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Abstract: Cisplatin is a DNA-damaging anti-cancer agent that is widely used to treat a range of tumour types. Despite its
clinical success, cisplatin treatment is still associated with a number of dose-limiting toxic side effects. The purpose of this
study was to clarify the molecular events that are important in the anti-tumour activity of cisplatin, using gene expression
profiling techniques. Currently, our incomplete understanding of this drug’s mechanism of action hinders the development
of more efficient and less harmful cisplatin-based chemotherapeutics. In this study the effect of cisplatin on gene expression
in human foreskin fibroblasts has been investigated using human 19K oligonucleotide microarrays. In addition its clinically
inactive isomer, transplatin, was also tested. Dual-fluor microarray experiments comparing treated and untreated cells were
performed in quadruplicate. Cisplatin treatment was shown to significantly up- or down-regulate a consistent subset of
genes. Many of these genes responded similarly to treatment with transplatin, the therapeutically inactive isomer of cispla-
tin. However, a smaller proportion of these transcripts underwent differential expression changes in response to the two
isomers. Some of these genes may constitute part of the DNA damage response induced by cisplatin that is critical for its
anti-tumour activity. Ultimately, the identification of gene expression responses unique to clinically active compounds, like
cisplatin, could thus greatly benefit the design and development of improved chemotherapeutics.
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Introduction

The DNA-damaging agent, cis-diamminedichloroplatinum (II), cisplatin, is used extensively as a
chemotherapeutic drug. In particular, it is successfully employed to treat ovarian and testicular carci-
nomas, as well as a range of other solid tumours (Adams et al. 1998; De Pree and Wils, 1989). However,
dose-limiting toxic side effects and the occurrence of both acquired and intrinsic drug resistance in cells
impose great limitations on cisplatin chemotherapy (Kelland, 2000; Siddik, 2003). While concerted
efforts have been made towards developing cisplatin analogues with improved chemotherapeutic effi-
cacy and reduced toxic side effects, only a few compounds have been clinically registered—the most
notable of these being carboplatin and oxaliplatin (Hartmann and Lipp, 2003).

A major factor contributing to the current status of rationally designed analogues is a relatively poor
understanding of the specific molecular events associated with cisplatin-induced tumour cell death.
Although its detailed mechanism of action is presently unclear, it is generally thought that the covalent
binding of cisplatin to cellular DNA and subsequent formation of bulky DNA adducts, mediate the
cytotoxicity of this anti-cancer agent (Rosenberg, 1985; Wang and Lippard, 2005). Intra-strand DNA
cross-links are the most common adducts formed, although inter-strand DNA cross-links and DNA-
protein cross-links can also occur (Fichtinger-Schepman et al. 1985; Lippard and Hoeschele, 1979).
The intra-strand DNA lesions preferentially form between the N-7 of adjacent guanine residues, inhibiting
the passage of polymerases and thus interfering with DNA replication and RNA transcription inside
target cells (Corda et al. 1992; Murray et al. 1992; Murray et al. 1998; Roberts and Thomson, 1979).
While the general inhibition of RNA synthesis reduces the mRNA levels of many genes, an active cel-
lular response to cisplatin damage can influence gene expression both positively and negatively and to
varying extents, depending on the promoter (Evans and Gralla, 1992).

The active response to such drug-induced DNA damage consists of two key processes. These include
the repair of DNA damage through the removal of cisplatin adducts and, where repair cannot be carried
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out successfully, the induction of cell death via
apoptosis. While DNA repair and apoptotic path-
ways are considered to play the most significant role
in determining cisplatin’s cytotoxic effect, various
non-specific events associated with the drug-DNA
interaction should also be taken into account. These
non-specific events arise as consequences of
cisplatin-DNA adduct formation and the overall
inhibition of DNA and RNA synthesis. In addition,
altered gene expression could also result from
cisplatin-protein interactions (Perez, 1998) and the
sequestration of transcription factors by cisplatin-
DNA adducts. At present, little is known about the
extent to which each of these active and non-specific
responses contribute to cisplatin-induced cell death.
This issue is addressed in the main aim of this work,
which is to determine whether the regulation of
specific genes in response to cisplatin treatment is
crucial to the drug’s anti-tumour activity.
Oligonucleotide microarrays containing approx-
imately nineteen thousand human genes were used
to examine the broad effect of cisplatin on gene
expression in human foreskin fibroblasts. The
response of such a non-cancer cell line to DNA
damage was considered to be particularly signifi-
cant since most toxic side effects are due to the
exposure of normal cells to the anti-tumour drug
during chemotherapy. The gene expression profiles
derived from these cells indicated that many genes
consistently exhibited altered gene expression pat-
terns due to cisplatin treatment. Rigorous methods
for analysing the resulting microarray data were
developed. Thorough normalisation techniques and
a statistically robust procedure for estimating the
significance of gene expression changes were
implemented via the statistical computing environ-
ment, “R”. Using the software package, EASE, a
method for exploring the biological themes among
differentially expressed transcripts was also inves-
tigated. An attempt to clarify whether any of these
molecular events are crucial to cisplatin’s anti-
tumour activity was made by constructing similar
expression profiles for the clinically inactive cis-
platin isomer, transplatin (Fig. 1). Both compounds
were found to consistently induce a common sub-
set of gene responses in fibroblasts. However,
thorough one- and two-sample statistical com-
parisons also indicated that several genes had
significantly different expression levels in cisplatin-
treated cells compared to transplatin-treated cells.
The identification of gene expression responses
unique to clinically active compounds, such as

cisplatin, could have a range of implications on the
design and development of improved
chemotherapeutics.

Materials and Methods

Materials

Cisplatin, transplatin and Tri-Reagent were pur-
chased from Sigma. Cell culture reagents and
Superscript (1) Reverse Transcriptase were obtained
from Invitrogen. Alamar Blue reagent was pur-
chased through Astral Scientific. RNeasy columns
were obtained from Qiagen. Cy3 and Cy5 mono-
reactive fluorescent dyes were purchased from
Amersham Biosciences. Human 19K oligonucle-
otide microarrays were produced by and purchased
from The Clive and Vera Ramaciotti Centre for Gene
Function Analysis, University of NSW.

Cell Culture Conditions

The non-transformed human foreskin fibroblast cell
line, FFbw002, was kindly donated by Noel Whita-
ker. Cells were grown in RPMI (Rosewell Park
Memorial Institute) medium supplemented with 10%
fetal bovine serum and maintained at 37 °C and 5%
CO2 in a humidified incubator. Fibroblasts in log-
phase growth were harvested prior to sub-culturing
and drug treatment using mild trypsinisation.

Cytotoxicity Assay

Cytotoxicity determinations for cisplatin and trans-
platin were performed using an Alamar Blue™
assay. FFbw002 Human foreskin fibroblasts were
seeded at a density of 2 x 10° cells/ml in 96-well,
flat-bottomed microtitre plates in 100 pl of RPMI
medium. Drugs (diluted in DMF) and controls were
administered to cells in 100 pl of RPMI to give the
final concentrations indicated: cisplatin (0.1mM to
100mM), transplatin (0.1 uM to 100 uM) and DMF
(0.01% to 8% (v/v)). At least three replicates were
performed for each administration. The plates were
incubated at 37 °C in a humidified cell culture
chamber with 5% CO, for 5 hours. Twenty ul of
Alamar Blue™ reagent was then added to each
well and the plates were incubated for a further
3 hours. At this time, absorbance readings of the
plates were immediately recorded using a Bench-
mark plate-reader with a sample wavelength of
570 nm and a reference of 595 nm. Following this
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Figure 1. The chemical structures of cisplatin and transplatin. The main focus of this study is the mechanism of action of the DNA-
damaging anti-cancer drug, cisplatin. Although structurally similar, cisplatin’s isomer, transplatin, lacks the anti-tumour activity exhibited by

eight-hour time point, plates were returned to the
incubator and further absorbance readings were
taken at 24 hours. Cell survival in the presence of
drug was expressed as a percentage of cell growth
in the drug-free DMF control corresponding to
the% DMF in the drug treatment.

Drug Treatment and Total RNA

Extraction

Harvested fibroblasts were incubated at a concen-
tration of approximately 5 x 10° cells/ml RPMI
medium, with varying concentrations of cisplatin

or transplatin (each diluted in DMF), for 5 hours
at 37 °C with 5% CO,. Total RNA was then isolated
from cells using Tri-Reagent and the accompany-
ing protocol for extracting total RNA from cultured
cells (issued by Sigma). The integrity of total RNA
was assessed using 1% agarose gel electrophoresis
and its approximate concentration and purity esti-
mated via UV spectrophotometry.

cDNA Synthesis and Hybridisation
cDNA was synthesised using approximately 50 ug
oftotal RNA in an oligo-dT(20mer)-primed reverse
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transcription reaction with Superscript II Reverse
Transcriptase (Invitrogen). RNA was combined
with 8 ul of 5x First Strand Superscript II Buffer
(Invitrogen), 0.4nmol oligo-dT,,, 10 uM DTT and
made up to 32.2 ul with RNase-free H,0O. Reactions
were incubated for 5 minutes at 65 °C followed by
5 minutes at 42 °C. While at 42 °C, dATP, dGTP
and dCTP nucleotides were added at a final
concentration of 0.5 UM each, along with dTTP at
0.16 uM, aa(aminoalyl)-dUTP at 0.34 uM and 2 pl
Superscript II Reverse Transcriptase. Reactions
were then incubated for a further 2.5 hours at 42 °C.
RNA was hydrolysed with the addition of 4ml of
50mM EDTA (pH8) and 2 ul of 10M NaOH to each
sample, followed by an incubation of 20 minutes
at 65 C. Reactions were neutralised with 4 ul of 5SM
acetic acid and then each sample was purified using
a separate QIAquick PCR purification column
(Qiagen). To couple mono-reactive fluorescent Cy-
dyes (Amersham Biosciences) to the aminoalyl-
dUTP moieties in target cDNA molecules, 9 ul of
0.1IM NaHCO; (pH9) and 2 ul of Cy5 (control
samples) or Cy3 (drug-treated samples) were mixed
with the appropriate samples. These reactions were
left to incubate in a dark environment for 45 minutes
at room temperature and then purified as above,
using a separate QIAquick PCR purification column
(Qiagen) for each sample. Hybridisation buffer was
prepared with yeast tRNA (Sigma) at approximately
0.5 mg/ml and calf thymus DNA (Sigma) at
approximately 0.5 mg/ml in DIG Easy Hyb (Roche).
Concentrated Cy5(control) and Cy3(drug-treated)
cDNA samples to be compared were combined
directly with hybridisation buffer to a final volume
of approximately 92 pl, heated for 5 minutes at
65 C and then allowed to cool to room temperature.
Hybridisation mixtures were applied directly to
microarray slides (Human 19K oligonucleotide
arrays), each covered with a LifterSlip™ coverglass
(ProSciTech) and then hybridised at 37 °C overnight
(approximately 16 hours) in a humidified custom-
made hybridisation chamber. LifterSlips™ were
removed in 1 X SSC and slides washed three times
in 1 X SSC/0.1% SDS at 50 °C. A final rinse in
1 x SSC was immediately followed by 10 minutes
of centrifugation at 500 g to dry slides in preparation
for scanning.

Microarray Scanning, Data Acquisition

and Processing
Microarrays were scanned using an Axon 4000A
laser-based scanner and image data was acquired

through associated GenePix Pro 3.0 software. Further
data manipulation and statistical analyses (see below)
were undertaken in the R statistical computing
environment (Www.r-project.org) with additional
microarray-specific R-packages available from the
BioConductor project (www.bioconductor.org). The
R-function, marrayGUI, constructed by Mr Chris
Bye (Westmead Millennium Institute) was used to
input data into the R environment. Preliminary data
processing involved the assignment of spot quality
‘weights’ to all data points. A “Robust Spline”
method of intra-array normalisation (/imma package
in BioConductor), which utilises the spot quality
weights determined above, was then applied to each
slide. This approach accounts for both spatial- and
intensity-dependent biases by fitting regression
splines through data from individual print-tip groups
and employing Empirical Bayes methods to shrink
the print-tip curves towards a common value.
Compared to standard “Print-tip Loess’ normalisation
procedures, such a technique is believed to introduce
less “noise” into fairly good quality arrays that have
little spatial variation. At this stage, unreliable data
from spots with low quality weights due to low signal
intensities or high spot background intensities was
mostly filtered out so as to be excluded from further
statistical analyses.

Statistical Evaluation of Differential

Gene Expression

Functions within the /imma package in BioConduc-
tor were firstly employed to calculate a log-odds of
differential expression (B-statistic) for each gene.
This involved the fitting of gene-wise linear models
through selected data and Empirical Bayes mod-
eration of corresponding t-statistics. ‘One-’ and
“Two-sample’ experimental design matrices were
structured to allow the simultaneous assessment of
differential expression within and between experi-
mental conditions (microarray groups), respec-
tively. The magnitudes of resulting B-statistics were
then used to rank genes in order of evidence for
differential expression. Transcripts considered to
have a significant level of differential expression
within a single test comparison (e.g. control vs
treatment 1), were those highly ranked according
to ‘one-sample’ B-statistic magnitudes and with
average fold-changes greater than 1.4. Alternative
procedures for multiple hypothesis testing available
within the multtest package in BioConductor, were
also investigated. In an ANOVA framework,
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F-statistics were calculated for each transcript using
log expression ratio data from the three main test
comparisons. As for the B-statistics, the magnitudes
of these test-statistics were then used directly to
identify transcripts most likely to be differentially
expressed between the three test conditions.

Gene Categories Over-represented
Among Differentially Expressed
Transcripts

Analysis tools implemented within the software
package EASE (Expression Analysis Systematic
Explorer) were used to annotate differentially
expressed transcripts and explore the “biological
themes” of significant gene subsets. EASE is freely
available through the URL http://david.niaid.nih.
gov/david/ease.htm.

Results
The human gene expression response to cisplatin
treatment was investigated using transcription

profiling techniques. The use of oligonucleotide
microarrays permitted the gene expression levels
of many genes to be monitored simultaneously.
A human foreskin fibroblast cell line was
employed and gene expression profiles were com-
piled for both cisplatin and its clinically ineffective
isomer, transplatin. The transcriptional response
of fibroblasts to drugs with different anti-tumour
efficiencies could then be investigated.

Alamar Blue™ cytotoxicity assays

Fibroblasts were firstly subjected to cytotoxicity
assays with cisplatin and transplatin to determine
optimal treatment conditions for inducing a clini-
cally relevant gene expression response. Fibro-
blasts were initially incubated at 37°C with drugs
(or without drugs or controls) for 5 hours. At this
time point, t= 5 hours, Alamar Blue™ reagent was
added to each sample. Absorbance measurements
were then taken at t = 8 and 24 hour time points
and used to indicate the proportion of living cells
remaining in each sample. Graphs in Figure 2

100 &

(a)

85

80 A 8 Hours

\ —e— Cisplatin
\ —e— Transplatin

75
70

% Cell Survival

65

60 T
0.1 1

10 100

100

(b)

95—t —%

90 +
85

80 + 24 Hours

—e— Cisplatin
—e— Transplatin

75
70

% Cell Survival

65

60 T
0.1 1

Drug Concentration (uM)

| /LJI

10 100

Figure 2. AlamarBlueTM Cytotoxicity Assay: Human fibroblasts treated with cisplatin and transplatin. Graphs indicate the % Cell
Survival at (a) 8 and (b) 24 hours for 0.1-100uM Cisplatin and Transplatin. The data points shown are for drug concentrations of 0.1, 0.3,
1.0, 10, 25 and 100 pM, and have been averaged across three replicate values. Error bars represent the standard error of the mean. (Note:

Scale of x-axis is in logarithmic format).
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depict the percentage cell survival values deter-
mined for fibroblasts treated with 0.1-100 uM
cisplatin or transplatin for 8 and 24 hours.

The cytotoxicity assay results for this particular
fibroblast cell line indicated that there was a small
to moderate difference between the cytotoxic
effects elicited by cisplatin and transplatin. At the
8 hour time point, cisplatin was more toxic than
transplatin at concentrations up to at least 25 uM.
At 100 uM doses, transplatin appeared to induce
slightly higher levels of cell death. For the 24 hour
time point, however, cisplatin was consistently
more cytotoxic to cells at all concentrations exam-
ined. Overall, drug concentrations ranging between
0.1 and 25 uM produced relatively low levels of
cell death during both incubation periods. Within
this dose range, the average cell survival estimates
were 90% for cisplatin treatments and 95% for
transplatin treatments. At drug concentrations
above 25 UM, however, the cytotoxic effect of both
compounds was more apparent.

In considering these results and those of the
preliminary investigations, subsequent gene
expression studies were conducted using 5 hour
treatments with 1 UM cisplatin or transplatin. At
this concentration, the cytotoxicity assay indicated
that there was a slight difference between the toxic
effects of the two isomers. To allow gene expres-
sion responses to equitoxic drug doses to be
studied, a second transplatin concentration of
25 uM was also chosen for comparison. At this
8 hour dose, transplatin’s level of toxicity was
approximately equivalent to that of 1 uM cisplatin.
Similar differences in concentration have been
required to achieve equitoxic cisplatin and trans-
platin doses in other studies (Burczynski et al.
2000; Sanchez-Perez et al. 1998; Sato et al. 1996).
Furthermore, this concentration represented the
lowest dose at which cytotoxicity levels were
relatively low for both drugs.

Microarray experiments,

data acquisition and normalisation

All cell treatments were performed in quadruplicate.
Total RNA was extracted from each cell population
and used to synthesise fluorescently-labelled cDNA.
cDNA samples derived from different treatments
were then compared directly using human oligo-
nucleotide microarrays containing approximately
19,000 human gene sequences and control ele-
ments. Microarray experiments, also carried out in

quadruplicate, were performed for each of the
following comparisons: DMF (control) vs 1 uM
Cisplatin, DMF vs 1 uM Transplatin, DMF vs 25 uM
Transplatin, 1 UM Transplatin vs 1 uM Cisplatin and
25 uM Transplatin vs 1 uM Cisplatin.

Following microarray scanning and data acqui-
sition, raw results were processed and normalised
as described in section 2.3.12. During these
manipulations, the red and green fluorescence
intensities were normalised relative to one another
so that the green/red ratios approached an unbiased
representation of relative expression levels. The
ultimate aim of the normalisation process was to
remove or reduce any systematic biases or errors
in the results that were not due to the experimental
condition(s) of interest (Smyth and Speed, 2003).
In the current study, a “Robust Spline” method of
intra-array normalisation was applied to data from
each microarray using the /imma (Linear Models
for Microarray Data) package in BioConductor.
The incorporation of spot quality weights deter-
mined in the preprocessing step (section 2.3.12(1))
controlled the extent to which each data point
contributed to the normalisation calculations. This
meant that unreliable data from spots with low
quality weights due to low foreground or high
background intensities were filtered out and
excluded from the analysis. The “Robust Spline”
function also accounted for both spatial- and
intensity-dependent biases in the microarray data
(Smyth and Speed, 2003; Yang et al. 2002).

‘MA-plots’, as described by Yang et al., 2002,
provided a convenient graphical means of repre-
senting the red (R) and green (G) fluorescence
intensity data for each gene on the array. Within
these plots, M, ;) = 10g,(R/G) and A, ) =
log,v(R X G). Thus, for each gene on the array, ‘M’
essentially describes the fluorescence intensity
ratio, while ‘A’ represents the relative combined
fluorescence intensity (Yang et al. 2002). Figure 3
shows a representative MA-plot for the normalised
background-corrected data from DMF vs 1 uM
Cisplatin treatment comparisons. Human gene
transcripts with relatively up- or down-regulated
expression levels due to cisplatin treatment are
located below or above the ‘M = 0’ horizontal axis,
respectively. In this study, MA-plots were particu-
larly valuable in terms of identifying spot artifacts
(or irregularities) and intensity-dependent trends in
the log ratios (M-values). They were also employed
for the purpose of monitoring and assessing the data
normalisation procedures described above.
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Figure 3. MA-plot of normalised data for DMF (control) versus 1 uM cisplatin treatment comparison. M (Log,(expression ratio)) and A (rela-
tive intensity) values were averaged across 4 replicate microarrays. M values greater than zero indicate transcripts which responded to cisplatin with
decreased expression levels, while M values less than zero indicate transcripts with increased expression levels after cisplatin treatment.

Statistical significance

evaluation — Overview

Having normalised the microarray data, the next
step was to develop a statistically robust approach
for defining differentially expressed transcripts.
When examining such large sets of gene expression
data, it is particularly crucial to address this issue
since observed changes in expression may not
always be a direct consequence of the test condi-
tions. For example, altered expression patterns may
result from variations in the data acquisition proce-
dures or biologically insignificant fluctuations
within the original cell populations that are not
specifically related to the experimental conditions
of interest. While many expression studies use a
two-fold change in expression as the lower limit of
significant gene expression changes, this approach
can exclude valuable data and is not statistically
flexible for use across multiple arrays. Instead, the

current study adopted a statistically rigorous method
for estimating and ranking the relative significance
of observed gene expression changes.

Conducted within ‘R’, the main statistical pro-
cedure for defining differential expression imple-
mented functions from the /imma analysis package
in BioConductor. These functions effectively
facilitated the simultaneous analysis of compari-
sons between multiple RNA targets (that is, dif-
ferentially-labelled cDNA populations). The key
to this approach was a “design matrix” which was
used to specify the desired treatments for com-
parison. This meant that data from multiple arrays
could thus be examined simultaneously. The result
was a log-odds of differential expression, or
B-statistic, which was estimated for each gene in
each treatment comparison. B-statistic magnitudes
were then used to rank genes in order of evidence
for differential expression.
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Using the linear model approach described
above, a “one-sample comparison” experimental
design matrix was used to examine differential
expression within separate microarray groups,
where each ‘group’ represents one comparison
performed on four replicate microarrays:

Group 1. DMF vs | uM cisplatin

Group 2. DMF vs | uM transplatin

Group 3. DMF vs 25 uM transplatin

Group 4. 1 uM transplatin vs 1 uM cisplatin

Group 5. 25 uM transplatin vs 1 uM cisplatin.

B-statistics were computed for all five com-
parisons. Genes with the highest B-statistics thus
had the highest likelihood of being differentially
expressed within each group. Next, data from the
first three microarray groups was combined within
a “two-sample comparison” design matrix. This
technique was employed to assess the extent of
differential expression between microarray groups,
and thus between treatments. For example, the
simultaneous analysis of Group 1 and Group 3 data
revealed over 200 genes that were highly ranked
for differential expression between the 1 uM cis-
platin and 25 uM transplatin treatments. Following
both one- and two-sample comparison B-statistic
analyses, the ‘EASE’ software package was
employed to search for over-represented gene
categories amongst differentially expressed genes.
This procedure allowed the biological themes of
significant gene subsets to be investigated. In the
subsequent sections of this chapter, the results of
B-statistic analyses and over-representation studies
are presented and discussed in further detail.

One-sample comparison B-statistic
analysis

One-sample comparison B-statistic analyses were
successfully employed to estimate the relative
significance of ‘apparent’ changes in gene expres-
sion levels between control and drug-treated
samples. Transcripts with B-statistic values greater
than zero were defined as exhibiting significantly
different expression levels in response to treatment,
while the highest B-statistics indicated genes with
the highest likelihood of being differentially
expressed. This study revealed many genes that
were differentially expressed in each of the three
treatments examined: 1 uM cisplatin, 1 uM and
25 uM transplatin (see Table 1). For example, in
cisplatin-treated cells, 1227 transcripts were found
to exhibit significantly higher expression levels,

while 316 transcripts were classed with signifi-
cantly lower expression levels. Table 2 describes
the first 20 known genes that were significantly
up- and down-regulated in response to 1 UM cis-
platin. As might be expected, many of the differ-
entially expressed transcripts were common to
cisplatin and transplatin treatments, indicating
some degree of consistency in the transcriptional
response to both platinum isomers. Some of the
transcriptional events common to all three
treatments are also indicated in Table 2.

Using the expression analysis program, EASE,
gene annotation tools were next employed to iden-
tify gene categories that were over-represented in
each differentially expressed gene subset compared
to what was represented on the microarrays. Indi-
vidual gene categories were also classed into one
of the following gene ontology (GO) systems:
molecular function, biological process or cellular
component. In each analysis, the gene category
with the lowest ‘EASE score’ was considered to
be the most ‘over-represented’ or significant cat-
egory within that subset of differentially expressed
transcripts. The first 20 most over-represented gene
categories among transcripts up- and down-
regulated by 1mM cisplatin are shown in Table 3.
As indicated, most of these categories were also
over-represented among the significant transcripts
of transplatin treatments. It is thus possible that
many of the genes associated with these molecular
functions and biological processes are involved in
a more general response to the toxic insult.

One-sample B-statistics were also calculated
for the Group 4 and Group 5 microarray data: 1 uM
transplatin vs 1 UM cisplatin and 25 uM transpla-
tin vs 1 uM cisplatin. However, this analysis
largely yielded negative B-statistic values, imply-
ing that there were no significant differences
between the transcriptional responses to each treat-
ment. Another possibility was that variations
between the treatment-specific gene expression
profiles were of a magnitude that could not be
resolved using this technique, especially in the
presence of relatively large systematic errors and
inherent dye biases. While dye-swapping or recip-
rocal labelling techniques are often employed in
attempts to counteract such biases, this approach
is more amenable to microarray experiments in
which the differences between cDNA populations
are of a higher magnitude (for example, when
comparing different cell lines). In the current study,
the average ‘significant’ drug-induced gene
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expression changes were only approximately
two-fold relative to control (non-treated) samples
(see Table 1). Since a key aim of this work was to
study treatment-specific gene expression events,
an alternative method for comparing the transcrip-
tional responses to each treatment was investigated.
For this purpose, a two-sample comparison B-sta-
tistic analysis was employed to contrast the ‘control
vs treatment’ profiles already established for cis-
platin and transplatin.

Two-sample comparison B-statistic
analysis

The two-sample B-statistic analysis facilitated the
simultaneous comparison of microarray data from
two different ‘control vs treatment’ experiments.
Through the inter-array comparison of samples
labelled with the same dye, B-statistics were used
to detect more subtle differences in the expression
responses to cisplatin and transplatin exposure,
without the interference of dye biases. This
approach, however, failed to recognise any consis-
tently significant differences between the expres-
sion profiles induced by 5 hour 1 uM cisplatin and
transplatin treatments. This implied a very high
degree of similarity between the transcriptional
responses of fibroblasts to these equimolar doses
of cisplatin and transplatin. In contrast, two-sample
comparison B-statistics readily detected significant
differences between the responses to 1 UM cispla-
tin and 25 UM transplatin treatments. Altogether,
105 transcripts were found to be significantly more
abundant in the 1 mM cisplatin treatments while
64 transcripts were more abundant in the 25 uM
transplatin treatments (Table 1). For many of these
genes, the origin or cause of their differential
response could be clarified by cross-comparing the
results of the two-sample comparisons with those
of the one-sample comparisons. For example,
transcripts that were more abundant in cisplatin
treatments could be further classified as being
‘actively up-regulated by cisplatin’ if they were
also present among the up-regulated genes of the
one-sample ‘control vs 1 UM cisplatin’ compari-
sons. An overview of this classification process is
presented in Figure 4. Of the 105 transcripts more
abundant in cisplatin treatments, 27 were classified
as being up-regulated by cisplatin (Table 4), 35 as
being down-regulated by transplatin (Table 5), and
43 could not be classified into either group using
the current one-sample data (Table 6). Of the

64 transcripts more abundant in transplatin
treatments, 12 were classed as being up-regulated
by transplatin (Table 7), 19 as being down-regu-
lated by cisplatin (Table 8), and 33 did not correlate
with any one-sample comparisons (Table 9).

Functions within EASE were also employed to
detect gene categories that were significantly over-
represented among the 169 transcripts differen-
tially expressed between cisplatin and transplatin
treatments. Tables 10 and 11 show some of the
most over-represented categories among transcripts
found to be more abundant in 1 uM cisplatin and
25 uM transplatin treatments, respectively.

Discussion

The effect of the anti-tumour drug, cisplatin, on
human gene expression was investigated using
microarray-based transcription profiling techniques
in human cells. The transcriptional response of
human fibroblasts to a clinically relevant cisplatin
dose was examined in detail using human 19K
microarrays. Gene expression profiles were also
compiled for transplatin, the therapeutically inef-
fective isomer of cisplatin. Statistically robust
methods for assessing the significance of apparent
changes in gene expression were then investigated.
The first approach permitted the identification of
human gene transcripts exhibiting significantly
different expression levels in drug-treated com-
pared to control samples. A second method was
then used to reveal transcripts that were differen-
tially expressed between the three drug treatments
examined. During these comparisons, a subset of
169 transcripts was found to be differentially
expressed between cisplatin and transplatin treat-
ments. Gene ontology databases were used to
recognise gene categories that were comparatively
over-represented among the significant transcripts,
compared to what was represented on the microar-
rays. This allowed the biological themes of the
differential responses to cisplatin and transplatin
treatments to be explored and further considered
with respect to anti-tumour activity.

Transcription profiling in drug-treated

cells: overview

Toxic stress in cells can stimulate a range of
biological responses, including the transcriptional
modulation of genes regulating cell survival, DNA
repair and cell death. It has thus been proposed
that such complex patterns of induced gene

328
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Two-sample B-statistic Analysis

DMF vs 1 uM cisplatin Vs

DMF vs 25 pM transplatin

105 Transcripts more abundant in
1 uM cisplatin

treatments

/TN

27 35
Transcripts Transcripts

DOWN-regulated by
25 uM transplatin

UP-regulated by
1 UM cisplatin

Table 4 Table 5

Y

43 Transcripts
for which the origin of
differential expression
could not be
determined

Table 6

64 Transcripts more abundant in

25 uM transplatin

treatments

19 12
Transcripts Transcripts

DOWN-regulated by
1 uM cisplatin

UP-regulated by
25 uM transplatin

Table 7 Table 8

\4

33 Transcripts
for which the origin of
differential expression
could not be
determined

Table 9

Figure 4. Overview of the two-sample comparison B-statistic analysis. This approach facilitated the simultaneous comparison of data
from ‘DMF (control) vs 1 uM cisplatin’ and ‘DMF (control) vs 25 uM transplatin’ microarray comparisons. Through the inter-array comparison
of treatments labelled with the same dye, B-statistics were used to detect subtle differences in the expression responses to cisplatin and
transplatin without the interference of dye biases. During this analysis, 105 transcripts were found to be significantly more abundant in the
1 UM cisplatin treatments while 64 transcripts were more abundant in the 25 pM transplatin treatments. The origin or cause of these differ-
ential expression events was then clarified by cross-comparing two-sample comparison results with those of the one-sample comparisons.
Positive correlations then allowed significant transcripts to be classified as being actively up-regulated by cisplatin, down-regulated by
transplatin, upregulated by transplatin or down-regulated by cisplatin. Other significant transcripts could not be classified into one of the four

categories above, due to the absence of corresponding one-sample comparison data.

expression changes could provide considerable
insight into the mechanism of action of various
toxic agents (Amin et al. 2002; Amundson et al.
1999; Caba et al. 2005; Hamadeh et al. 2002;
Newton et al. 2004). For example, the discipline
of toxicogenomics seeks to exploit the complexity
of this response for the purpose of generating a
molecular profile or signature that is characteristic
of specific toxicant exposure (reviewed by (Gant
and Zhang, 2005)). Furthermore, microarray-
based genomic approaches can now serve as a
powerful tool for exploring the molecular
pathways and cellular processes that mediate the

adverse responses to a particular compound (Caba
et al. 2005).

The broad aim of the microarray experiments
conducted in the present study was to investigate
global gene expression responses to cisplatin expo-
sure in human cells. The first significant outcome
of this project was the establishment of distinct
gene expression profiles for equitoxic doses of
cisplatin and transplatin, relative to solvent (DMF)
controls.

The second and somewhat more challenging
aim of this study was to identify gene expression
events that are unique to cisplatin treatment and

Cancer Informatics 2008:6
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could play an important role in its cytotoxic
mechanism. For this purpose, transcription profiles
constructed for cisplatin and its clinically ineffec-
tive isomer, transplatin, were compared. Many
toxic compounds will lead to the induction of genes
that are unrelated to anti-tumour activity. However,
the use of active and inactive anti-tumour agents
permits the identification of responses that contrib-
ute to anti-tumour activity and responses that do
not contribute to anti-tumour activity. When suf-
ficient data from different agents is combined, as
in the case with cisplatin and transplatin, it may be
possible to differentiate generic stress responses
from compound-specific events (Burczynski et al.
2000; Gant and Zhang, 2005).

In order to extract accurate and informative data
from this kind of gene expression study, there are
several major experimental considerations that must
also be addressed. One particular concern surrounds
the biological system employed and its associated
variables. In this project, non-transformed human
foreskin fibroblasts were chosen as the initial cell
type in which drug-induced gene expression profiles
would be monitored. Most gene expression studies
with cisplatin have been focused upon cancer cells
against which cisplatin is successfully cytotoxic
or ineffective due to problems of resistance (Clarke
et al. 2004; Huerta et al. 2003; Lee et al. 2005;
Macleod et al. 2005; Nakatani et al. 2005; Roberts
et al. 2005; Takata et al. 2005; Toshimitsu et al.
2004; Wilson et al. 2005). Since both cancer and
non-cancer cells of a patient are exposed to clinical
treatments, a detailed look at the response of ‘nor-
mal’ cells to cisplatin may provide a more balanced
insight into the toxic mechanism of this drug. Also,
a number of important genes are “inactivated” in
many tumour cells, such as p53 and retinoblastoma
(Hill et al. 2005; Levine and Fleischli, 2000; Miller
etal. 1996; Scheffner etal. 1991; Vaziri and
Benchimol, 1999). Insight into the effect of cis-
platin on the functional versions of such genes
might thus be gained via the use of non-cancer cells
in gene expression studies.

Biological variables that arise from experimen-
tal design, such as dose and time of exposure to
the compound, also have a large impact on the
analysis and subsequent interpretation of microar-
ray data. These factors were thus given thorough
consideration in the current study via several pre-
liminary experiments. Filter macroarray studies
revealed significant changes in gene expression
upon the treatment of cells with 5 hour doses of

Cancer Informatics 2008:6

339



Galea and Murray

G Buluiejuoo
1uspuadep urewop g1g 3
SrLLo -¥NQ@ \uonduosueJy 6L¥0°0 0080 161 pue sebuy ouiz qd19z ¢/8¥10 INN
0Z ulewop ase
-urejoidojejow 3
750¥°0 uononpo.dal [enxes 18€0°0 696°0 LG pue uubsjuisip e 0CNVav 718€00 AN
1/€0°0 Goo’L 29l umouxun 719810 INN
€€60020071
uioud
69€0°0 890} €s'l |eonayjodAy ££6002001 169GZ0MY
1uspuadap | Bulwloysue)
S¥LL 0 -¥NQ@ \uonduosueJy 09€0°0 1/0°1 (0] " -lowny Aseyinyd 1911d 612700 NN
Z uisjoud
Bunoeliayul
sninwins 9 J0joey) 3|
98980 [euia)x® 0} 8suodsal 8€€0°0 oog’lL qa’'l -uone|Asoqu-4ay 2di9oTydv 9¥6920MV
Z 101BANOR0D
Joydaoal Jesjonu 3
02020 Ajiajoe Joydeoal 26200 0lS’L GGl you-auljold Z04Nd 192210 NN
26200 GLq’L 8Y'L umouxun L210LLIV
06200 679’1 Sr'l umoumun 6L1LSCOMY
(oeIsIneI182 3
01640 sisayjuAsolq uisjoid 06200 €29l Gg'l 'S) I-LSgH 71S9H 029900 AN
81007
uisyoud
1S20°0 88/.°) v9'L |eonayjodAy 8eYPY1 001 G80200MY
wsijogelaw pioe
2l8[0NU pue spnosonu Z Jaquiaw ‘Ajiwiey
LELL0 ‘\@pIsoajonu ‘\aseqoajonu 0¥20°0 288’1 9L auolsly vZH Z4VZH 0S¥8¢d
| uigjoud
Jeajonu a|gionpul
71200 Go0'¢ ¥9'L £6d uisjoud Jowny LANIESdL ¥/0€€LIV
€2¢/.¥820071
uisyoud
80¢0°0 10C'¢ 26’1 |leanayjodAy €2.¥8¢0071 244440\
90200 vicc 69'L umouxun 8€89¢7
uoneJsyljoid B
#6€0°0 199 j0 uonenbal sAlisod 71100 961°¢ 69| ¢ ulfjnd €1N0 0659€00 INN
Kiobajes
9109Ss 3SV3 auab annejuasalday anjeA-d onsiels-g abueyo-q104 aweu auab ||n4 |oquiAs audan # UOISS322Y

‘pauIwWIB)ap 8¢ Jou pINod uoissaidxa [eruaiayip o uibLo sjdwes-auo e yoiym 1oy
(sjuawiyeasy unejdsio W1l | 03 8Aje[a4) sjuswiealy uiejdsuely W1 Gz ul Juepunge sydiosuel) :sisAjeue oisiye)s-g uosiiedwod ajdwes-om] "¢ a|qel

Cancer Informatics 2008:6

340



Expression profiles in human cells

SriL0

12920

8400

¥6€0°0

0L6.0

8L0L°0

GriL0

819¢€°0

GriLo

0/€0°0

1uspuadap
-¥YNQ \uonduosue.l

sisojAoopus
Buisseosoid YNYW

uonelayjold

|92 Jo uone|nbal aAnsod

sisayjuAsolq uisjoid

uodsuel) ajeipAyoqied

1uspuadap
-¥NQ \uonduosue.l

aoueusUlEW
Jo/pue ymolb [j@o

1uspuadap
-vNQ \uonduosuel
onauabida \AjlAoe
uiajoud Jo uonejnbal

G€900

22900
¢c90'0

¢c900

92900
€190°0

80900
80900

8¥G0°0

Gea0o

Geaoo

L€G0°0
89100
09¥0°0
ovv0°0

0v¥0°0

6¢v0°0

9€0'0

6100
A{0N0)

€600

1600
€800

9LL°0
Gé8L’0

1920

¢6¢'0

9ee0

9e0
8890
1690
cv9'0

Y90

9¢/.'0

o'l

Ll

qo’L

191

vl

L ll-d9l
v Jequisw ‘6z Ay
-Jlejiwis aosuanbas
unm Ajiwey
umouyun
yungns
| ewweb ‘|
x3a|dwoo uigjoid
pajejal-ioydepe
/NS Jojoey
Buroids || days
umouyun
Z @1eqsqgns
Joydaoal ulnsul
umouun
I
J10}0B} UOIBUIWIS)
uonejsuel}
onoAieyna
09501114 uejoud
leanayjodAy
(ueine)

g Bojowoy
auaboouo
BWO02.1EeS0IqI}
onjoJnauodeo)
-NosSNW Jew-A
¢ Joaquiaw
(@v) a Anwey
-gns ‘e)}esseo
Buipuig-d1v
umouun
umouun
L1 ueyoud
J9buly ouIz

a|qionpul-ygiAH
Z dwely
Buipeas uado
] |Bwosowolyo

L1d9l

V6ZINVA

1OLdV

VAR

¢Sl

1413

0960114

a4vIN

€aogav

LL2dNZ

LSIH

428 4%0)

698700 NN

G¥9/10 AN
LLOEELTV

020520MY

GZ¥900 NN
1190204V

67,00 NN
GZ/LLZOMVY

0€.¥00 NN

8€1810 AN

L9%S00 N

858200 AN
LLESTOMY
GZ/96N
G8€900 NN

09900 NN

68700 N

341

Cancer Informatics 2008:6



Cancer Informatics 2008:6

Galea and Murray

Gceoo €¢ l 91¢ ve uononpsuel) [eubis $$900.d [eolbojoig 6l
asuodsal
16200 g € 091 S Alojewweyul $S920.1d |eoibojoig gl
9]0A2 |92
88¢0°0 Z 0S ¥ 2 o1j0jiw jo uonenbal s$sa00.d [eoibojoig /1
6,200 8¢ I vv.lc 6¢ uonediuNWwWo |89 $s890.d [edifojoig 9l
sninwiis
LyL0°0 L 4 0c¢. ¢l onolq 0} asuodsal $$900.d [eolbojoig Gl
9rL00 L 14 88¢ L XUjew Jejnjj@oelixa jusuodwio) Jen|jey 145
Z¢Llioo 14 4 886 Gl uoneJayijoid |92 $$890.d [edifojoig €l
1000 L 4 1G9 Zl asuodsal asusjep ssa00.d [eaibojoig A
sninwns
G000 9l l ShlLlL A [eusa)xa 0} asuodsal $s9820.d [ealbojolg Ll
99000 . e Xord / Buipunom 0} asuodsal ssa20.d [eoibojoig 0l
G900°0 0S I 88GS €§ ssao0.d Je|n||@o $$900.d [eoibojoig 6
L1000 9l I veLL Ll Je[njj@oelpxs jusuodwog Jejnj;@d 8
8¢€00°0 Ll 4 865 Zl asuodsal sunwiwil s$s900.d |[eaibojoig ]
GZ00'0 zl 4 €69 el 8J0Ad ||82 $s820.d [edlfbojolg 9
uonelayijoid |82
€200°0 9 S yxd) 9 10 uone|nbas aanebau ssa00.d [ealbojoig S
a)isesed/uaboyjed
1200°0 ol g €6¢ ol sad 0} asuodsal $$900.d [eolbojoig 14
uoneuayjoid
61000 8 € eve 8 1192 jo uone|nbau $s8d0.d [edifojoig €
ssao0.d
81000 6 € Le 6 Je|n||89 jo uone|nbal $$900.d [eoibojoig 4
-0l X 1'G Ll e 29¢ rA) 9]9/A2 |89 Jo uonenbal S$S9201d |eoibojoig L
(soL =1eo1)
sydiiosuel) sy s}y
9109s 3SVv3 juesjiubig o, uonendod ¢, uonendod SHY IsI AiobBajes ausn wa)shAs 09 yuey

"(8102s 3QVy3) siduosued) Jueoiiubis Buowe uonejuasaldal-Ian0 JIdy) J0y
9OUBPIAS JO JBPIO Ul payuel ale salobaje) “(siduosuel] juedyiubis 9,) uosuedwod jey) 1oy paulwlialep syduosuel) passaldxe Ajjenualiayip GOl oy} Jo abe
-judolad e se pue ‘(s)H uonendod) Aeuseooiw sy} uo juasald Ajjenjoe aiam jey) A1o6s81e0 1eyy 0y Buibuojaq syduiosuel) ay} e Jo abejuaoiad e se pajuasaid
osje sl (S)IH 1s17) AlobBejeo susab yoes ui syduosuel) Jo Jaquinu ay] *(sjuawjealy unpejdsuesy \rl Gz 03 aAljejal) sjuswieady uijejdsio M | ul Juepunge
alow syduosues) Buowe saliobajes auab pajuasaidai-iano Ajuesyiubis ysow g 3saly oy :sishjeue onpsije}s-gq uostiedwod ajdwes-om| gL ajqel

342




Expression profiles in human cells

0.0327
0.0329
0.0332
0.0356
0.0388
0.0427
0.0462

166
180
515
721
472

innate immune
response
cytokine activity
cell-cell signaling
response to stress
receptor binding

Biological Process
Molecular Function
Biological Process
Biological Process
Molecular Function

20
21
22
23
24

12

956

13

morphogenesis
transforming growth

factor-beta receptor

Biological Process

25

29

Molecular Function

26

binding
cell surface receptor

0.0463

12

968

13

Biological Process

27

linked signal

transduction

0.0512
0.0667
0.0688

50
324
302

cell cycle arrest
zinc ion binding

Biological Process

28
29
30

Molecular Function

cell motility

Biological Process

cisplatin at concentrations between 1 and 50 uM.
This study focused upon a moderate set of treat-
ment conditions and a concentration of 1 uM
cisplatin was chosen, since this dose falls within
clinical ranges and has also been used in other
microarray-based gene expression studies with
cisplatin (Higuchi et al. 2003). Furthermore, this
dose was not found to induce high levels of cell
death in fibroblasts, according to cytotoxicity assay
results. While gene expression profiles have
already been used to define toxicity in various
biological systems (Chang et al. 2003; Gant, 2002;
van 't Veer et al. 2002), many of the chemical
agents have been used at significantly toxic levels.
It is now being recognised that more biologically
relevant results are obtained under conditions of
mild toxicity, particularly in the absence of any
cellular or pathological changes (Gant and Zhang,
2005). Moreover, this approach has been success-
fully applied to identify differentially expressed
genes during inflammatory responses to hexachlo-
robenzene (Ezendam et al. 2004). Together, these
observations lend further support for the final
choice of treatment conditions investigated here.
In order to compare the differential effects of
cisplatin and transplatin treatments, two different
concentrations of the clinically ineffective isomer
were examined. In addition to an equimolar dose
of 1 uM, a second approximately equitoxic dose
of 25 uM transplatin was also selected for com-
parison with 1 UM cisplatin. Similar investigations
have required transplatin at various doses between
2 and 100 times the concentration of cisplatin to
achieve equitoxic effects (Burczynski et al. 2000;
Sanchez-Perez et al. 1998; Sato et al. 1996). In
addition, at least four-fold more transplatin than
cisplatin adducts have been required to signifi-
cantly inhibit transcription elongation in HeLa cells
(Mello et al. 1995). However, in comparing 1 puM
cisplatin and 25 uM transplatin doses, it is also
possible that observed differences between gene
expression profiles may arise purely due to the
difference in drug ‘loads’. While the cytotoxicity
assay indicated that relative toxicity levels were
the same for these two treatments, the possibility
of dose effects should also be taken into consider-
ation. Interestingly, in the final microarray data,
the relative magnitude of gene expression changes
in 1 uM cisplatin-treated cells was generally more
similar to the magnitude of changes in 25 uM
transplatin treatments than in 1 UM transplatin
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dependent

treatments. This observation supports the final
choice of isomer doses for comparison.

Apart from biological variables, another major
experimental challenge relates to the intrinsic dif-
ficulties associated with the accurate measurement
of gene expression — a problem that is further
enlarged by the number of genes on a microarray.
A means of overcoming such technical variations
is through correct experimental design and the
implementation of analytical procedures that
ensure the data is as free from systematic errors as
possible (Gant and Zhang, 2005; Zhang and Gant,
2004). In the current study, these issues were pri-
marily addressed within the preliminary investiga-
tions. Microarray experiments using slides with
smaller gene-sets were employed to trial hybridi-
sation and array-scanning techniques with fluores-
cent dyes. Also, these trials used cDNA samples
derived from HelLa and K562 cancer cells, since
these cell lines were well characterised and known
to be stable. Subsequent experiments conducted
with larger arrays compared control (DMF) and
cisplatin-treated samples in order to ascertain
whether a stable response to the anti-tumour drug
could be detected. As expected, the magnitude of
the differences in gene expression levels between
control and treated samples was significantly lower
than that observed between the profiles of the two
different cell lines. However, the fact that a subset
of genes was found to exhibit significantly differ-
ent expression levels in response to drug treatment
satisfied a major goal of this project, which was to
establish a gene expression profile for cisplatin-
treated human cells using microarray technology.

The ultimate aim of this work then became to
develop a complete system for reliably determining
differentially expressed genes in drug-treated cells.
In future research, such a test system could then
be used with confidence to investigate the cytotoxic
potential of other compounds (Burczynski et al.
2000; Caba et al. 2005; Gant and Zhang, 2005).

Oligonucleotide microarrays were used to inves-
tigate the transcriptional response of human fibro-
blasts to drug treatment. Through the use of refined
normalisation procedures and rigorous statistical
evaluation techniques, these experiments produced
finite sets of genes that were classed as being dif-
ferentially expressed in response to each of the three
treatments examined. Additional cross-comparisons
between different data sets led to the identification
of a subset of genes that were differentially expressed
between cisplatin and transplatin treatments.

Cancer Informatics 2008:6

345



Galea and Murray

The following sections briefly review and
integrate the relevant literature relating to some of
the more significant biological outcomes of the
fibroblast microarray experiments. Particular
emphasis is placed on the transcripts found to be
differentially expressed between similarly toxic
doses of cisplatin and transplatin. Since very rigor-
ous and statistically robust methods for assessing
differential gene expression were implemented in
this part of the analysis, many of these transcripts
are considered to be very good candidates for fur-
ther investigation.

Transcriptional responses common

to cisplatin and transplatin treatments
The most important function of the one-sample
B-statistic analyses was to identify genes with
significantly different expression levels in control
and drug-treated fibroblast samples. For all three
treatments examined, results from the one-sample
comparisons of microarray data clearly indicated
that the cells exhibited a distinct transcriptional
response to drug treatment (relative to control).
Differentially expressed transcripts were
detected for each of the three treatments, forming
separate transcription profiles for 1 UM cisplatin,
1 UM transplatin and 25 uM transplatin. Many of
the differentially expressed transcripts were com-
mon to all three treatment profiles. However,
considering the structural similarities between the
two compounds and the relatively narrow dose
range examined, this observation was not unex-
pected. A similar study by Burczynski and col-
leagues also describes a number of differentially
expressed genes that are common to transcription
profiles compiled for equitoxic doses of cisplatin
and transplatin (Burczynski et al. 2000). Although
it was not the purpose of this investigation to anal-
yse these profiles in detail, it was interesting to
note that some of the expression responses corre-
lated well with observations from other DNA
damage studies. For example, the interferon regu-
latory factors, IRF3 and IRF6, were both distinctly
up-regulated in response to cisplatin and transpla-
tin exposure in this study. The products of these
genes are involved in a wide range of host defense
mechanisms, and their activation by various envi-
ronmental stresses, including DNA damage, has
been well documented (Kim et al. 1999; Missiaglia
et al. 2005). In the case of down-regulated tran-
scripts, glutathione peroxidase 1 (GPX1)

demonstrated significantly reduced expression
levels in the cisplatin and transplatin treatments
examined here. Similarly, decreased glutathione
peroxidase expression and activity levels have
already been observed following cisplatin exposure
in arange of biological systems (Huang et al. 1997;
Khynriam and Prasad, 2002; Naziroglu et al. 2004;
Saad et al. 2004). Overall, such correlations clearly
support the results obtained in this study.

EASE software was used to determine gene
categories that were significantly over-represented
among the transcripts of each treatment profile (see
Table 3). Similarities between these expression
profiles meant that many of the over-represented
gene categories were also common to the three
treatment groups. A number of the commonly over-
represented categories corresponded to functions
that have been previously implicated in the cel-
lular response to toxic insult. Some of these
involved genes with established roles in biological
processes such as transport, cell growth and/or
maintenance, signal transduction, cell proliferation
and regulation of cell cycle. Other significant
groups, such as lipid metabolism (which was the
most over-represented category among up-
regulated genes, see Table 3), have only few or no
former associations with the cellular response to
DNA damage (Vetoshkina and Dubskaia, 1993).
Transcripts with roles in lipid metabolism included
retinol dehydrogenase 16 (RODH-4), alkylglyce-
rone phosphate synthase (AGPS) and apolipopro-
tein C-III (APOC3). Indeed, the complex series of
events that results from drug-induced DNA damage
involves multiple biological pathways, many of
which are yet to be defined. Therefore, some of the
significant genes identified here could prove to be
novel regulators or mediators within the signal
transduction pathways that are stimulated by DNA-
adduct formation. Other transcripts may simply be
part of the broader fibroblast response to toxic
insult.

The next major goal of this investigation was
to identify treatment-specific gene expression
responses. While the microarray experiments that
directly compared 1 uM cisplatin with 1 uM or 25
UM transplatin were originally designed to identify
transcripts that were differentially expressed
between treatments, one-sample B-statistic analy-
ses failed to accurately reveal any such genes. It is
most likely that systematic errors and biases in the
microarray data significantly contributed to this
outcome. However, as an alternative approach,
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two-sample B-statistic analyses were employed to
facilitate the indirect comparison of expression
profiles determined for the three ‘control vs treat-
ment’ comparisons. Since these ‘treatment’ samples
were all labelled with the same fluorescent dye
(Cy3), this technique strongly reduced the likelihood
of false positive results and dye-specific biases in
the data. By implementing strict inclusion criteria
and a robust definition for differential expression,
the final outcome was a concise list of transcripts
that were found to exhibit significantly different
expression levels in cisplatin- and transplatin-treated
fibroblasts.

Gene expression profiles unique to

cisplatin and transplatin treatments
The two-sample comparison approach for inter-
array data analysis readily identified transcripts that
were differentially expressed between cisplatin
and transplatin treatments. Altogether, 105 tran-
scripts were found to be significantly more
abundant in cisplatin treatments (Tables 4-6),
while 64 transcripts were expressed to a greater
extent in transplatin treatments (Tables 7-9). The
application of gene ontology (GO) mapping and
pathway analysis to this data illustrated the way in
which such gene expression events could be placed
in the context of the underlying pathways and
processes affected. Among the 169 significant
transcripts, EASE revealed a number of distinct
and sometimes opposing biological themes.
A particularly interesting result was ‘negative
regulation of cell proliferation’, which was one of
the more dominant themes associated with cispla-
tin treatments (Table 10). Genes assigned to this
category included IL6, IL1B, IL8, TGFB1, GASI,
and ETS1. Other over-represented gene categories
that reflected cisplatin’s negative effects on cell
growth were ‘apoptosis’, ‘programmed cell death’
and ‘cell cycle arrest’. Together, these themes are
consistent with cisplatin’s effective cytotoxic
mechanism.

In sharp contrast, EASE characterised transpl-
atin’s differential transcript profile with a signifi-
cant proportion of genes involved in the ‘positive
regulation of cell proliferation’ (Table 11). These
included DTR, CUL3 and IRS2. Other subsets of
genes abundant in transplatin treatments had estab-
lished roles in a range of more general nucleic acid
metabolism and processing functions. Among
these, RNA/mRNA binding and splicing properties

were common, and ‘regulation of DNA-dependent
transcription’ was represented by at least eight
genes. Broadly, these themes suggest that cellular
activities following transplatin exposure are
focused at the level of DNA/RNA interactions and
various transcriptional processes. Together with
the ‘positive regulation of cell proliferation’ gene
group, this could partly indicate the early effort or
ability of cells to overcome the interference of
transplatin adducts and maintain normal cellular
processes.

Other aspects of transplatin’s differential tran-
script profile related to methods for circumventing
the negative effects of platinum exposure. For
example, several transcripts more abundant in
transplatin treatments mapped to ‘heavy metal
sensitivity/resistance’, ‘metal ion homeostasis’ and
transport-related categories. This suggests that
under the conditions employed here, some detox-
ification pathways may be more active in response
to transplatin than to cisplatin. Some of these genes
may play arole in processes that act to lower intra-
cellular transplatin concentrations and thus help to
prevent any drug-mediated interference with nor-
mal cell growth.

This interpretation would also be consistent
with transplatin’s status as the therapeutically inac-
tive isomer.

In contrast, many of the dominating biological
processes and molecular functions associated with
cisplatin’s differential expression profile were
directly concerned with the immediate fate of a
cell (Table 10). ‘Regulation of cell proliferation’,
‘cell cycle arrest’ and ‘apoptosis’ are prime exam-
ples of such crucial processes. Interestingly, these
categories were not as significantly represented
among the transcripts of transplatin’s unique pro-
file. However, since both adduct recognition and
repair processes can differ significantly for damage
induced by cisplatin and transplatin, this observa-
tion may reflect the early differential response of
cells to the two isomers (Ciccarelli et al. 1985;
Hansson and Wood, 1989; Heiger-Bernays et al.
1990; Huang et al. 1994; Jamieson and Lippard,
1999; McA’Nulty and Lippard, 1996; Mello et al.
1995; Zamble et al. 1996). Also, while cisplatin
and transplatin have been shown to inhibit DNA
synthesis in a similar manner (Bernges and Holler,
1988; Ciccarelli et al. 1985; Harder et al. 1976;
Heiger-Bernays et al. 1990; Mello et al. 1995;
Salles et al. 1983), their differential effects on
RNA transcription are also widely acknowledged
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(Brabec and Leng, 1993; Corda et al. 1993; Evans
and Gralla, 1992; Mello et al. 1995; Mymryk et al.
1995; Zlatanova et al. 1998). Thus, it seems likely
that transcript profiles would also reflect such
differences.

Overall, the results described here suggest that,
even at low doses, cisplatin may elicit a more
complex stress response in cells compared to trans-
platin. This might then imply that the need to
determine the immediate fate of a cell is more
urgent in response to cisplatin exposure. Support-
ing this notion was the abundance of transcripts
pertaining to the immune system, communication
and cell signalling processes in cisplatin treat-
ments. In an attempt to further characterise the
molecular events that may be associated with the
anti-tumour activity of cisplatin, some of the genes
found to be specifically regulated by cisplatin
(Tables 4 and 8), were considered in more detail.

Inter-array two-sample B-statistic comparisons
effectively revealed at least 169 transcripts that
were differentially expressed between cisplatin and
transplatin treatments. The incorporation of results
from the one-sample ‘control vs treatment’ com-
parisons provided a means to clarify the origins of
a subset of these differential responses. These
subsets, presented in Tables 4, 5, 7 and 8, describe
the more consistent and statistically significant
transcriptional responses that were differentially
elicited by cisplatin and transplatin in this study.
A brief functional review of some of the better
characterised genes that were specifically up-
(Table 4) or down-regulated (Table 8) by cisplatin
gave insight into some of the processes that may
contribute towards the anti-tumour activity of this
compound.

Genes specifically up-regulated

in response to cisplatin

The most common biological themes among the
transcripts up-regulated by cisplatin involved
cytokines, the regulation of cell proliferation, and
other aspects of the cellular immune/defense
response. Classed within each of these categories
were the cytokines IL-1B, IL-6 and IL-8, which
were all consistently up-regulated in response to
cisplatin treatments. These molecules are important
mediators of the inflammatory response and are
also involved in a diverse range of cellular activities
such as cell proliferation, differentiation, angio-
genesis and apoptosis. Their ability to exert direct

cytotoxic effects on tumour cells (Gaftney and Tsai,
1986; Poppenborg et al. 1999) or potentiate the
effects of certain anti-tumour agents, has also been
demonstrated (Benchekroun et al. 1993). There-
fore, the collective increase in cytokine transcripts
observed in the cisplatin-specific expression profile
was considered to be significant. Several studies
have already demonstrated a significant rise in
interleukin-1 levels after cisplatin treatments in
cultured cells (Shi et al. 1998; Sodhi and Pai, 1992;
Suresh and Sodhi, 1991; Toubi et al. 2003) and in
patients undergoing chemotherapy (Baiocchi et al.
1993). Furthermore, other groups have specifically
reported that IL-1 enhances the sensitivity of
tumour cells to cisplatin and that synergistic inter-
actions between IL-1 and cisplatin may actually
enhance p53-dependent apoptosis (Benchekroun
etal. 1993; Poppenborg et al. 1999; Song et al.
1998).

The behaviour of cytokines IL-6 and IL-8 has
also been examined extensively, particularly in
cancer patients (Baiocchi et al. 1993; Bhalla et al.
2000; Darai et al. 2003). As for IL-1, an increased
production of IL-6 and IL-8 in response to cispla-
tin has also been observed (Baiocchi et al. 1993;
Shi et al. 1998; Toubi et al. 2003). In this study,
the cisplatin-induced increase in IL-1B, IL-6 and
IL-8 expression is thus consistent with previous
findings and with the role of these cytokines as key
biochemical modulators in a range of important
biological functions.

Other elements of cisplatin’s unique transcript
profile relate to important signalling events that
can affect DNA synthesis and cellular proliferation.
For example, NMB, ITPR3 and PRKCBP1 are all
implicated in the phosphoinositide cascade, which
involves the activation of protein kinase C (PKC)
and subsequent PKC-mediated effects. In this
study, these three genes were specifically up-
regulated in response to cisplatin exposure
(Table 4). Neuromedin B (NMB) is a bombesin-
like peptide found chiefly in the central nervous
system and gastrointestinal tract (Minamino et al.
1983; Minamino et al. 1985; Namba et al. 1985).
This peptide demonstrates autocrine and paracrine
growth factor activity in some carcinomas (Lach
et al. 1995; Moody et al. 1992; Mukai et al. 1987;
Otsuki et al. 1987), but in its role as a bifunctional
regulator of cell growth, it can also significantly
inhibit cell growth when at high levels (Dobrzan-
ski et al. 1993). ITPR3 and PRKCBP1 have other
roles in the PKC transduction pathway. ITPR3 is
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a second messenger receptor that acts as an intra-
cellular calcium channel (Maranto, 1994), while
PRKCBP1 (protein kinase C binding protein 1)
functions as an anchor for activated protein kinase
C isoenzymes (Fossey et al. 2000). At present, the
precise role of the PKC transduction pathway in
the cellular response to cisplatin is yet to be fully
clarified (Grunicke et al. 2003; Hayakawa et al.
1999). However, the cisplatin-enhanced expression
of NMB, ITPR3 and PRKCBP1 in the current study
may shed light on some of the key factors involved.
Moreover, the absence of these expression events
in the response to transplatin damage suggests a
possible role for the phosphoinositide cascade in
cisplatin’s cytotoxic mechanism.

At least three transcripts among those specifi-
cally up-regulated by cisplatin had established or
tentative growth suppressing properties: GAS1
(growth arrest specific 1), CDX1 (caudal type
homeobox transcription factor 1) and AIM1 (absent
inmelanoma 1). GAS1 is an integral plasma mem-
brane protein directly involved in the negative
regulation of cell proliferation and, in some cases,
apoptosis (Del Sal etal. 1995; Evdokiou and
Cowled, 1998; Zamorano et al. 2004). CDX1
encodes an intestine-specific transcription factor
that demonstrates both pro-oncogenic functions
and growth-inhibitory effects (Domon-Dell et al.
2003; Lynch et al. 2003). AIM1, a novel non-lens
member of the betagamma-crystallin superfamily,
is a putative suppressor of human malignant
melanoma and is associated with the control and
experimental reversal of tumourigenicity (Ray
et al. 1997). To date, GAS1, CDX1 and AIM1 have
not been implicated in the response of cells to
cisplatin damage.

In contrast, cisplatin-induced transcripts that
have been shown to influence cell growth in a
positive manner include CDC25B, G0S2 and
AGER. CDC25B (cell division cycle 25B) and
GO0S2 (putative lymphocyte GO/G1 switch gene)
both exert their most prominent effects through the
regulation of the cell cycle. CDC25B and other
CDC25 genes encode protein threonine/tyrosine
phosphatases that drive cell cycle progression
through the activation of cyclin dependent kinases.
With obvious growth-promoting properties,
CDC25B over-expression has been demonstrated
in a number of cancers including head, neck, gas-
tric, ovarian, esophageal and prostate tumours, as
well as non Hodgkin’s lymphoma (Broggini et al.
2000; Gasparotto et al. 1997; Hernandez et al.

1998; Kishi et al. 2002; Kudo et al. 1997; Miyata
et al. 2000; Ngan et al. 2003). While the precise
function of GOS2 is yet to be established, its major
role in cell cycle regulation is believed to involve
the switch of lymphocytes from GO to G1 phases
(Cristillo et al. 1997; Russell and Forsdyke, 1991).
AGER (advanced glycosylation end product-
specific receptor), or RAGE, is generally a tumour-
associated antigen and has been shown to stimulate
cell proliferation and survival (Adams et al. 2002;
Arumugam et al. 2004; Eichmuller et al. 2002;
Hsieh et al. 2003). Also, at least one study has
implicated AGER in the up-regulation of the
pro-inflammatory cytokine IL-6 (Dukic-Stefanovic
et al. 2003), which was also induced in the current
study.

Genes specifically down-regulated

in response to cisplatin

Within this study, many of the transcripts found to
be specifically down-regulated in response to cis-
platin (Table 8) appeared to be more consistently
associated with tumour-promoting or growth-
stimulating effects. This finding is significant
because the relative inhibition of such effects via
decreased gene expression could contribute to the
efficient anti-tumour mechanism of cisplatin.
Among the down-regulated transcripts, genes that
have been specifically linked with the potential for
promoting growth and/or proliferation include:
ephrin-B2 (EFNB2), angiopoietin-like 4 (ANG-
PTL4), diphtheria toxin receptor (DTR) and splic-
ing factor proline/glutamine rich (SFPQ). Such
associations are outlined briefly, below.

The ephrin-B2 gene encodes a member of the
ephrin (EPH) family which, along with the EPH-
related receptors, comprise a large subfamily of
receptor protein-tyrosine kinases (Bennett et al.
1995). Members have been most strongly been
implicated in mediating developmental events,
particularly in the central nervous system (Takasu
et al. 2002) and in erythropoiesis (Suenobu et al.
2002). EFNB2 expression has also been associated
with cellular proliferation (Batlle et al. 2002; Steinle
etal. 2003), cell migration (Steinle et al. 2003),
angiogenesis (Noren et al. 2004) and the progression
of a wide range of human cancers, including malig-
nant melanoma (Vogt et al. 1998), small cell lung
carcinoma (Tang et al. 1999), osteosarcoma (Vare-
lias et al. 2002), endometrial cancer (Takai et al.
2001), colon/colorectal carcinoma (Liu et al. 2004)
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and breast cancer (Noren et al. 2004). In fact, the
capacity of the EFNB2 ligand to increase the poten-
tial for growth, tumourigenicity and metastasis in
many of these tumour cells is becoming increasingly
apparent (Noren et al. 2004; Takai et al. 2001; Vogt
et al. 1998).

The ANGPTL4 gene encodes an angiopoietin-
like secreted glycoprotein (Kim et al. 2000; Yoon
et al. 2000). It is one of the targets of the nuclear
receptor, peroxisome proliferator-activated recep-
tor gamma (PPARgamma), and has proposed roles
in adipose differentiation, lipid metabolism, glu-
cose homeostasis and angiogenesis (Chen et al.
2004; Kersten et al. 2000; Le Jan et al. 2003; Lee
and Evans, 2002; Schmuth et al. 2004; Yoon et al.
2000; Zhu et al. 2002). Like EFNB2, ANGPTL4
has also been associated with the development of
a range of cancers, including colorectal cancer,
renal cell carcinoma, bladder tumours and gastric
cancer (Kaneda et al. 2002; Landi et al. 2003; Le
Jan et al. 2003; Yoshimura et al. 2003).

DTR, also known as the heparin-binding EGF-
like growth factor (HB-EGF), encodes a transmem-
brane protein that interacts with membrane protein
DRAP27/CD9 to form the functional diphtheria
toxin receptor (Fen et al. 1993; Hayes et al. 1987;
Higashiyama et al. 1995; Iwamoto et al. 1994). In
keeping with the growth-promoting characteristics
of other down-regulated transcripts in this study,
DTR demonstrates growth factor activity and
mitogenic activity (Higashiyama etal. 1991;
Higashiyama et al. 1995). The capacity of the
diphtheria toxin receptor to stimulate cell migration
and proliferation has also been documented
(Higashiyama et al. 1991; livanainen et al. 2003;
Kiso et al. 2003), as has its contribution to the
tumourigenesis of gastric epithelial cell cancers
(Murayama et al. 2002; Wallasch et al. 2002).

SFPQ (splicing factor proline/glutamine rich)
is anovel and essential pre-mRNA splicing factor
(Patton et al. 1993). It has been implicated in
both early and late steps of pre-mRNA splicing
and is required in spliceosome formation (Patton
et al. 1993). With a number of roles in various
nuclear processes, SFPQ has also been linked
with virally-mediated steroidogenesis and
oncogenesis (Song et al. 2004). Another positive
association with cellular proliferation is the
DNA-pairing activity exhibited by this protein,
which has been directly implicated in the re-
establishment of stalled replication forks
(Akhmedov and Lopez, 2000).

Among the remaining transcripts in this study
with reduced expression levels in response to cis-
platin exposure, the metallothionein-1L (MT1L)
and transferrin receptor (TFRC) genes have been
most thoroughly studied and characterised.
Although not directly associated with the promo-
tion of cell growth, MT1L and TFRC respectively
play major roles in metal detoxification and iron
metabolism, both of which are essential cellular
processes. Furthermore, the relative effect of cis-
platin treatment on MT1L and TFRC has already
been addressed in a number of studies, as discussed
below.

Metallothioneins are intracellular metal-binding
proteins that are generally found to confer drug
resistance when induced in tumour tissues.
Metallothionein-mediated cisplatin resistance, for
instance, is well documented (Bakka et al. 1981;
Basu and Lazo, 1990; Endresen and Rugstad, 1987;
Kelland et al. 1992; Satoh et al. 1994; Suganuma
et al. 2003; Yang et al. 1994). Although cisplatin
has also been found to induce metallothionein
expression in tumour cells (Bauman et al. 1991;
Farnworth et al. 1989; Harford and Sarkar, 1989;
Kondo et al. 2003; Matsumoto et al. 1997; Singh
and Koropatnick, 1988; Zhang et al. 1995), induc-
tion appears to be dependent on the protein isoform
and the drug-resistant status of the cells (Kinsler
and Bell, 1985; Nakano et al. 2003). Furthermore,
metallothionein has also been shown to exhibit a
biphasic transcriptional response to DNA damage
in which early expression levels are largely
depressed (Hansen et al. 1997). In considering
these observations, it is thus possible that reduced
metallothionein expression could contribute to
early drug-induced anti-proliferative effects by
lessening the chemo-protection that is usually
afforded by increased metallothionein levels. In
further support of the findings reported in this
thesis, comparative studies with cisplatin and
transplatin have shown that the inactive isomer
interacts at a significantly faster rate with metallo-
thionein, and does not appear to induce its biosyn-
thesis (Farnworth et al. 1989; Harford and Sarkar,
1989; Zelazowski et al. 1984; Zhang et al. 1995).

As introduced above, the transferrin receptor
gene, TFRC, encodes a glycoprotein with an essen-
tial role in iron metabolism (Omary and Trowbridge,
1981; Schneider et al. 1984). Several interesting
relationships between cisplatin and TFRC have
also been revealed. Firstly, the ability of cisplatin
to bind transferrin is well established, and there is
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evidence that the cisplatin-transferrin complex can
be transported into cells via the transferrin receptor
(Allardyce et al. 2002; Gullo et al. 1980; Hamada
1988; Head et al. 1997; Sykes et al. 1985). In
another study, cisplatin-induced transferrin modu-
lation was found to be accompanied by severe
spermatogenic damage in rat testes (Nambu and
Kumamoto, 1995). This observation may be sig-
nificant because it has the potential to provide
insight into the enhanced sensitivity of testicular
carcinomas to cisplatin-based therapies.

Various studies have also documented the
reduced expression of TFRC mRNA after cisplatin
treatment (Marazzi et al. 1991; Parodi et al. 1988;
Tonini et al. 1986), an observation that is consistent
with the findings reported in the current study.
Moreover, Marazzi and colleagues (1991) observed
that this effect correlated well with low TFRC
protein expression and the inhibition of DNA syn-
thesis and cellular proliferation. Conversely, a
number of studies have reported a distinct correla-
tion between higher levels of TFRC expression and
increased cellular proliferation in cancer cells
(Miyamoto, 1992; Moura et al. 2004; Staber et al.
2004). Together, these findings suggest a more
defined role for TFRC in promoting cellular growth
and proliferation — again, a common theme among
the genes down-modulated by cisplatin in this
study. Overall, the connection between TFRC and
cisplatin damage is potentially an interesting one,
and certainly worthy of further study.

Conclusion

In conclusion, the current study has utilised
microarrays to identify a number of genes that are
differentially expressed in human cells in response
to cisplatin and transplatin treatments. However,
the functional interpretation of transcriptional
events revealed by microarray analysis still
presents a major challenge. Researching the
known properties and functions of such genes is
indeed a small but important step towards
understanding their biological relevance in the
experimental context of interest. In the present
study, such investigations provided insight into
several gene expression responses that are
uniquely elicited by cisplatin with respect to its
clinically ineffective isomer, transplatin. This data
has indicted a number of genes that would be
strong candidates for further gene function
analysis that can mimic the effect of cisplatin at
the gene expression level.
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