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Differential network analysis plays an important role in learning how gene interactions
change under different biological conditions, and the high resolution of single-cell RNA
(scRNA-seq) sequencing provides new opportunities to explore these changing gene-
gene interactions. Here, we present a sparse hierarchical Bayesian factor model to identify
differences across network structures from different biological conditions in scRNA-seq
data. Our methodology utilizes latent factors to impact gene expression values for each cell
to help account for zero-inflation, increased cell-to-cell variability, and overdispersion that
are unique characteristics of scRNA-seq data. Condition-dependent parameters
determine which latent factors are activated in a gene, which allows for not only the
calculation of gene-gene co-expression within each group but also the calculation of the
co-expression differences between groups. We highlight our methodology’s performance
in detecting differential gene-gene associations across groups by analyzing simulated
datasets and a SARS-CoV-2 case study dataset.
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1 INTRODUCTION

Gene network modeling has become essential to the understanding of complex biological systems
related to health and disease. These networks allow researchers to uncover and interpret
relationships and interactions between genes during different biological processes (Blencowe
et al., 2019). There are several popular methods for constructing gene networks from microarray
and bulk RNA sequencing data (Margolin et al., 2006; Langfelder and Horvath, 2008; Huynh-Thu
et al., 2010), and more recently, methods for identifying gene networks from single-cell RNA
sequencing (scRNA-seq) data have also been proposed (Specht and Li, 2016; Chan et al., 2017;
Matsumoto et al., 2017; Sekula et al., 2020). Interestingly, the vast majority of these methods have
focused only on analyzing gene expressions from one cellular population, such as a single tissue type,
disease, or environmental condition.

Since biological systems are highly dynamic, there is also great interest in performing
differential network analysis to examine the changes in network structure under different
biological settings. In the context of bulk population data (i.e., microarray and bulk RNA
sequencing), efforts have been made to develop different strategies for identifying differences
between gene-gene networks. Some approaches propose qualitative analyses through visual
inspection of different network topologies (Caldana et al., 2011; Weston et al., 2011), while
others rely on statistical tests to determine differences across conditions (Choi and Kendziorski,
2009; Gill et al., 2010; Fukushima, 2013).
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For scRNA-seq data, some research has been focused on
providing guidelines and procedures for differential network
analysis based on existing methods that have been developed
to analyze different types of transcriptome data (e.g., bulk RNA
sequencing, microarray). Cui et al. (2021) propose a pipeline for
comparing two single-cell clusters that includes differential gene
correlation analysis from McKenzie et al. (2016), weighted
correlation network analysis from Langfelder and Horvath
(2008), and differential network analysis with the method
DiffCoEx (Tesson et al., 2010). Wang et al. (2017) present
several proof-of-concept analyses of scRNA-seq data to
identify genes that are differentially connected across distinct
biological conditions by utilizing a differential connectivity test
originally developed by Gill et al. (2010) for microarray gene
expression data.

Some research has also been focused in developing new
methods designed specifically for scRNA-seq data to identify
and compare gene networks from two (or more) biological
conditions. In Chiu et al. (2018), a differential network
analysis method for scRNA-seq data is proposed that first
determines a sample size corrected gene-gene correlation
matrix for each cellular state and then identifies differential
gene-gene pairs across the states. Ye et al. (2020) use co-
expression network analysis and subgraph learning to identify
interactive gene groups within subpopulations of cells from
scRNA-seq data. Both Dai et al. (2019) and Li et al. (2021)
propose novel methods to create cell-specific networks to
examine the overall associations between genes for each
individual cell. From these cell-specific networks, researchers
can further identify changes in gene-gene networks across
different cellular populations and/or different time points.

In this work, we propose a hierarchical Bayesian factor model
for constructing gene co-expression networks (GCNs) from
scRNA-seq data to explore differences in the network
structure across various cell groups due to different biological
conditions, cell types, cell stages, or other group choice.
Treatment-dependent parameters in our model determine
which latent factors are activated in a gene, thereby allowing
for the calculation of gene-gene co-expression within each
treatment group. For simplicity, we consider a two-group
setting and refer to these groups as treatment and control, but
our model can easily be extended to a multiple group scenario, if
necessary.

The rest of this manuscript is organized as follows. We define
our proposed model and inference for differential network
analysis in Section 2. Results from simulation studies and real
data analysis are presented in Section 3 to demonstrate the
performance of our methodology. In Sections 4 and 5, we
conclude with a discussion on our results and findings.

2 METHODS

2.1 Hierarchical Bayesian Factor Model for
Two Treatment Groups
Let Ygi be the expression count of gene g (g � 1, . . ., G) in cell i (i �
1, . . .,N) for treatment ti ∈ {0, 1}, where ti � 0 represents that cell i

belongs in the control (reference) group and ti � 1 for the
treatment group. We assume that each expression comes from
the Poisson(μgi) distribution (conditionally) and model the log-
mean log(μgi) through the representation

log μgi( ) � βg + tiδg + ∑F
f�1

λifαgf;ti − ∑F
f�1

α2gf;ti
2

⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭. (1)

For each cell i, there are F associated latent factors λi � {λi1, . . .,
λiF} that impact the expression. Each factor can be thought of as
some unique cellular attribute (e.g., cell stage, pseudotime point)
that will only affect a specific set of related gene expressions. Since
we are defining our model on the log scale, we assume these
factors come from aNormal(0, 1) distribution. Marginally over λi,
the parameter βg denotes the log-mean expression for gene g in
the control group, and βg + δg is the log-mean expression for gene
g in the treatment group. Hence, δg represents the log-fold change
in the expression for gene g.

The magnitude of the impact of factor f on gene g in treatment
t is influenced by the parameter αgf;t ∈ R. With this setup, the
expression for gene g in treatment t is minimally impacted by
factors with αgf;t values close to 0 and greatly impacted by factors
with absolute values of αgf;tmuch greater than 0. It is important to
note that the αgf;t’s are treatment-dependent which allows factors
to impact the gene expressions differently across the treatments.
Clearly, if αgf;0 and αgf;1 have similar values, then factor f has a
similar influence on the gene expression in both treatments.
However, the more interesting case is when αgf;0 and αgf;1 have
very different values, which indicates a difference in the impact of
factor f on gene g between the groups. By examining the
differences between the αt � {αgf;t}(g,f) matrices, we can
identify differences between the gene networks of the
treatment groups.

For most factors, we assume that the values of αgf;0 and αgf;1 in
our model will be similar. That is, we expect αgf;0 and αgf;1 to be
similar for most (g, f) pairs. We also expect each factor f to impact
only a small number of genes, and so the αt matrices will be
sparse. To that end, we define the following hierarchy on the αgf;t
parameters:

αgf;t ∼ Normal ~αgf, κ
2
gf;tτ

2
f( ),

κgf;t ∼ half − Cauchy 0, 1( ),
τf ∼ half − Cauchy 0, 1( ),

(2)

~αgf ∼ Normal 0, ζ2( ),
ζ ∼ half − Cauchy 0, 1( ), (3)

where half−Cauchy(0, 1) is the standard half-Cauchy distribution
with the probability density function

p x( ) � 2
π 1 + x2( ), x> 0.

We refer to this model definition as Sparse Factor Model -
Single HorseShoe (SFM-SHS). Under this scheme, the horseshoe
prior (Carvalho et al., 2009) placed on each αgf;t in Eq. 2 will help
shrink the values of αgf;0 and αgf;1 together toward the common
value ~αgf. For a given factor f, we define τf as the global shrinkage
parameter and the κgf;t’s as the local shrinkage parameters. The
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global shrinkage parameter will pull the values of αgf;0 and αgf;1
toward ~αgf across g � 1, . . ., G, while the treatment-dependent
local shrinkage parameters will allow some values to be much
different than ~αgf. Thus, the κgf;t’s can account for any variability
between the groups. Our model favors borrowing information
across treatments, so it should be efficient for factor-gene effects
that are common. Nevertheless, the horseshoe priors allow big
differences to accommodate differences between treatments.

To achieve more sparsity, a horseshoe prior could also be
placed on the ~αgf parameters to help shrink most of these values
close to 0. To that end, we may replace Eq. 3 in our model with
the following:

~αgf ∼ Normal 0,ω2
gfζ

2( ),
ωgf ∼ half − Cauchy 0, 1( ),

ζ ∼ half − Cauchy 0, 1( ).
(4)

We refer to this second model definition as Sparse Factor
Model - Double HorseShoe (SFM-DHS). Here, ζ is a global
shrinkage parameter that will pull the values of ~αgf toward 0.
In Eq. 4, we introduce local shrinkage parameters (ωgf’s) to allow
some of the ~αgf values to be much different than 0. Therefore, the
horseshoe priors on the αgf;t parameters (Eq. 2) will promote
sparsity in the treatment difference and the horseshoe priors on
the ~αgf parameters (Eq. 4) will promote sparsity in the
underlying common network.

The flexibility of our defined factor structure allows for the
zero-inflation and high cell-to-cell variability typical of scRNA-
seq data. For a given factor f, the latent λif is unique to each cell i
and only affects a particular gene within a treatment when αgf;t ≠
0. If the activated factors λifαgf;t for a given gene are highly
negative, then μgi will be very small and account for the high
proportion of zeros typical of this data. Conversely, large positive
values of the factors will increase μgi (relative to the baseline of
either exp{βg} for the control group or exp{βg + δg} for the
treatment group) and yield extremely large counts,
i.e., overdispersion. In Eq. 1, the adjustment term of

− ∑F
f�1

α2gf;ti
2{ } is included in our model to ensure that E[Ygi] in

the control group is equal to exp{βg} and E[Ygi] is equal to exp{βg
+ δg} for the treatment group (after marginalizing out λi)
regardless of the αgf;t values. While we choose to let Ygi follow
a Poisson distribution conditional on the λi terms, the variance of
Ygi (marginal on λi) is

Var Ygi[ ] � exp βg + tiδg{ }
1 + exp βg + tiδg{ } ∏F

f�1
exp α2

gf;t{ } − 1( )⎡⎣ ⎤⎦ ,

Var Ygi[ ] > exp βg + tiδg{ } 1[ ] � E Ygi[ ].
(5)

Hence, Ygi is conditionally Poisson but marginally
overdispersed.

To complete the specification of our Bayesianmodel, we define
priors for the average gene expression parameters as
βg ∼ Normal(0, σ2β) and δg ∼ Normal(0, σ2δ), with standard
deviation hyperparameters σβ and σδ from half-Cauchy(0, 1).

Our methodology does rely on the tuning parameter F, a fixed
number of latent factors that is often unknown. Nevertheless, one
can fit multiple models with different numbers of factors and
choose the most suitable model based on comparing the
estimated number of differential edges between the different
choices of F. As discussed in more detail later in Section 3.1,
we found that the overall results will remain relatively consistent
for different choices of the tuning parameter F.

2.2 Network Structure
This model uses the parameters αgf;t to characterize the
relationship between the genes and a set of latent factors;
however, our real interest is in using these parameters to learn
about the genes themselves (marginally over these factors). While
the αtmatrices in our model impose a crude network structure on
the gene expressions for each treatment, the individual αgf;t
parameters are non-identifiable, and so we cannot perform
inference about these parameters directly. To that end, we
consider the matrices At � αtαTt whose elements are identifiable.

For a given treatment t, the (g, g′) element (g ≠ g′) of the G × G
matrix At provides a summation of impact by the associated
factors that are active in both genes g and g′ since
At(g,g′) � ∑F

f�1αgf;tαg′f;t. This expression also happens to be
equal to the covariance (after marginalizing out λi) between
the values of log(μgi) and log(μg′i) in treatment t,

Cov log μgi( ), log μg′i( )[ ] � ∑F
f�1

αgf;tαg′f;t.

With the marginal variance for log(μgi) being

Var log μgi( )[ ] � ∑F
f�1

α2gf;t,

the correlation between log(μgi) and log(μg′i) is defined as

Corr log μgi( ), log μg′i( )[ ] � ρgg′;t �
∑F

f�1αgf;tαg′f;t��������������������∑F
f�1α

2
gf;t( ) ∑F

f�1α
2
g′f;t( )√ .

(6)

We focus our interest on the marginal correlation of the log-
means due to the simplistic nature of the correlation structure and its
reliance on only the αgf;t parameters. As displayed in Eq. 5, the
variance expression of Ygi includes a set of βg and δg parameters that
cannot be factored out, which means the correlation structure
between Ygi and Yg′i will depend on the average expression for
each gene in each treatment. For this reason, we do not utilize the
correlation structure between Ygi and Yg′i.

2.3 Network Inference
Our methodology is coded in Stan (Stan Development Team,
2020), and the usual approach to Bayesian inference in Stan is to
generate samples from the posterior distributions with
Hamiltonian Monte Carlo (HMC; Neal, 2011). The estimated
gene-gene network structure ~Nt � {~ngg′;t}(g,g′) within each
treatment group is obtained by analyzing the posterior of the
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marginal correlation matrix in Eq. 6. To provide a quantifiable
value of the association between genes g and g′within treatment t,
M samples of each (g, g′) element in the correlation matrix are

used to calculate the posterior mean ρ̂gg′;t � 1
M∑M

m�1ρ
(m)
gg′;t .

Additionally, the credible interval (CrI) of the posterior is
examined to determine whether or not genes g and g′ are
associated with one another within each treatment group,
separately. For a given level of significance αp, two genes will
have a significant association when zero is excluded from the
100(1 − αp)% CrI. To rank correlations by significance within
each treatment group, the smallest ap such that the 100(1 − ap)%
CrI includes 0 for the given gene-gene pair can be determined.
The corresponding ap value indicates the proportion of the
posterior distribution outside of the smallest CrI that includes
0, which can be viewed as an approximate “p-value”.

When performing differential network analysis, the interest is
in examining the difference between ρgg′;0 and ρgg′;1 (θgg′ � ρgg′;0 −

ρgg′;1), and both the posterior mean θ̂gg′ � 1
M∑M

m�1(ρ (m)
gg′;0 − ρ (m)

gg′;1)
and the 100(1 − αp)% CrI for each gene-gene pair correlation
difference are obtained from the posterior. If zero is excluded
from the 100(1 − αp)% CrI, the difference between the treatment
correlations for gene g and gene g′ is significant. An approximate
“p-value” can also be determined and used to rank the differences
in correlation between the treatment groups.

We note that an iterative Markov Chain Monte Carlo (MCMC)
approach may be computationally intensive for larger scRNA-seq
datasets and will require the user to perform various diagnostic
checks to ensure MCMC convergence and mixing (Cowles and
Carlin, 1996). For those reasons, we present an alternative strategy
for inference of our model parameters. A posterior mode estimate
from our model can be obtained by maximizing the joint posterior
via the optimizing function from Stan. With this optimized estimate,
we calculate the marginal correlation structure from each treatment
group defined in Eq. 6 and determine each gene-gene pair
correlation difference θ̂gg′ � ρ̂gg′;0 − ρ̂gg′;1. The θ̂gg′ values can be
ranked based on their magnitudes to determine the gene-gene pairs
whose correlations are most different at the posterior mode, but the
significance of each difference cannot be directly determined from a
single optimization.

To produce an estimate of variability for θgg′, we utilize a
nonparametric bootstrap procedure. For each bootstrap iteration
(mb) we perform the following:

1) Resample the cellular data with replacement within each
treatment group. Here, the number of cells within each
treatment group remains the same, but a new sample of
cellular data for each treatment group is randomly selected
from the original treatment group data.

2) Obtain a posterior mode estimate from the resampled data
with the optimizing function from Stan.

3) Determine the marginal correlation structure as defined in Eq.
6 for each treatment and then calculate θ̂

mb

gg′ � ρ̂ mb

gg′;0 − ρ̂ mb

gg′;1.

From the Mb total bootstrap samples, a 100(1 − αp)%
confidence interval (CI) can be created and analyzed for ρgg′;0,
ρgg′;1, and θgg′ in the same manner as previously described above

for the posterior CrIs. Figure 1 displays a flowchart of our
proposed methodology. We note that we describe three
estimation approaches/algorithms for our methodology, each
with varying levels of computational complexity. The
nonparametric bootstrap procedure is our preferred approach
as will be shown in Section 3.

3 RESULTS

3.1 Simulation Studies
To evaluate the performance of our methodology, we simulated
count data from marginal zero-inflated negative binomial
distributions via the NORmal To Anything (NORTA)
algorithm (Cario and Nelson, 1997). The NORTA algorithm
generates a random vector from a multivariate standard
normal distribution with a given correlation structure and
transforms it into a random vector with a specified marginal
distribution. Counts were generated with the rnorta function
from the R package SimCorMultRes (Touloumis, 2016), and the
ZIM package (Yang et al., 2018) was used to estimate the

FIGURE 1 | Flowchart of our proposed methodology to perform
differential network analysis from scRNA-seq data. The input is a
preprocessed scRNA-seq dataset and the output consists of the estimated
control and treatment gene-gene correlations and the differential
network with significant gene-gene differences between treatment groups.
*Note: The bootstrap method is our recommended technique for model
parameter estimation, but parameter estimation could alternatively be
performed with a single posterior optimization or via HMC.
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parameters of the zero-inflated negative binomial distributions
from genes randomly selected from the genes considered in a
previous analysis (Sekula et al., 2020) of the mouse microglia cell
data from Tay et al. (2018). It is important to emphasize that the
simulated data come from a different generating model than our
proposed estimation approach.

We considered four different simulation schemes to create
datasets of different sizes, using either G � 50 or G � 100 genes
and setting the total number of cells to either N � 500, N � 1, 000,
or N � 2, 000 (see Table 1 for details of each simulation scheme).

To define treatment groups, the cells were divided equally into the
control group (t � 0) and the treatment group (t � 1). Correlation
structures for each treatment network were fixed to create a
differential structure of 325 different edges with G � 50 genes
(Sim 1, Sim 2, and Sim 3) and 1,300 different edges with G � 100
genes (Sim 4).

In our simulation data, we control the correlation structures by
sorting genes into ten equal groups (e.g., Group 1 consisted of the
first set ofG/10 genes, Group 2 consisted of the second set ofG/10
genes). Genes within the same group are defined to be highly
correlated and share correlation structures across the other gene
groups. Two different sets of correlation structures (Network
Structure A and Network Structure B) were utilized for each
simulation scheme, and the magnitudes of the “true” differences
between correlations (θgg′ � ρgg′;0 − ρgg′;1) ranged from 0.27 to 1.43
as displayed in Figure 2. For Network Structure B, some of the
gene-gene pairs were simulated to have opposite correlation
directions in each treatment group, thereby creating larger
correlation differences between the groups.

Two versions of our sparse Bayesian factor methodology were
investigated in the simulation studies. In our first model version
SFM-SHS, the priors defined in Eqs. 2, 3 are placed on the αgf;t
and ~αgf parameters, respectively (i.e., we use horseshoe priors on
the αgf;t’s but not on the ~αgf’s). Recall that this encourages
similarity between α0 and α1, but does not encourage sparsity
in the shared base network ~α. For the second model version SFM-
DHS, the prior on each ~αgf parameter in Eq. 3 is replaced with
the horseshoe prior defined in Eq. 4.

Using the simulated data, we ran our proposed models in R (R
Core Team, 2018) interfacing with Stan through the package
rstan (Stan Development Team, 2020). Here, we utilize the
bootstrap procedure for parameter estimation and inference
was performed on 1,000 bootstrap samples. To investigate
whether the number of factors (F) makes any impact on
model performance, we ran both models multiple times and
input a different number of factors for each run, starting with F �
5 and increasing the number of factors up until F � 20. From our
simulation studies, we found that area under the receiver
operating characteristic curve (AUROC) for the performance
of our models is relatively consistent with choices of F that are
greater than 5, see Table 2. The inverse of the approximate
“p-value” (defined in Section 2.3) for each θ̂gg′ was used for the
AUROC calculations of SFM-SHS and SFM-DHS. When
determining true positive rate (TPR) and false discovery rate
(FDR) for our methods, we utilized the 95% CIs of the difference
between each ρgg′;0 and ρgg′;1 pair for each dataset (θgg′).

To identify an appropriate choice for the tuning parameter F,
the number of factors in our model, we examined the number of
significant differential network edges. In Figure 3, we plotted the
proportion of differential network edges (number of differential
network edges divided by G(G−1)

2 ) determined by both SFM-SHS
and SFM-DHS using different choices of F. From this figure, we
see that the proportion of differential edges tends to increase (as F
increases) up to a peak and then flattens out or decreases for
larger values of F. Based on these observations, we determined the
“best” model choice for each of our models by identifying the
“peak” in the proportion of differential network edges plot after

TABLE 1 | Comparison of the “true” differences between networks and the
estimated differences between networks in the simulation studies for each
differential network method. Results displayed for SFM-SHS and SFM-DHS are
from the bootstrap estimation procedure. In Sim 1–3, there are 325 “true”
differential edges and in Sim 4 there are 1, 300 “true” differential edges.

Sim 1: G = 50, N = 1, 000

Network Structure A TPR FDR AUROC Diff. Edges
SFM-SHS; F � 8 0.782 0.000 0.980 254
SFM-DHS; F � 10 0.809 0.123 0.966 300
DGCA 0.825 0.056 0.935 284
scdNet 0.908 0.187 0.956 363

Network Structure B
SFM-SHS; F � 7 0.855 0.007 0.992 280
SFM-DHS; F � 13 0.825 0.118 0.963 304
DGCA 0.858 0.021 0.983 285
scdNet 0.680 0.208 0.861 279

Sim 2: G = 50, N = 500

Network Structure A TPR FDR AUROC Diff. Edges
SFM-SHS; F � 7 0.732 0.040 0.942 248
SFM-DHS; F � 8 0.840 0.099 0.946 303
DGCA 0.892 0.020 0.955 296
scdNet 0.908 0.117 0.966 334

Network Structure B
SFM-SHS; F � 7 0.874 0.004 0.979 285
SFM-DHS; F � 12 0.855 0.045 0.963 291
DGCA 0.849 0.028 0.942 284
scdNet 0.628 0.143 0.872 238

Sim 3: G = 50, N = 2, 000

Network Structure A TPR FDR AUROC Diff. Edges
SFM-SHS; F � 8 0.871 0.000 0.997 283
SFM-DHS; F � 8 0.985 0.140 0.983 372
DGCA 0.945 0.130 0.978 353
scdNet 0.972 0.296 0.983 449

Network Structure B
SFM-SHS; F � 7 0.898 0.000 0.999 292
SFM-DHS; F � 8 0.985 0.075 0.998 346
DGCA 0.957 0.116 0.986 352
scdNet 0.954 0.213 0.981 394

Sim 4: G = 100, N = 1, 000

Network Structure A TPR FDR AUROC Diff. Edges
SFM-SHS; F � 8 0.922 0.000 0.997 1,199
SFM-DHS; F � 8 0.958 0.162 0.970 1,487
DGCA 0.875 0.023 0.972 1,165
scdNet 0.941 0.184 0.976 1,498

Network Structure B
SFM-SHS; F � 7 0.964 0.025 0.994 1,285
SFM-DHS; F � 10 0.850 0.137 0.974 1,280
DGCA 0.883 0.042 0.970 1,199
scdNet 0.734 0.159 0.889 1,135
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FIGURE 2 | Heatmaps of the “true” correlation structures of control group (row 1) and treatment group (row 2) for Network Structure A and Network Structure B.
The colored cells in these heatmaps represent the magnitude and direction of gene-gene correlations. Row 3 contains the differences between the control and treatment
correlation structures. The colored cells in row 3 indicate the magnitude and direction of the differences in gene-gene associations across the two groups (control -
treatment).
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F � 5 factors. We focus on the results of the “best”model choice of
both SFM-SHS and SFM-DHS for the remainder of this
manuscript.

For the simulation studies, we ran also analyses with two other
differential network methods that detect differences based on
correlation structures between groups. One of the competitor
methods we considered was Differential Gene Correlation
Analysis (DGCA; McKenzie et al., 2016), which is an R
package developed for identifying differential correlations
between gene pairs in various types of genomic data
(microarray, bulk RNA-seq, scRNA-seq, etc.). DGCA
transforms correlation coefficients to z-scores and uses
differences in z-scores to generate empirical p-values for the
differential correlation between genes. These empirical p-values
are then used to calculate q-values for an FDR threshold, and a
q-value of 0.05 was set to denote significant differences for this
method.

The other method considered in our simulated studies was
scRNA-seq-based differential network analysis (scdNet), which is
a differential network method developed specifically for scRNA-
seq data by Chiu et al. (2018). In scdNet, a sample size adjustment
transformation is first applied to the correlation coefficients
within each cellular group and then statistical inference is
performed on the differences in the transformed correlations
across groups. The scdNet method provides p-values to represent
differential results for each gene-gene pair, and we controlled the
FDR with the Benjamini and Hochberg (1995) procedure. A

threshold of 5% was used to indicate significant differences with
scdNet.

For each simulated dataset, we compared the significant
differences between networks that were identified by each
method (SFM-SHS, SFM-DHS, DGCA, and scdNet) to the
“true” differences between networks. The measures of TPR,
FDR, AUROC, and the number of edges that were classified as
significantly different between networks by each method are
displayed in Table 1. From this table, we see that our
differential network methodology performs quite well
compared to the competitor methods of DGCA and scdNet.
Both SFM-SHS and SFM-DHS have high TPRs and AUROCs
while also controlling the FDRs to a nominal rate. In general,
SFM-SHS tends to be a bit more conservative and detects fewer
significant edges than SFM-DHS, but SFM-SHS performs better
at controlling FDRs below a threshold of 5%. In fact, SFM-SHS
was the only method out of the four to consistently control the
FDR to a nominal rate across the simulation cases, while scdNet
tends to have the highest FDR. The AUROCs for both SFM-SHS
and SFM-DHS are also comparable or better than the AUROCs
by DGCA and scdNet across most simulations.

To demonstrate the utility of bootstrap estimation compared
to the other parameter estimation techniques discussed in
Section 2.3, we performed a secondary analysis comparing the
results of our methods from bootstrapping to the results of our
methods generated by a single optimization and by a full HMC
sampler. For the single optimization technique (i.e., finding the
posterior mode), the significance of each difference cannot be
directly determined; therefore, we identified the Top 10% of edges
with the largest difference between treatment groups and
calculated the AUROC with the magnitudes (absolute values)
of the estimated correlation differences. For the full HMC, we
utilized rstan and combined results from 4 separate chains, with
each chain running 1,000 warmup iterations and 1,000 sampling
iterations for a total of 4,000 samples. Due to the slow speed of
HMC sampling, only the results from the smallest simulated
datasets (Sim 2: G � 50 genes and N � 500 cells) are presented.

The results in Table 3 highlight the benefits of using
optimization and bootstrapping. Both the full HMC sampler
and the bootstrap technique obtain high TPRs and AUROCs,
but the HMC sampler tends to have higher FDRs and also has
very long computational times. The single optimization
technique is also able to achieve high AUROC simply by
ranking the magnitudes of the correlation differences between
groups. Thus, a single optimization could be useful as a method to
quickly identify highly differential edges between networks. We
note that bootstrap optimizations can be run simultaneously in
parallel and by increasing the number of available cores, the
computational efficiency of the bootstrap technique will be
increased.

3.2 Case Study
To further examine our proposed methodology, we analyzed the
real dataset from Bacher et al. (2020), which consists of scRNA-
seq expressions derived from SARS-CoV-2-reactive memory
T cells. This data was obtained from the Gene Expression
Omnibus (GEO) database under accession number

TABLE 2 | Example comparisons of AUROC and number of significant differential
edges (Diff. Edges) from Sim 1 when different choices of F are input into the
SFM-SHS and SFM-DHS methods. Results are presented from the bootstrap
estimation procedure.

Sim 1: G = 50, N = 1, 000

Network structure A Network structure B

SFS-SHS AUROC Diff. Edges AUROC Diff. Edges
F � 5 0.886 217 0.888 278
F � 7 0.996 228 0.992 280
F � 8 0.980 254 0.984 260
F � 10 0.983 228 0.983 266
F � 12 0.981 222 0.979 256
F � 13 0.979 215 0.982 253
F � 15 0.980 224 0.973 253
F � 18 0.974 212 0.979 255
F � 20 0.973 197 0.981 232

Network structure A Network structure B

SFS-DHS AUROC Diff. Edges AUROC Diff. Edges

F � 5 0.882 210 0.892 287
F � 7 0.990 242 0.982 292
F � 8 0.969 280 0.976 292
F � 10 0.966 300 0.974 283
F � 12 0.960 300 0.973 298
F � 13 0.946 288 0.963 304
F � 15 0.955 292 0.956 296
F � 18 0.952 272 0.960 280
F � 20 0.951 282 0.960 279

The number in bold font denotes the “peak” of the differential edges across the different
number of factor choices for each network structure.
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GSE162086. We examined 1,833 cells that were identified by
Bacher et al. (2020) as cells with distinct transcriptional profiles
related to cytotoxic-Th1 and cycling. These cells are divided into
two patient groups: N0 � 462 cells are from non-hospitalized
patients with SARS-CoV-2 and the remaining N1 � 1, 371 cells
come from patients hospitalized with SARS-CoV-2. After
filtering out genes that were not expressed in at least 20% of
the cells, we used the R package MAST (Finak et al., 2015) to
identify G � 130 differentially expressed genes with a log2 fold
change (as estimated by MAST) of at least log 2(1.2) for further
analysis.

For each method considered in Section 3.1, we conducted a
differential network analysis and ranked each gene by the number
of significant differential connections. SFM-SHS and SFM-DHS
were implemented with the bootstrapping estimation approach,
and we selected the “best”model choice by identifying the “peak”
in the number of differential edges starting with F � 5 factors and
increasing the number of factors up to F � 20. The UpSet plot
(Lex et al., 2014) for the intersection between the differential
edges detected by each method is displayed in Figure 4. The
dark circles in each column of the UpSet plot indicate the

methods associated with the intersection and the bar above
each column represents the number of differential edges in the
intersection.

From Figure 4, we see that the methods performed quite
differently as only 388 edges were common across all four
methods. SFM-SHS was the most conservative method and
detected 608 differential edges, while scdNet method detected
6,690 differential edges, which is nearly 80% of the 8,385 total
number of possible edges. Because the differential network
analyses from the methods were so different, we selected the
top genes with the most gene-gene pair connections from each
method and used those top differentially connected genes
(DCGs) to evaluate the performance of the methods in this
case study analysis. A total of 14 DCGs (approximately 10% of
the G � 130 total genes) were identified from each of the SFM-
SHS, SFM-DHS, and DGCA analyses. From the scdNet analysis,
15 DCGs were chosen because three genes tied for the 13th, 14th,
and 15th ranks.

In Figure 5, the UpSet plot for the intersection between the top
DCGs detected by each differential network method is displayed.
Here, the bar above each column in the figure represents the

FIGURE 3 | Example proportions of significant differential network edges (number of significant differential network edges divided by G(G−1)
2 ) detected by SFM-SHS

and SFM-DHS with bootstrap estimation for different choices of F from Sim 1. The+ symbols denote the considered “peak” points across the different number of factor
choices.
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number of DCGs in the intersection. Interestingly, there was not
much overlap in the top DCGs detected by the methods
considered in this analysis. Our methods (SFM-SHS, SFM-
DHS) detect seven unique DCGs from the other methods,
whereas DGCA and scdNet identified six and nine unique
DCGs, respectively.

Only three genes (RPS26, RGCC, RPL3) were common among
the top DCGs selected by each method. These three genes play an
important role in any immune-related disorders. RPS26 and

RPL3 are ribosomal proteins (RP) and both are related to
influenza viral RNA transcription and replication. RPs are
needed for protein biosynthesis of viruses controlling
replication, regulation, and infection inside the host cells.
However, a small percentage of these proteins trigger the
immune pathway against viruses and protect the host cells.
Hence, RPs are now being considered for potential
therapeutics for SARS-CoV-2 or any such viral infections
(Rofeal and El-Malek, 2020).

TABLE 3 | Results for SFM-SHS and SFM-DHS when utilizing bootstrap (Boot), HMC, and the Top 10% of differential edges from a single optimization. Times for Boot
represent the average time of one posterior optimization of a single resampled dataset; similarly, HMC time is the average time for a single MCMC chain.

Sim 2: G = 50, N = 500

Network Structure A TPR FDR AUROC Diff. Edges Time

SFM-SHS; Boot, F � 7 0.732 0.040 0.942 248 5.6 s
SFM-SHS; HMC, F � 7 0.908 0.366 0.912 465 3.2 days
SFM-SHS; Top 10%, F � 7 0.354 0.065 0.803 123a 4.9 s
SFM-DHS; Boot, F � 8 0.840 0.099 0.946 303 75.6 s
SFM-DHS; HMC, F � 8 0.840 0.000 0.984 273 4.6 days
SFM-DHS; Top 10%, F � 8 0.369 0.024 0.910 123a 18.0 s

Network Structure B

SFM-SHS; Boot, F � 7 0.874 0.004 0.979 285 8.0 min
SFM-SHS; HMC, F � 7 0.975 0.076 0.985 343 2.7 days
SFM-SHS; Top 10%, F � 7 0.366 0.033 0.928 123a 16.8 min
SFM-DHS; Boot, F � 12 0.855 0.045 0.963 291 11.0 min
SFM-DHS; HMC, F � 12 0.849 0.148 0.922 324 5.1 days
SFM-DHS; Top 10%, F � 12 0.375 0.008 0.933 123a 17.8 min

aNumber of edges are fixed.

FIGURE 4 | UpSet plot of the number of differential edges determined by four differential network methods in the SARS-CoV-2 case study dataset. The numbers in
parentheses represent the total number of differential edges detected by the corresponding method. Results displayed for SFM-SHS and SFM-DHS are from the
bootstrap estimation procedure.
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To evaluate the biological relevancy of the top DCGs from
each method, clusters of gene ontology (GO) categories were
created with the functional annotation clustering tool from the
database for Annotation, Visualization, and Integrated Discovery
(DAVID; Huang et al., 2009a; Huang et al., 2009b). An
enrichment score is calculated by DAVID for each cluster to
help identify clusters that are involved in more enriched
(important) biological roles. As it has been suggested that
more attention should be given to groups with enrichment
scores greater of 1.3 or higher (Huang et al., 2009b), we used
a score threshold of 1.3 to classify clusters as enriched.

SFM-SHS had two enriched clusters from the DAVID
functional annotation clustering analysis, while the three other
methods (SFM-DHS, DGCA, and scdNet) had just one enriched
cluster. SFM-DHS had the cluster with the highest Enrichment
Score (3.46), and the top GO terms associated this cluster include
SRP-dependent cotranslational protein targeting to membrane,
viral transcription, and nuclear-transcribed mRNA catabolic
process, nonsense-mediated decay. These same GO terms also
appear in the most highly enriched cluster from each of the other
three methods, and the corresponding Enrichment Scores from
the SFM-SHS, scdNet, and DGCA clusters are 2.95, 2.94, and
2.80, respectively. The DCGs identified by SFM-SHS were also
associated with a second enriched cluster. The terms of cytosol,
cytoplasm, and phosphoprotein were clustered together with an
Enrichment Score of 1.71. All results from DAVID functional
annotation clustering tool are provided in the Supplementary
Materials.

Lastly, we visualized the differential networks estimated from
SFM-SHS and SFM-DHS in Figures 6, 7, respectively. The gene-
gene connections in the figures represent the differential edges for

the 7 top DCGs uniquely identified by our methods and the 3 top
DCGs identified by all four considered methods. All G � 130
genes are displayed in each figure, but we only display the
differential edges for the 10 selected DCGs. Figures of the
individual GCNs with these 10 DCGs for the non-hospitalized
and hospitalized groups are provided in the Supplementary
Figures S1–S4.

We see that a majority of these DCGs have differential edges
that are a result of larger correlations in the hospitalized group,
with CD200 and TNFSF8 having the highest numbers of
differential edges from this group. CD200 is a type 1 cell
membrane glycoprotein (GP) of the immunoglobulin
supergene family that is expressed by many cell types (e.g.,
B cells, a subset of T cells, endothelial cells, cancer cells).
GP plays an important role in immunosuppression and
regulation of anti-tumor activity. Moreover, this gene has
multiple transcript variances. Naturally, its connectivities are
different in the hospitalized group of patients compared to
non-hospitalized group.

TNFSF8 is one of the tumor necrosis factor (TNF) receptor
superfamily proteins that typically are composed of one to four
cysteine-rich domains. It has been suggested that SARS-CoV-2
disease processes present in severe illness contribute to
impaired adaptive immune responses. Additionally, TNF
super family proteins are most often used in predicting
neutralization. Elderly patients severely affected by SARS-
CoV-2 have distinctive neutralization activity-associated
protein profiles that may display an altered level of TNFSF8
(Filbin et al., 2021).

Conversely, both IFI44L and XAF1 had the highest number of
differential edges as a result of having stronger correlations in the

FIGURE 5 | UpSet plot of the top DCGs determined by four differential network methods in the SARS-CoV-2 case study dataset. Results displayed for SFM-SHS
and SFM-DHS are from the bootstrap estimation procedure.
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non-hospitalized group. Prior studies concluded that SARS-CoV-
2 and other viruses elicit an interferon response in the upper
airway. Moreover, the most significant genes upregulated by
SARS-CoV-2 were interferon inducible, such as IFI44L (Butler
et al., 2021; Huang et al., 2021). XAF1 is an X-linked inhibitor of
apoptosis (XIAP)-associated factor 1. This gene participates in
pro-apoptotic responses and has multiple transcript variants. In
Zhu et al. (2020), both IFI44L and XAF1were upregulated in T, B,
natural killer, and DC cell subsets of SARS-CoV-2 patients
compared to healthy controls.

4 DISCUSSION

Our proposed model includes continuous treatment-dependent
parameters that determine the impact of latent factors for each
gene. For simplicity, our methodology has been defined and
examined under a two-group situation, but it can be adjusted
to a multiple group scenario. In the general case, we can consider

T number of treatments and represent the log(μgi) from Eq. 1 in
the general form:

log μgi( ) � βg + ∑T−1
t�1

I ti � t( )δg;t + ∑F
f�1

λifαgf;ti − ∑F
f�1

α2gf;ti
2

⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭.

Here, the δg;t parameters depend on the treatment groups t ∈
{1, . . ., T − 1} and I(ti � t) is the indicator variable for cell i being in
treatment group t. The construction of gene-gene correlation
structures will remain the same, but there will be T sets of αgf;t
parameters that create T different networks to compare. When
performing differential network analysis, one can examine the
CrIs (or CIs) of the difference between ρgg′;t and ρgg′;t′ for each pair
of treatments t and t′ (t ≠ t′).

In addition to identifying differential network edges, our
methodology also reports estimates of the GCNs for both the
control and treatment group. We found that these estimates
generally reflect the “true” underlying correlation structures of

FIGURE 6 | Differential network estimated by SFM-SHS with the bootstrap procedure for the SARS-CoV-2 case study dataset. Edges displayed are for 10 DCGs.
The 7 unique top DCGs identified by both SFM-SHS and SFM-DHS are listed in black and the 3 top DCGs identified by all considered methods are listed in green. Each
edge color represents the group with the larger correlation magnitude.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 81081611

Sekula et al. Single-Cell Sparse Factor Models

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


the simulated datasets used in Section 3.1 (see Supplementary
Tables S1, S2). To the best of our knowledge, the method of
scdNet currently does not directly provide the estimations of the
control and treatment GCNs, separately.

When applying our methodology, we recommend using an
optimization-based procedure for estimating model
parameters. Researchers can choose to utilize a single
optimization of our model and select the “Top N” gene-
gene correlation differences from the posterior mode or
choose to utilize bootstrapping to obtain and analyze the
variability of the estimates. Both techniques achieved high
AUROCs in the simulation studies, and the bootstrap
optimization was able to control the FDRs. Furthermore,
bootstrap replicates can be performed in parallel to help
reduce computational time. One could choose to utilize a
full HMC to obtain parameter estimates and perform model
inference, but an iterative MCMC approach may be
computationally expensive and will also require the use of
diagnostic tools to assess convergence. As an alternative

approach to faster Bayesian computing, we had considered
utilizing variational inference as a tool to approximate the
posterior distribution and obtain parameter estimates as in
Sekula et al. (2019), but our preliminary experiments found
that this inference technique did not produce reliable
estimates.

When it comes to choosing an appropriate number of
factors (F) for our methodology, we recommend running
different choices for F and identifying the “peak” in the
number of differential network edges after F � 5 factors (as
illustrated in Figure 3). Starting with the choice of F � 5 helps
to capture the increase in the number of differential edges
across increasing values of F, and the number of factors
associated with the “peak” can be considered the “best”
model choice. Generally, we found that F � 7 or F � 8 for
the number of factors was a common selection for both SFM-
SHS and SFM-DHS in our considered datasets that had
between G � 50 to G � 130 genes. Thus, using either F � 7
or F � 8 would be a reasonable default choice for analyses with

FIGURE 7 | Differential network estimated by SFM-DHS with the bootstrap procedure for the SARS-CoV-2 case study dataset. Edges displayed are for 10 DCGs.
The 7 unique top DCGs identified by both SFM-SHS and SFM-DHS are listed in black and the 3 top DCGs identified by all considered methods are listed in green. Each
edge color represents the group with the larger correlation magnitude.
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similar numbers of genes. For analyses with much larger values
of G, one may anticipate needing a larger value for F.

5 CONCLUSION AND FUTURE SCOPE

In this manuscript, we have presented a sparse hierarchical
Bayesian factor model to perform differential network analysis
from scRNA-seq count data. With a latent factor structure, we
define a count model that is conditionally Poisson but marginally
overdispersed, and the flexibility of the defined latent factor
structure allows our model to account for other unique
features of scRNA-seq data such as zero-inflation and high
cell-to-cell variability. Furthermore, the defined horseshoe
prior structures in Eqs. 2–4 promote sparsity in our network
estimation and allow information to be shared across treatment
groups.

When applying our methodology, our main recommendation
is to perform analysis using the SHS version of our model with
bootstrapping, as SFM-SHS tends to be better at controlling the
FDRs compared to SFM-DHS. We also recommend using some
sort of gene selection method (e.g., differential expression) to
obtain a manageable number of genes to analyze with our
method. Since each GCN is determined by a quadratic
number of parameters (G(G−1)2 correlations), it becomes difficult
to present results both visually and numerically for larger
values of G.

As demonstrated in Section 3.1, the bootstrapping
technique for parameter estimation provides a time-efficient
implementation of our methodology that outperforms the
competitor methods of scdNet and DGCA. Also, our
methods were superior in selecting top DCGs that were

associated with biologically enriched clusters of GO
categories in Section 3.2. Both SFM-SHS and SFM-DHS
identified a unique set of top DCGs with biological functions
related to the body’s response to the SARS-CoV-2 virus.
Collectively, these analyses suggest that our sparse Bayesian
factor model will be a useful tool for the construction and
differential analysis of GCNs in future scRNA-seq experiments.
An R package implementing our proposed methodology and code
to generate the simulated datasets are available at: https://github.
com/mnsekula/scSFMnet.
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