterozygous genomes which have
been assembled according to the above-mentioned cri-
teria. The algorithm (implemented in Java) consists of 6
principal steps (see Figure 3):

1. Input. The algorithm takes as input a contig set in
FASTA format and a set of paired read files in
FASTA, FASTQ, or several other formats. Alterna-
tively, ScaffoldScaffolder can operate given a FASTA
contig file and a set of alignment output files in
SAM, Bowtie, or BLAST output formats. If this is the
case, the algorithm will skip the Read Alignment step.
2. Read alignment. Paired reads are aligned to the
contig set using any read alignment algorithm which
outputs in one of the following formats: SAM, Bow-
tie, or Blast (default aligner is Bowtie).

Bodily et al. BMC Bioinformatics 2015, 16(Suppl 7):S5
http://www.biomedcentral.com/1471-2105/16/S7/S5

Page 3 of 10

3. Scaffold graph construction. A scaffold graph, as
described in the Background section is created and
edges are created and weighted from evidence in the
paired read alignment output.
4. Binary classification of homologs. A binary classi-
fier is trained to identify homolotig pairs as found in
“perfect” or easily recognizable bubbles. This classi-
fier is then used to identify additional homolotig
pairs in “imperfect” bubbles.
5. Bubble chain elucidation. Remaining scaffoldings
are considered greedily for linking bubbles together
into chains. Paired reads from larger insert libraries
are used to phase haplotypes and further conjoin
scaffolds.

6. Linear haploid scaffold formation. The algorithm
outputs two FASTA files, each containing one of
two linear, phased haplotypes from each scaffold.
Several other metadata files are optionally printed to
provide information used in the scaffolding process.

We will consider each of these steps in more detail.
Input
The minimum input required to run ScaffoldScaffolder is
a FASTA file containing stringently assembled contigs and
a “reads info file,” which is a file formatted identical to the
SOAPdenovo configuration file and contains information
for each paired read library including the file locations, the
average insert size, and an order in which the library is to

Figure 2 A Heterozygous Bubble. Homotigs are formed from homozygous sequence, where read pileups from both haplotypes have the same
consensus sequence. Heterotigs are formed from heterozygous sequences, where read pileups from each haplotype have a unique consensus
due to variation. Inasmuch as two heterotigs are homologous, we say that they form a homolotig pair.

Figure 3 ScaffoldScaffolder Overview.

Bodily et al. BMC Bioinformatics 2015, 16(Suppl 7):S5
http://www.biomedcentral.com/1471-2105/16/S7/S5

Page 4 of 10

be used for scaffolding. The paired read files themselves
can be in nearly any format because for the read alignment
step, ScaffoldScaffolder uses a user-configured third-party
read aligner to align the reads. All that matters is that fol-
lowing the read alignment step, ScaffoldScaffolder will
look for output alignment files in one of three formats:
SAM, Bowtie or Blast. Alternatively, the user can indicate
the alignment files already exist and ScaffoldScaffolder will
not attempt to reperform the alignment.
Read alignment
When aligning the paired reads to the contigs, Scaf-
foldScaffolder allows the user to specify which alignment
algorithm should be used and with which parameters. A
“mapper default” configuration file is provided which
can be easily edited to create several custom alignment
configurations for one or more alignment algorithms.
Each configuration is given a user-specified identifier
that can then be easily selected at runtime. The default
configuration file includes configurations for Bowtie,
Bowtie2, GSnap, and BLASTn (one of which must be
separately installed prior to use by ScaffoldScaffolder),
however any preferred mapper can be configured, pro-
vided that it outputs in one of the accepted formats.
A flag allows the user to instruct ScaffoldScaffolder to
use “existent mappings,” which not only allows the
scaffolder to run on alignment files, but has the added
benefit of allowing users to run ScaffoldScaffolder
repeatedly with different parameterizations without ever
having to rerun the read alignment step. ScaffoldScaf-
folder is not enabled to run on multiple processors.
However, a ‘procs’ parameter can be set to allow third-
party algorithms that are so enabled to run on the input
number of threads.
Scaffold graph construction
On conclusion of the read alignment phase, ScaffoldS-
caffolder initializes an empty graph containing a vertex
for each contig. Then for each paired read for which
both ends had a reported alignment, a new weighted
edge is created or if the corresponding edge already
exists, its weight is incremented (each edge is bidirected
in that it defines an orientation for both contigs). The
final scaffolding distance is the computed average of the
distances suggested by the alignment of each supporting
paired read. ScaffoldScaffolder allows for ends to be
multiply mapped, but it is suggested that multiply-
mapped reads be suppressed by the alignment algorithm
in order to more effectively manage memory. In creating
the scaffold graph, an optional flag allows the user to
instruct ScaffoldScaffolder to output a metafile contain-
ing the status of how each paired read was used in the
scaffold graph. Each paired read status includes informa-
tion about if and where each end mapped, whether the
pair was used to link two contigs, and whether both
ends mapped within a contig (and if so, the distance

between the ends). This file is formatted similar to the
PairStatus file of the 454 Newbler assembler.
Binary classification of homologs
Once the graph is constructed, ScaffoldScaffolder seeks
to algorithmically select a subset of contig scaffoldings
according to one of two algorithms. The first is a simple
greedy algorithm which includes edges in the final sub-
set provided they do not conflict with previously
included edges. This algorithm proceeds iteratively in
that only a single rank of libraries is considered at each
iteration of the greedy algorithm. It is also important to
note that at each iteration, a contig may be scaffolded
only once in the 5’ direction and once in the 3’ direc-
tion. Thus, a conflicting edge from a contig is any edge
that would scaffold that contig in a direction in which it
has already been scaffolded. For this reason, ScaffoldS-
caffolder works optimally when at least one of the
libraries has small insert size (500 bp or smaller) in
order to resolve more local contig scaffoldings prior to
attempting larger-scale scaffoldings. The greedy algo-
rithm makes no attempt to reconcile homologous
sequence, but rather greedily chooses reconstructions
where multiple possibilities exist. For this reason, the
greedy algorithm is not designed to be used on hetero-
zygous diploid datasets.
ScaffoldScaffolder is equipped with a second scaffold

graph reduction algorithm, called the “bubble finder
solution” (BFS), which is designed specifically to scaffold
diploid contig sets. The BFS begins by algorithmically
searching the scaffold graph for bubbles. In the context
of the scaffold graph, we will differentiate between a
“perfect” and an “imperfect” bubble. A perfect bubble is
defined as two contigs a and b (presumably a homolotig
pair), each of which have a single candidate scaffolding
(i.e. no conflicting edges) to a common contig in both
the 5’ and 3’ directions (see Figure 3). That is, contig a
has a single scaffolding (a, c1) in the 5’ direction of a
and a single scaffolding (a, c2) in the 3’ direction; contig
b has a single scaffolding (b, c1) in either the 5’ or 3’
direction of b and a single scaffolding (b, c2) in the
opposite direction. Contigs c1 and c2 (presumably homo-
tigs) must have identical orientations in each of the scaf-
foldings in which they appear and are additionally
required by our definition of a perfect bubble to have
no conflicting scaffoldings with these scaffoldings. Note
that two perfect bubbles can share a homotig, but can-
not otherwise overlap. A perfect bubble is therefore a
construct in our scaffold graph model which in all prob-
ability represents a true heterozygous bubble, referring
again to the sequence of homozygous, heterozygous,
homozygous regions. (For both the greedy and BFS
algorithms, a minimum support may also be specified
for scaffold graph edges, below which an edge will
essentially be considered nonexistent. The default is 2.)

Bodily et al. BMC Bioinformatics 2015, 16(Suppl 7):S5
http://www.biomedcentral.com/1471-2105/16/S7/S5

Page 5 of 10

There are several characteristic features which we expect
to be consistent for all true bubbles, particularly features of
the pair of homozygous heterotigs. These include the ratio
of the heterotig lengths, the ratio of heterotig sequence
depths, some normalized measurement of their overall
sequence similarity, and the ratio of each sequence depth
to the average sequence depth for all contigs [30]. Table 1
gives more precise definitions to each of these features as
well as their expected values both for a valid homolotig
pair and for a random pair of non-homologous contigs.
Note that in order to calculate sequence depth ratios, the
user must provide ScaffoldScaffolder with a contig depth
file detailing the sequence depth for each contig. In the
absence of this information, the algorithm will still proceed,
but the power of the classifier will be limited. Sequence
similarity for two contigs is computed as a function of the
BLASTn results from aligning the two sequences and thus
BLASTn must be installed as a prerequisite to using this
module. This then represents a feature vector on which we
can attempt to classify true versus false homolotig pairs.
We assume therefore that perfect bubbles accurately

predict homolotig pairs. ScaffoldScaffolder then trains a
binary classifier on homolotig pairs as found in perfect
bubbles using our defined feature vector. The algorithm
implements the Weka machine learning framework, allow-
ing the user to specify at runtime any one of the classifiers
in the weka.classifiers.functions package, including both a
backpropagation multilayer perceptron classifier and a
number of support vector machine implementations.
Bubble chain elucidation
There are presumably many partial or “imperfect” bub-
bles in the scaffold graph, which are either missing edges
or which have conflicting edges as a result of insufficient
data, erroneous alignments, or other biological ambigu-
ities. We can then consider each of these imperfect

bubbles in decreasing order of “perfectness” and use our
classifier to predict whether or not these latter bubbles
represent true heterozygous bubbles as indicated by
whether or not the purported homolotig pair is classified
as valid. An imperfect bubble, any of whose constituent
edges either conflicts with already included edges or is an
already included edge, is disallowed from being classified
a true bubble. This guarantees that the resulting subgraph
consists entirely of bubbles and/or chains of bubbles (i.e.,
bubbles which share common homotigs).
Remaining scaffoldings are then considered greedily

(as defined by the simple greedy algorithm above) for
linking bubbles and remaining contigs together into
chains. As with the greedy algorithm, this algorithm
proceeds iteratively, with bubbles being formed and pre-
dicted in the first iteration. All iterations past the first
use paired reads to link existing bubble chains and scaf-
folds into larger chains. At each iteration, paired reads
mapping within chains are used to phase homolotig
pairs so that the final product is a set of phased bubble-
chain scaffolds.
Linear haploid scaffold formation
From phased bubble chains, ScaffoldScaffolder outputs
two FASTA files, each containing one of two linear,
phased haplotypes for each scaffold. A linear, phased
haplotype is constructed by considering homotigs
together with heterotigs from one of the phased haplo-
types. ScaffoldScaffolder can optionally output the
bubble chain graph in DOT format (viewable with
Graphviz) and an additional parameter will additionally
display excluded edges as dashed edges.

Quantitative analysis
We developed four methods for internally assessing the
performance of our homolotig classifier and subsequent

Table 1 Feature values for classification of homologous contig pairs

Feature Description Definition Expected Value for Homologous Pair Expected Range for
Non-Homologous Pair

Length Ratio
min(seqALen, seqBLen)
max(seqALen, seqBLen)

≈1 0 < × ≤ 1

Depth Ratio
min(seqADep, seqBDep)
max(seqADep, seqBDep)

≈1 0 < × ≤ 1

% Identical Matches pidentFromBLASTnAlignment ≈100 0 ≤ × ≪ 100

% Length Alignment
lengthFromBLASTnAlignment

min(seqALen, seqBLen)
≈100 0 ≤ × ≪ 100

Seq A Depth Proportion to Mode
seqADep

ModeOfAllSequencesDepths
≈ AverageHaploidSequenceDepth

ModeOfAllSequencesDepths
0 < x

Seq B Depth Proportion to Mode
seqBDep

ModeOfAllSequencesDepths
≈ AverageHaploidSequenceDepth

ModeOfAllSequencesDepths
0 < x

Bodily et al. BMC Bioinformatics 2015, 16(Suppl 7):S5
http://www.biomedcentral.com/1471-2105/16/S7/S5

Page 6 of 10

phasing algorithm. In defining these methods, we use
the following definitions. Let x represent an arbitrary
read. Let c simultaneously represent an arbitrary contig
as well as the set of reads {x | × ∈ c} that constitute c.
For synthetic haplotypes A and B, let A and B be the set
of reads belonging to synthetic haplotypes A and B
respectively (i.e., A = {x | × ∈ A} and B = {x | × ∈ B}).
Let L(A) represent the length of synthetic genome A
(note that in our analyses, L(A) = L(B)). Let g represent
an arbitrary set of contigs that are phased together (i.e.,
g = {c | c ∈ g}). All analyses were performed for contigs
of length greater than 100 bases.

Contig sequencing depth
The contig sequencing depth refers to the average num-
ber of reads that contribute to the consensus at each
position in the contig. Reads contributing to homotigs
derive from two haplotypes and should therefore reflect
a diploid sequencing depth. Reads contributing to het-
erotigs derive from only one of the two haplotypes and
should therefore reflect a haploid sequencing depth. To
the extent that predicted heterotigs have a greater-than-
haploid sequencing depth, we would suspect a failure of
haplotype segregation during assembly. We plot the
density of sequencing depth values for three classes of
contigs: heterotigs used in training, for contigs classified
as heterotigs, and for contigs classified as homotigs.

Contig homogeneity
Properly assembled heterotigs should also exhibit strong
homogeneity in the source of their constituents. Insofar
as haplotypes segregate properly during assembly, result-
ing heterotigs should be composed entirely of reads
from one haplotype or entirely of reads from the com-
plementary haplotype. For each contig class, we plot a
density of contig homogeneity values. We define contig
homogeneity for a contig c as the ratio of reads deriving
from haplotype A, calculated as

homconting (c) =
| {x|x ∈ c ∧ x ∈ A} |

| {x|x ∈ c} |
For contigs trained or classified as heterotigs, we

would expect to see peaks near 0 and 1. Homotigs
should peak near 0.5.

Phase group homogeneity
To assess the accuracy of phasing, we analyze the ratio
of haplotype A reads in each group of phased contigs, g:

homphase
(
g
)

=

∑
c∈g| {x|x ∈ c ∧ x ∈ A} |
∑

c∈g| {x|x ∈ c} |
Accurate phase groups will have homogeneity values

clustering around 0 and 1.

Heterogeneity between phase groups
In addition to having a consistent haplotype source
within phase groups, accurate phasing is reflected by
proper segregation of haplotypes between complemen-
tary phase groups, gm and gn. To assess this metric, we
compute the difference in the ratio of haplotype A reads
between complementary phase groups as

het
(
gm, gn

)
=

∣
∣∣
∣

∑
c∈gm | {x|x ∈ c ∧ x ∈ A} |
∑

c∈gm | {x|x ∈ c} | −
∑

c∈gn| {x|x ∈ c ∧ x ∈ A} |
∑

c∈gn| {x|x ∈ c} |
∣
∣∣
∣

Accurate phase groups result in heterogeneity values
clustering around 1.

Results
We validated our algorithm on a synthetic example in
order to assess the accuracy of haplotype-specificity in
assembly and scaffold phasing. We synthetically gener-
ated a 4.94-Mb diploid genome with a 0.04 heterozygos-
ity rate. Haplotype A was the first 4.94 Mb of Homo
sapiens chromosome 20 (gi 27501067). We derived
haplotype B from this sequence using HapMaker [33].
We used ART v 1.3.1 [34] to generate synthetic error-
free 75-bp paired reads from 400-bp inserts and from
1000-bp inserts at 40x coverage each (ART cannot
simulate reads longer than 75 bp). We assembled reads
using an overlap-layout consensus assembler Newbler
2.6 (-mi 100, -nohet). Only reads from 400-bp fragments
were used for scaffolding. Bowtie 0.12.7 [35] was used
for aligning reads to contigs (-v 3 -a -m 1 -f).
In all 21,358 contigs were combined into 1,252 scaf-

folds. There were 1,079 perfect bubbles (i.e., homolotig
pairs) identified for training and another 3,651 contig
pairs classified as homolotigs. Of these 4,187 homolotig
pairs (88.5%) were phased into a total of 675 phase
groups. In total, 3,275,028 non-N bases (91.0% percent
of heterotig-classified bases) were phased.
The results of diploid scaffolding using ScaffoldScaf-

folder are seen in Figures 4 through 7. Figures 4 and 5
demonstrate several results. First, looking at all contigs,
regardless of their classification, we see two very clear
categories: 1) homotigs, whose sequencing depth centers
roughly at 80x coverage and whose haplotype A ratio
centers at 0.5; and 2) heterotigs, whose sequencing
depth centers at about 40x and whose haplotype A ratio
centers at 0 and 1. This result suggests that a strict
parameterization of the assembler successfully segregates
heterozygous reads and combines homozygous reads.
Second, we see that the contigs selected as “training”
(which we assumed were heterotigs) fall entirely into the
heterotig camp, suggesting that our method for selecting
training examples is highly effective. Third, we see that
we classify other heterotigs with high precision (99.7%
of 7,302 classified heterotigs had sequencing depth <60),
at some cost to recall (61.1% of 11,905 contigs with

Bodily et al. BMC Bioinformatics 2015, 16(Suppl 7):S5
http://www.biomedcentral.com/1471-2105/16/S7/S5

Page 7 of 10

depth < 60 were classified). Why we fail to classify all
true heterotigs (i.e., those with depth < 60) requires
further investigation.
Figures 6 and 7 demonstrate the accuracy of phasing in

ScaffoldScaffolder. Figure 6 demonstrates that within
phase groups, reads derive either entirely from haplotype
A or haplotype B. Figure 7 shows complete heterogeneity

between homologous phase groups, meaning there are
two haplotypes represented and cleanly segregated.
Overall these results indicate that at least given a highly

conservative input dataset, the intuition and implementa-
tion of the algorithm are capable of effectively scaffolding
and phasing diploid genomes. In the future we plan to
perform more rigorous testing and comparative analysis
on real datasets. It should also be noted that the algo-
rithm as it currently stands is not designed not accom-
modate rearrangements or inversions.

Conclusions
De novo diploid genome assembly is a burgeoning research
area with exciting implications. We have presented

Figure 4 Contig Sequencing Depth. That reads from predicted
heterotigs reflect a haploid sequencing depth indicates that
haplotypes are segregating during assembly. The algorithm favors
high precision (no false heterotigs) at some cost to recall (a few
misclassified heterotigs), as evidenced by the blue peak at haploid
sequencing depth.

Figure 5 Contig Homogeneity. Reads from predicted heterotigs
come either entirely from haplotype A or entirely from haplotype B,
indicating that haplotypes are assembling correctly. We again see high
precision with a few mislabeled homotigs (blue peaks at 0 and 1).

Figure 6 Phase Group Homogeneity. As with contig homogeneity,
we observe that reads from commonly-phased contigs derive either
entirely from haplotype A or entirely from haplotype B. This indicates
accurate phasing.

Figure 7 Heterogeneity between Phase Groups. Results indicate
a complete and accurate segregation of haplotypes between
complementary phase groups.

Bodily et al. BMC Bioinformatics 2015, 16(Suppl 7):S5
http://www.biomedcentral.com/1471-2105/16/S7/S5

Page 8 of 10

ScaffoldScaffolder, a haplotype-aware scaffolding algo-
rithm for diploid genomes. We have demonstrated the via-
bility of using bubbles to identify heterozygous
homologous contigs, which we term homolotigs. We have
also shown that machine learning classification trained on
these homolotig pairs can be used effectively for identify-
ing homologous sequences elsewhere in the data with high
precision (assuming error-free reads).
In addition to laying out the algorithm of ScaffoldScaf-

folder, we have defined four metrics which are indicative
of diploid assembly quality when run on synthetic data:
contig sequencing depth, contig homogeneity, phase
group homogeneity, and heterogeneity between phase
groups. More work is required to comparatively analyze
this approach on real data with various parameters and
classifiers against other diploid genome assembly meth-
ods (of which there are currently very few). However,
the initial results of ScaffoldScaffolder supply validity to
the idea of employing machine learning in the difficult
task of diploid genome assembly.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PMB conceived of the study, carried out experiments, and drafted the
manuscript. MSF, JCP, MJC, and, QS contributed substantially to conception
and design. NO contributed to data acquisition, synthetic data preparation,
and manuscript editing. CO aided substantially in analysis, interpretation, and
presentation of results.

Acknowledgements
This research was made possible thanks to NIH grant R01 HG005692.

Declarations
Funding used to cover the publishing charge also comes from NIH grant
R01 HG005692.
This article has been published as part of BMC Bioinformatics Volume 16
Supplement 7, 2015: Selected articles from The 11th Annual Biotechnology
and Bioinformatics Symposium (BIOT-2014): Bioinformatics. The full contents
of the supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/16/S7.

Published: 23 April 2015

References
1. Church GM, Gao Y, Kosuri S: Next-generation digital information storage

in DNA. Science 2012, 337(6102):1628-1628.
2. Li R., Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,

et al: De novo assembly of human genomes with massively parallel
short read sequencing. Genome research 2010, 20(2):265-272.

3. Jaffe DB, Butler J, Gnerre S, Mauceli E, Lindblad-Toh K, Mesirov JP, Zody MC,
Lander ES: Whole-genome sequence assembly for mammalian genomes:
Arachne 2. Genome research 2003, 13(1):91-96.

4. Li Z, Chen Y, Mu D, Yuan J, Shi Y, Zhang H, Gan J, Li N, Hu X, Liu B, et al:
Comparison of the two major classes of assembly algorithms: overlap-
layout-consensus and de-bruijn-graph. Briefings in functional genomics
2012, 11(1):25-37.

5. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR,
Wincker P, Clark AG, Ribeiro JC, Wides R, et al: The genome sequence of
the malaria mosquito anopheles gambiae. Science 2002,
298(5591):129-149.

6. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee B,
Newport G, Thorstenson YR, Agabian N, Magee P, et al: The diploid
genome sequence of candida albicans. Proceedings of the National
Academy of Sciences of the United States of America 2004, 101(19):7329.

7. Vinson JP, Jaffe DB, O’Neill K, Karlsson EK, Stange-Thomann N, Anderson S,
Mesirov JP, Satoh N, Satou Y, Nusbaum C, et al: Assembly of polymorphic
genomes: algorithms and application to ciona savignyi. Genome research
2005, 15(8):1127-1135.

8. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D,
Pindo M, FitzGerald LM, Vezzulli S, Reid J, et al: A high quality draft
consensus sequence of the genome of a heterozygous grapevine
variety. PLoS One 2007, 2(12):1326.

9. Takeuchi T, Kawashima T, Koyanagi R, Gyoja F, Tanaka M, Ikuta T,
Shoguchi E, Fujiwara M, Shinzato C, Hisata K, et al: Draft genome of the
pearl oyster Pinctada fucata: a platform for understanding bivalve
biology. DNA research 2012, 19(2):117-130.

10. Zharkikh A, Troggio M, Pruss D, Cestaro A, Eldrdge G, Pindo M, Mitchell JT,
Vezzulli S, Bhatnagar S, Fontana P, et al: Sequencing and assembly of
highly heterozygous genome of Vitis vinifera L. cv Pinot Noir: Problems
and solutions. Journal of biotechnology 2008, 136(1):38-43.

11. Clark AG: Inference of haplotypes from pcr-amplified samples of diploid
populations. Molecular biology and evolution 1990, 7(2):111-122.

12. Gusfield D: A practical algorithm for optimal inference of haplotypes
from diploid populations. ISMB 2000, 183-189.

13. Excoffier L, Slatkin M: Maximum-likelihood estimation of molecular
haplotype frequencies in a diploid population. Molecular biology and
evolution 1995, 12(5):921-927.

14. Browning BL, Browning SR: A unified approach to genotype imputation
and haplotype-phase inference for large data sets of trios and unrelated
individuals. The American Journal of Human Genetics 2009, 84(2):210-223.

15. Schwartz R, et al: Theory and algorithms for the haplotype assembly
problem. Communications in Information & Systems 2010, 10(1):23-38.

16. Rizzi R, Bafna V, Istrail S, Lancia G: Practical algorithms and fixed-
parameter tractability for the single individual snp haplotyping problem.
Algorithms in Bioinformatics Springer, Berlin; 2002, 29-43.

17. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome research 2008,
18(11):1851-1858.

18. Li H, Durbin R: Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics 2009, 25(14):1754-1760.

19. Li R, Li Y, Kristiansen K, Wang J: Soap: short oligonucleotide alignment
program. Bioinformatics 2008, 24(5):713-714.

20. Clement NL, Snell Q, Clement MJ, Hollenhorst PC, Purwar J, Graves BJ,
Cairns BR, Johnson WE: The gnumap algorithm: unbiased probabilistic
mapping of oligonucleotides from next-generation sequencing.
Bioinformatics 2010, 26(1):38-45.

21. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SR, Wilkie AO, McVean G,
Lunter G, Consortium W, et al: Integrating mapping-, assembly-and
haplotype-based approaches for calling variants in clinical sequencing
applications. Nature genetics 2014, 46(8):912-918.

22. Bansal V, Bafna V: Hapcut: an efficient and accurate algorithm for the
haplotype assembly problem. Bioinformatics 2008, 24(16):153-159.

23. Kim JH, Waterman MS, Li LM: Diploid genome reconstruction of ciona
intestinalis and comparative analysis with ciona savignyi. Genome
research 2007, 17(7):1101-1110.

24. O’Rawe J, Jiang T, Sun G, Wu Y, Wang W, Hu J, Bodily P, Tian L,
Hakonarson H, Johnson WE, et al: Low concordance of multiple variant-
calling pipelines: practical implications for exome and genome
sequencing. Genome Med 2013, 5(3):28.

25. Bodily PM, Clement MJ, Snell Q, Fujimoto MS, Ridge PG: Haplotype-
centered mapping for improved alignments and genetic association
studies. Proceedings of the 5th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics, ACM 2014, 499-505.

26. Weisenfeld NI, Yin S, Sharpe T, Lau B, Hegarty R, Holmes L, Sogoloff B,
Tabbaa D, Williams L, Russ C, et al: Comprehensive variation discovery in
single human genomes. Nature genetics 2014.

27. Donmez N, Brudno M: Hapsembler: an assembler for highly polymorphic
genomes. Research in Computational Molecular Biology Springer; 2011, 38-52.

28. Li Y, Hu Y, Bolund L, Wang J, et al: State of the art de novo assembly of
human genomes from massively parallel sequencing data. Hum
Genomics 2010, 4(4):271-277.

Bodily et al. BMC Bioinformatics 2015, 16(Suppl 7):S5
http://www.biomedcentral.com/1471-2105/16/S7/S5

Page 9 of 10

http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S7
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S7

29. Bodily P, Clement M, Price J, Okuda N, Fujimoto S, Snell Q, Lyman C:
Application of a max-cut heuristic to the contig orientation problem in
genome assembly. The 2013 ACM Conference on Bioinformatics,
Computational Biology and Biomedical Informatics (ACM-BCB 2013);
Washington, D.C., USA 2013, 476-483.

30. Price JC, Udall JA, Bodily PM, Ward JA, Schatz MC, Page JT, Jensen JD,
Snell QO, Clement MJ: De novo identification of “heterotigs” towards
accurate and in-phase assembly of complex plant genomes. Proceedings
of the 2012 International Conference on Bioinformatics & Computational
Biology 2012, 144-150.

31. Fasulo D, Halpern A, Dew I, Mobarry C: Efficiently detecting
polymorphisms during the fragment assembly process. Bioinformatics
2002, 18(suppl 1):294-302.

32. Bodily P, Price J, Clement M, Snell Q: Scaffoldscaffolder: An aggressive
scaffold finishing algorithm. Proceedings of the 2012 International
Conference on Bioinformatics & Computational Biology 2012, 385-390.

33. Okuda N, Bodily P, Price J, Clement M, Snell Q: Hapmaker: Synthetic
haplotype generator. Proceedings of the 2013 International Conference on
Bioinformatics & Computational Biology 2013, 370-374.

34. Huang W, Li L, Myers JR, Marth GT: Art: a next-generation sequencing
read simulator. Bioinformatics 2012, 28(4):593-594.

35. Langmead B, Trapnell C, Pop M, Salzberg SL, et al: Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome Biol 2009, 10(3):25.

doi:10.1186/1471-2105-16-S7-S5
Cite this article as: Bodily et al.: Heterozygous genome assembly via
binary classification of homologous sequence. BMC Bioinformatics 2015
16(Suppl 7):S5.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Bodily et al. BMC Bioinformatics 2015, 16(Suppl 7):S5
http://www.biomedcentral.com/1471-2105/16/S7/S5

Page 10 of 10

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Genome assembly background

	Methods
	Assembly
	Scaffolding
	ScaffoldScaffolder
	Input
	Read alignment
	Scaffold graph construction
	Binary classification of homologs
	Bubble chain elucidation
	Linear haploid scaffold formation

	Quantitative analysis
	Contig sequencing depth
	Contig homogeneity
	Phase group homogeneity
	Heterogeneity between phase groups

	Results
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

