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Publicly available RNA-seq data is routinely used for retrospective analysis to elucidate new biology. Novel transcript dis-

covery enabled by joint analysis of large collections of RNA-seq data sets has emerged as one such analysis. Current meth-

ods for transcript discovery rely on a ‘2-Step’ approach where the first step encompasses building transcripts from individual

data sets, followed by the second step that merges predicted transcripts across data sets. To increase the power of transcript

discovery from large collections of RNA-seq data sets, we developed a novel ‘1-Step’ approach named Pooling RNA-seq and

Assembling Models (PRAM) that builds transcript models from pooled RNA-seq data sets. We demonstrate in a computa-

tional benchmark that 1-Step outperforms 2-Step approaches in predicting overall transcript structures and individual splice

junctions, while performing competitively in detecting exonic nucleotides. Applying PRAM to 30 human ENCODE RNA-

seq data sets identified unannotated transcripts with epigenetic and RAMPAGE signatures similar to those of recently an-

notated transcripts. In a case study, we discovered and experimentally validated new transcripts through the application of

PRAM to mouse hematopoietic RNA-seq data sets. We uncovered new transcripts that share a differential expression pat-

tern with a neighboring gene Pik3cg implicated in human hematopoietic phenotypes, and we provided evidence for the con-

servation of this relationship in human. PRAM is implemented as an R/Bioconductor package.

[Supplemental material is available for this article.]

Transcript discovery and characterization are essential to unravel
genomic functional elements. Genomic locations and splicing
patterns of transcripts provide fundamental information for dis-
secting RNA functions. Multiple databases have been annotating
transcripts for decades (Harrow et al. 2012; O’Leary et al. 2016;
Yates et al. 2016). Yet, their collections are incomplete, mainly
due to complex and variable expression patterns under different
cellular conditions and limited coverage of transcript libraries
(Mudge and Harrow 2016).

In the last decade, RNA-seq has revolutionized experimental
transcript discovery, which had previously been performed
through technologies such as cDNA and expressed sequence tag
sequencing. RNA-seq provides a snapshot of the whole transcrip-
tomewith sequence data that often cover the entire length of tran-
scripts. Annotation databases such as RefSeq, Ensembl, and
GENCODE have all incorporated RNA-seq data for transcript dis-
covery (Harrow et al. 2012; O’Leary et al. 2016; Yates et al. 2016),
leading to major increases in the numbers of transcripts they har-
bor. For example, the number of transcripts in GENCODE version
7 increased by 45% after utilizing ENCODE RNA-seq data sets
(Djebali et al. 2012). Although efforts to repurpose public RNA-
seq data sets for biological discoveries are accelerating (Bernstein

et al. 2017; Collado-Torres et al. 2017; Lachmann et al. 2018;
Pertea et al. 2018), major opportunities exist to innovate and
deploy tools that leverage vast RNA-seq data frommultiple consor-
tia (The International Cancer Genome Consortium 2010; Djebali
et al. 2012; The GTEx Consortium 2013) to discover new tran-
scripts and therefore new biological mechanisms.

A number of computational tools have been developed for re-
constructing transcripts from a single RNA-seq data set (The
RGASP Consortium et al. 2013; Shao and Kingsford 2017).
Cufflinks (Trapnell et al. 2010), one of the first of these methods,
predicts transcript models by using a minimum chain decomposi-
tion formalism and was employed by the ENCODE Consortium to
expand the collection of transcripts (Djebali et al. 2012). StringTie,
a more recent method, improved prediction accuracy and led to
faster run times via a network flow-based approach (Pertea et al.
2015). Several meta-assembly computational methods have also
been developed to utilize multiple RNA-seq data sets (Trapnell
et al. 2012; Pertea et al. 2015; Niknafs et al. 2017). Their applica-
tions led to the discovery of a large number of new transcripts
(Cabili et al. 2011; Hezroni et al. 2015; Iyer et al. 2015). A common
feature of these approaches is a ‘2-Step’ process that first builds
transcript models from individual RNA-seq data sets by one algo-
rithm and then merges different sets of transcript models into a
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single unified set by another algorithm. An intuitive alternative to
this type of 2-Step method, which relies on two distinct algo-
rithms, is a 1-Step method that builds transcript models directly
on pooled RNA-seq data sets. While Trapnell et al. (2012) argued
that a 2-Step approach avoids high computational costs and com-
plicated splicing patterns resulting from pooling RNA-seq data
sets, benchmark comparisons have not been reported. Moreover,
the application of a 1-Step approach to transcript discovery in
intergenic regions has not been explored.

Here, we present a new computational framework named
Pooling RNA-seq and Assembling Models (PRAM) that employs a
1-Step approach for intergenic transcript discovery. PRAM was
well supported by a benchmarking experiment that assessed the
relative performances of the 1-Step and 2-Step methods. We em-
ployed PRAM to build a master set of unannotated human
transcript models in intergenic regions and computationally vali-
dated them with RAMPAGE and histone modification ChIP-seq
data. In a case study that focused on the hematopoietic system,
we applied PRAM to predict and characterize unannotated tran-
scripts in mouse and human intergenic regions. We validated
PRAM transcripts by qRT-PCR and identified new transcripts that
were supported by external genomic data and conserved features
between human and mouse.

Results

The 1-Step strategy outperforms the 2-Step strategy in transcript

discovery

For benchmarking 1-Step and 2-Stepmethods, we prepared ‘noise-
free’ RNA-seq data sets for a subset of GENCODE transcripts (ver-
sion 24). This data set contained only RNA-seq fragments that
were consistent with and sufficient for the reconstruction of the
target transcripts. In this setting, a perfect prediction method
would have the entire set of target transcripts reconstructed cor-
rectly. To build this benchmark, we downloaded 30 ENCODE
poly(A) RNA-seq data sets that were all strand-specific, paired-
end, and from untreated human cell lines (Supplemental Table
1). We selected a target subset of GENCODE transcripts based on
these 30 RNA-seq samples. We defined target transcripts as those
that (1) were multi-exon with genomic span of at least 200 nucle-
otides, (2) belonged to a single-transcript gene on Chromosomes 1
to 22 orX, (3) did not overlapwith anyother gene on either strand,
and (4) had every exonic base and splice junction covered by at
least one RNA-seq fragment from any of the 30 samples (no re-
quirement for overhang length).While requirement (2) constrains
the target set to single-transcript genes, this is consistent with the
fact that most newly discovered GENCODE transcripts were from
different genes (Supplemental Fig. 1) and removes complications
due to alternative splicing. Due to frequently incomplete RNA-
seq coverage of 5′ and 3′ ends of transcripts, we ignored coverage
of the first and last 200 nt of exons. These criteria resulted in a
set of 1256 target transcripts. We next constructed the inputs for
our benchmark test by selecting only those alignments from the
30 RNA-seq data sets that mapped to our targets. This allowed us
to build a noise-free benchmark from real RNA-seq data. We re-
frained from including noisy RNA-seq reads as such task largely de-
pends on the completeness of the transcript annotation and a
definition of “transcriptional noise,” a consensus for which is lack-
ing in the literature. All of the 30 input RNA-seq data sets and tar-
get transcript annotations are available at GitHub (https://github
.com/pliu55/PRAM_paper).

In the benchmark test, we assessed two 1-Step and three
2-Step methods. The two 1-Step methods involved pooling
RNA-seq alignments from the 30 data sets, followed by the appli-
cation of Cufflinks (‘pooling+Cufflinks’) or StringTie (‘pooling+
StringTie’) to the pooled alignments. The three 2-Stepmethods in-
volved building transcript models from individual data sets by
Cufflinks, followed by an assembly merging step with Cuffmerge
(‘Cufflinks +Cuffmerge’) or TACO (‘Cufflinks +TACO’); or build-
ing models by StringTie followed by StringTie-merge (‘StringTie +
merging’). We excluded the StringTie and TACO combination
because TACO was found to perform the best with Cufflinks
(Niknafs et al. 2017). All five methods were evaluated by their pre-
cision and recall in predicting three features of a transcript: exon
nucleotides; individual splice junctions; and transcript structure
(i.e., whether all splice junctions within a transcript were recon-
structed in a model). For exon nucleotides, all five methods had
nearly perfect precision, while the two 1-Step methods and
StringTie +merging had the highest recall (Fig. 1A; Supplemental
Fig. 2). For detection of individual splice junctions and overall
transcript structures, both of the two 1-Step methods hadmarked-
ly higher recall than the three 2-Stepmethods and had higher pre-
cision than two out of the three 2-Step methods, especially for
lowly expressed transcripts (Fig. 1A; Supplemental Fig. 2). The im-
perfect precisions on splice junctions for the three Cufflinks-based
methods were caused by false positive predictions from Cufflinks
(Supplemental Note 1; Supplemental Table 2; Supplemental Figs.
3, 4). Cufflinks and StringTie predictions on individual RNA-seq
data sets without further merging resulted in far lower precision
and recall than the five meta-assembly methods (Supplemental
Fig. 2). Overall, pooling+Cufflinks outperformed Cufflinks +
Cuffmerge and Cufflinks +TACO for all three metrics, and pool-
ing+ StringTie surpassed StringTie +merging, demonstrating the
strength of 1-Step methods. Stratifying target transcripts by their
expression levels showed that 1-Step methods had marked advan-
tages for lowly expressed transcripts.

The benchmark experiment revealed that 1-Step methods
have a notable advantage over 2-Stepmethods at learning the over-
all splicing structure of transcripts. In-depth comparison of the
number of transcripts that had their structures correctly predicted
confirmed this feature (Supplemental Table 3). To further elucidate
the advantage of 1-Step methods, we examined all 18 transcripts
thatwere predicted by both 1-Stepmethods andmissed by all three
2-Step methods (Fig. 1B; Supplemental Fig. 5). In this set of tran-
scripts, GCM1, a chorion-specific transcription factor, contains
the largest number of splice junctions (five in total). Both of the
two 1-Stepmethodsmodeled the transcript structure ofGCM1 cor-
rectly, whereas all of the three 2-Stepmethodsmissed its first splice
junction (Fig. 1B). Detailed examination of the input RNA-seq frag-
ments from all data sets revealed the existence of a single RNA-seq
fragment from the data set ENCFF782TAX that provided informa-
tion for GCM1’s first junction. This fragment was disconnected
from the rest of the ENCFF782TAX fragments (Supplemental Fig.
6). Consequently, neither Cufflinks nor StringTie predicted this
junction in their transcript models, leading all of the 2-Step meth-
ods to miss this junction (Supplemental Fig. 6). Pooling all of the
data sets brings this particular fragment together with other frag-
ments spanning this junction and enables both of the two 1-Step
methods to detect it. In summary, this benchmark test established
clear advantages of 1-Step methods over 2-Step methods.

Next, we performed a second benchmark experiment based
on simulated RNA-seq data and incorporated noise in the form of
RNA-seq reads coming from a background noise component
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(Supplemental Note 2). In this benchmark, 1-Stepmethodsmissed
fewer targets than 2-Step methods (Supplemental Table 4; Supple-
mental Fig. 7). Transcripts predicted fromnoisyRNA-seq fragments
or alignments tended tohave lower expression levels than correctly
detected transcripts and supported an expression-based filtering
step to remove noisy transcript models (Supplemental Figs. 8, 9).
For target transcripts that were predicted by all fivemethods, preci-
sion and recall were similar across allmethods, except for Cufflinks
+Cuffmerge which had lower precision (Supplemental Fig. 10).

Pooling RNA-seq fragments by 1-Step methods from diverse
samples could result in prediction of chimeric transcripts (i.e.,
combination of partially overlapping transcripts that are expressed
under different conditions). To investigate this issue, we consid-
ered ‘newly discovered’ transcripts that were annotated by GEN-
CODE version 24, but not by GENCODE version 20 (earliest
available version for hg38). Only 5% (51 of 963) of the transcripts
were partially overlapping on the same strand and could potential-
ly lead to chimeric transcripts (Supplemental Note 3; Supplemen-
tal Table 5). This indicated a very small fraction of chimeric loci for
transcript discovery. To formally evaluate this, we performed a
third benchmark experiment using 40 ENCODE RNA-seq data
sets encompassing a diverse set of nineteen human tissues from
five different donors (Supplemental Note 3; Supplemental Table
6; Supplemental Fig. 11). This experiment yielded, at most, 16 chi-

meric transcripts among the set of more
than 1000 newly discovered transcripts
for 1-Step methods (Supplemental Fig.
12). This was largely due to incomplete
RNA-seq coverage of chimeric loci and
suggested that chimeric transcripts are
not typical predictions from 1-Step
methods. Furthermore, 6–12 chimeric
transcripts were also predicted by the 2-
Step method StringTie +merging, de-
pending on the number of input data
sets (Supplemental Fig. 12).

PRAM: an R package for applying the

1-Step approach to transcript discovery

Motivated by the benchmark results, we
organized the 1-Step approach into a
computational pipeline named PRAM
(Supplemental Code) to discover tran-
scripts in intergenic regions from multi-
ple RNA-seq data sets. PRAM’s workflow
contains four steps (Fig. 2A). First, PRAM
defines its search space as the intergenic
genomic regions defined by an existing
transcript annotationandauser-supplied
minimum distance to genes. Next, it ex-
tracts all of the alignments that reside in
these intergenic regions from multiple
RNA-seq data sets. Then, it builds tran-
script models using the 1-Step method
pooling+Cufflinks, which was selected
because it had the highest recall for indi-
vidual junctions and transcript structures
in our benchmark test. In the final step,
PRAM filters transcript models by their
numbers of exons and lengths with
user-specified parameters. These tran-

script models represent the master set and serve as the entry point
for investigator-specific queries. The PRAM package is available at
Bioconductor (https://bioconductor.org/packages/pram) and sup-
ports parallel computing. To increase the package’s functionality,
PRAM also includes implementations of the other 1-Step method,
pooling+ StringTie, as well as three 2-Step methods, Cufflinks+
Cuffmerge, Cufflinks +TACO, and StringTie +merging. In addi-
tion, if a user only provides a single RNA-seq data set as the input,
PRAM accommodates building intergenic transcript models using
either Cufflinks or StringTie. Evaluation of the computational re-
quirements on the 30 ENCODE RNA-seq data sets underlined
that PRAMmarkedly reduced input size and had competitive com-
puting time and memory cost for intergenic transcript discovery
(Supplemental Note 4; Supplemental Tables 7–9). Analysis of the
trade-off betweenaccuracyandexecution time suggested thatpool-
ing+Cufflinkswitha largenumberof inputdata sets resulted in the
fewest missed targets, while pooling+ StringTie with about 30 in-
put data sets required less computing time and yielded high preci-
sion (Supplemental Figs. 13–15).

PRAM discovers new human transcripts supported by external

genomic data

Given PRAM’s pooling+Cufflinks predictions on the 30 RNA-seq
data sets, we filtered transcript models for those with at least two

B

A

Figure 1. 1-Step outperforms 2-Step reconstruction methods. (A) Precision and recall of five meta-as-
sembly methods in a benchmark test on target transcripts stratified by their maximum TPMs in the 30
ENCODE RNA-seq data sets: (1) TPM<1 (413 transcripts); (2) 1≤ TPM<10 (515 transcripts); and (3)
TPM≥10 (328 transcripts). (B) Comparison of target transcript GCM1 and predicted models by five
meta-assembly methods.
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exons and aminimumgenomic span (total length of all exons and
introns) of 200 bp. This screening resulted in amaster set of 14,226
transcript models grouped into 10,372 gene models. All of the
transcripts are available in a session named ‘PRAM_master_set’ at
the UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/
hgPublicSessions). The genomic coordinates of all models and
their expression levels in the 30 RNA-seq data sets are available
at GitHub (https://github.com/pliu55/PRAM_paper).

We compared the expression levels of these new transcripts
with those of GENCODE-annotated transcripts in the 30 RNA-
seq data sets from seven cell lines. To simplify the comparison, a
transcript’s expression level in each cell line was first summarized
as the average of its TPM values across all the RNA-seq data sets
from that cell line. If a transcript was not expressed (TPM=0) in
any RNA-seq data set of a cell line, we considered this transcript
as unexpressed in this cell line and assigned it a TPM of 0 instead
of taking the average. Then, a transcript’s overall expression level

was defined as the maximum expression level across all the cell
lines. Transcripts that were not expressed in any of the seven cell
lines were excluded from the comparison (Supplemental Table
10 displays two examples). For a fair comparison, we also excluded
GENCODE transcripts that had only one exon or had a genomic
span shorter than 200 bp. These filters resulted in 109,275
GENCODE transcripts (from a total of 198,201 GENCODE tran-
scripts on Chromosomes 1 to 22 and X) and 5389 PRAM tran-
scripts (Supplemental Table 11). Out of the 5389 PRAM
transcripts, 2938 (55%) had TPM ∈ [0.1, 1), whereas out of the
109,275 GENCODE transcripts, only 32,950 (30%) fell into the
same range, suggesting relatively lower expression levels for
PRAM transcripts (Fig. 2B). The same trend was observed if we cal-
culated a transcript’s overall expression level as themaximumTPM
across all 30 RNA-seq data sets regardless of cell line identity
(Supplemental Fig. 16). Splitting GENCODE transcripts into ‘new-
ly discovered’ and ‘long-standing’ showed that PRAM transcripts

E

B

A C

D

Figure 2. PRAM as a new computational framework predicts a valid master set of transcript models in human intergenic regions. (A) PRAM’s workflow of
input (cyan), intermediate (yellow), and output (green) files, with format labeled in brackets. PRAM’s R functions and example parameters for each step are
displayed next to arrows. (B) Distribution of GENCODE and PRAM transcripts in terms of expression levels across seven ENCODE cell lines. (C) PRAM tran-
script with the highest TPM had multiple complementary genomic features supporting its existence. The model ‘plcf_chr5_minus.2607.1’ had an average
TPM of 245 in HeLa-S3 cells. It had high DNase-seq signals around its 5′ exon, suggesting high chromatin accessibility, and had multiple H3K4me3 ChIP-
seq peaks, suggesting active transcription. Moreover, it had two RNA Pol II ChIP-seq peaks in close proximity to its transcription start site. All of these ex-
ternal genomic data supported the existence of this highly expressed PRAM transcript. (D,E) RAMPAGE (D) and histonemodification ChIP-seq (E) signals of
GENCODE and PRAM transcripts stratified by their expression levels together with ‘silent genomic regions’ defined based on H3K27me3 peaks as negative
controls in all of GM12878 or K562’s data sets. RAMPAGE and ChIP-seq values were derived from replicate 1 in their corresponding data sets (Supplemental
Tables 13, 14). Transcripts with promoter or genomic spanmappability <0.8 were excluded fromD or E, respectively, due to uncertainty in their RAMPAGE
or epigenetic signals. RAMPAGE and ChIP-seq signals were calculated as reads per million (RPM) and reads per kilobase per million (RPKM), respectively.
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had similar expression levels to those of ‘newly discovered’ tran-
scripts (Supplemental Fig. 17). Two PRAM transcripts had an aver-
age TPM>100 and were supported by complementary genomic
assays (Fig. 2C; Supplemental Fig. 18).

Further analysis on PRAM transcripts showed that they had
fewer but longer exons and shorter introns than GENCODE tran-
scripts (Supplemental Fig. 19), had higher repeat composition
than newly discovered and long-standing transcripts (Supplemen-
tal Fig. 20), and were unlikely to be enhancer RNAs (Supplemental
Note 5; Supplemental Fig. 21; Kim et al. 2010; The FANTOM Con-
sortium et al. 2014) or upstream open read frames (Supplemental
Note 5; McGillivray et al. 2018),

PRAM transcripts were built on biological RNA-seq data sets
that were prone to contamination with technical noise, which
we define as sequencing fragments not originating from true tran-
scripts. We investigated the potential impact of such technical
noise on PRAM transcript predictions by examining promoter ac-
tivities and epigenetic signals of H3K36me3 and H3K79me2, the
two histone marks that best correlated with gene expression
(Dong et al. 2012). The premise of this analysis relied on thewidely
observed association of the expression levels of actual transcripts
with their promoter activities and epigenetic signals (Dong et al.
2012) as opposed to little or no association for transcript models
arising from technical noise. We stratified PRAM transcripts into
three groups with respect to their expression levels as TPM<0.1,
TPM ∈ [0.1, 1), and TPM≥1 across all RNA-seq data sets from
GM12878 or K562 (Supplemental Table 12). In addition, we in-
cluded GENCODE transcripts (version 24) as a positive control
and further split them into long-standing and newly discovered
classes (Supplemental Table 12). This enabled us to examine if
PRAM transcripts share similar features with newly discovered
GENCODE transcripts. We quantified transcript promoter activi-
ties by computing the RAMPAGE signals (Supplemental Table
13) in the 500-bp regions flanking transcription start sites. In
both GM12878 and K562, PRAM transcripts showed the same
trend as GENCODE transcripts in that higher expression levels as-
sociated with higher promoter activities (Fig. 2D; Supplemental
Fig. 22). Moreover, interquartile ranges of PRAM transcript RAM-
PAGE signals were more similar to those of newly discovered tran-
scripts (Fig. 2D; Supplemental Fig. 22), indicating that PRAM
transcripts exhibited promoter activities that were consistent
with those of newly discovered transcripts. We also evaluated
H3K36me3 and H3K79me2 ChIP-seq signals (Supplemental Table
14) over genomic spans of transcripts. Similar to promoter activi-
ties, PRAM transcripts exhibited the same trend over TPM ranges
as GENCODE transcripts and had an interquartile range similar
to that of newly discovered GENCODE transcripts (Fig. 2E; Supple-
mental Fig. 23). Moreover, they had significantly higher signals
than those of ‘silent regions’ defined by ChIP-seq peaks of a tran-
scriptional repressive mark H3K27me3 (Fig. 2E; Supplemental Fig.
23). The positive correlation of expression levels with promoter ac-
tivities and epigenetic signatures suggested that PRAM transcripts
are unlikely to have been built from RNA-seq technical noise. The
resemblance of PRAM transcripts to newly discovered GENCODE
transcripts further support the biological relevance of our PRAM
models.

In addition to supporting the biological relevance of PRAM
transcripts by their RAMPAGE and histone modification signals,
we also asked whether a comparison of PRAM transcripts with
the latest GENCODE annotation (which was not utilized in
PRAM) and an investigation of their conservation andprotein-cod-
ing potential could provide any further support for their potential

functionality. Since PRAM transcripts were multi-exonic with a
minimum genomic span of 200 bp and resided in intergenic re-
gions that were at least 10 kb away from any GENCODE version
24 genes or pseudogenes, we asked whether the latest GENCODE
annotation (version 29, as of Jan. 2019) had multi-exonic tran-
scripts satisfying these requirements. Indeed, the latest GENCODE
annotation had 272 such transcripts. Of these, 48% (131 out of
272) overlapped with PRAM transcripts and automatically validat-
ed these 131 PRAM transcripts according to the metric of appear-
ing in the latest GENCODE annotations. Comparison with the
GENCODE regularly updated data (as of Nov. 26, 2019) revealed
that 23 GENCODE transcripts fell within intergenic regions and
11 of them (48%) overlapped with PRAM transcripts (Supplemen-
tal Fig. 24).

In terms of conservation, 64.4% (9164 of 14,226)
(Supplemental Table 15) of the PRAM transcripts mapped to the
same strand on the same chromosome in mouse (mm10). This
percentage was within the range of newly discovered GENCODE
transcripts (53.7%) and long-standing GENCODE transcripts
(72.5%) (Supplemental Table 15), suggesting that PRAM tran-
scripts were as conserved as GENCODE transcripts. Of 14,226
PRAM transcripts, 1170 (8.2%) overlapped withGENCODEmouse
transcripts (vM19), a percentage that is similar to that of newly
discovered GECODE transcripts (16.7%) but far lower than that
of long-standing GENCODE transcripts (64.5%) (Supplemental
Table 15), indicating that PRAM transcripts had features similar
to those of newly discovered GENCODE transcripts. Analysis by
phastCons scores based on 100 vertebrate species also suggested
a similar degree of conservation between PRAM transcripts and
newly discovered GENCODE transcripts, and their levels of con-
servation were higher than expected by chance (Supplemental
Fig. 25).

To assess the coding potential of PRAM transcripts, we used
BLAST (Camacho et al. 2009) and PhyloCSF scores (Supplemental
Note 6; Supplemental Tables 16–19; Supplemental Figs. 26–31;
Mudge et al. 2019). The distributions of the number of BLAST-
matched proteins for PRAM and newly discovered transcripts
are similar (Supplemental Fig. 26). As only 6% of newly discov-
ered GENCODE transcripts are classified as protein-coding, these
BLAST results suggest that the vast majority of PRAM transcripts
are also noncoding. Nevertheless, the BLAST and PhyloCSF results
for a number of PRAM transcripts are suggestive of protein-coding
potential, and we highlight three such transcripts. One repeat-
free PRAM transcript, plcf_chr2_minus.9034.2, with >100 BLAST
hits, has an ORF with a positive PhyloCSF score (Supplemental
Fig. 30). Two other PRAM transcripts have >70% of their exons
overlapped with PhyloCSF-predicted coding regions on the
same strand regardless of frame (Supplemental Table 19; Supple-
mental Fig. 31).

Comparison with Pacific Biosciences (PacBio) long reads re-
vealed that a substantial fraction of PRAM transcripts overlapped
with these long reads and had matching splice junctions
(Supplemental Fig. 32). Collectively, these comparisons with mul-
tiple complementary data sources support the biological relevance
of the PRAM transcripts.

As a final assessment of PRAM transcripts, we used RAMPAGE
and histonemodification ChIP-seq data to validate 1-Step-predict-
ed transcripts that were missed by 2-Step methods (Supplemental
Note 7; Supplemental Table 20). We found that these transcripts
had well-supported promoter activities (Supplemental Fig. 33)
and epigenetic signals (Supplemental Fig. 34), suggesting that
1-Step methods outperformed 2-Step methods.

Transcript discovery by pooling RNA-seq data sets

Genome Research 1659
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.252445.119/-/DC1


New transcripts were discovered by PRAM from mouse

hematopoietic RNA-seq data sets and validated experimentally

As a case study, we applied PRAM on 32 hematopoietic mouse
ENCODE RNA-seq data sets (Supplemental Table 21) to predict un-
annotated transcripts in intergenic regions (Fig. 3A). Specifically,
we used the 1-Step method of pooling+Cufflinks, which had the
highest recall for splice junction and splice pattern identification
as well as comparable recall for exon nucleotide detection in our
benchmark test. PRAM built 6969 gene models containing 8652
spliced transcripts. Focusing on genes that could be most easily
validated, we selected the 2657 gene models, corresponding to
3189 transcripts, with mappability ≥0.8 and not overlapping
with GENCODE or RefSeq genes on either strand (Fig. 3A). We fur-
ther screened transcript models by selecting those that were differ-
entially expressed in at least two of the following hematopoiesis-
related RNA-seq data sets (Supplemental Table 22): (1) wild type
versus Gata2 +9.5 enhancer-mutant aorta-gonad-mesonephros
(AGM, which includes hematopoietic stem cells) (Gao et al.
2013); (2) wild type versus Gata2 −77 enhancer-mutant fetal liver
containing hematopoietic stem and progenitor cells (Johnson
et al. 2015); and (3) untreated G1E-ER-GATA1 versus ß-estradiol-
induced (48 h to induce erythroid maturation) G1E-ER-GATA1
proerythroblast-like cells (Tanimura et al. 2016). GATA2 is amaster
transcriptional regulator of hematopoiesis (Tsai et al. 1994; Katsu-
mura et al. 2017). The +9.5Gata2 enhancer triggers hematopoietic
stem cell (HSC) generation in the AGM (Gao et al. 2013; Soukup

et al. 2019), and both the +9.5 and −77 enhancers confer differen-
tiation potential to myelo-erythroid progenitor cells (Johnson
et al. 2015, 2020; Mehta et al. 2017). In addition to the three
data sets, we analyzedwild type versus Exosc10mutant pluripotent
embryonic stem cells (Pefanis et al. 2015). This selection step re-
moved most of the gene models and resulted in 10 gene models
(corresponding to 18 transcript models). Further filtering by con-
servation between mouse and human, as well as mappability of
the exons to ensure qRT-PCR primer design (see Methods; Fig.
3A; Supplemental Table 23), narrowed down the gene models to
six (corresponding to 13 transcript models) for experimental vali-
dation (Table 1; Supplemental Fig. 35). We evaluated this resulting
list for potential regulatory activity by occupancy of GATA2 and
TAL1, which often colocalizes with GATA2 on chromatin (Woz-
niak et al. 2008; Fujiwara et al. 2009; Wilson et al. 2010). All of
the gene models had at least one GATA2 peak nearby based on a
large collection of ChIP-seq data sets (Table 1; Supplemental Table
24). Moreover, four out of six models had GATA2 peaks overlap-
ping with predicted enhancers identified during mouse blood for-
mation (Table 1; Lara-Astiaso et al. 2014). Two models,
CUFFm.chr12.33668 and CUFFp.chr12.15498, had GATA2 and
TAL1 peaks overlapping with each other in three ChIP-seq data
sets: two in G1E cells and one in HPC7 cells, an immortalized
cell line that mimics multipotent hematopoietic precursors (Table
1; Fig. 3B;Wilson et al. 2010). In two data sets, G1E and HPC7, the
overlapping GATA2-TAL1 peaks harbored a “+9.5-like” composite
element CANNTG-[N6-14]-AGATAA (N represents A, C, T, or G;

BA

C

Figure 3. Genomic features and experimental validations of PRAMmouse transcripts. (A) Workflow of applying PRAM to discover transcripts frommouse
hematopoiesis-related RNA-seq data sets: input (cyan), intermediate results (yellow), and output (green). (B) PRAM transcripts CUFFp.chr12.15498 and
CUFFm.chr12.33668 had multiple supporting genomic features from external data sets. (C) Semi-qRT-PCR measurements of the six PRAM models in un-
treated (Unt) and 48-h ß-estradiol (ß-est)-treated G1E-ER-GATA1 cells. Red dots demarcate anticipated transcript sizes. Isoforms with splice junctions dis-
tant from each other were measured separately. Gene model name prefixes were removed for brevity.
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the spacer in between ranged from 6 to 14 nucleotides) (Table 1;
Fig. 3B). This element resembles that found in the +9.5 Gata2
intronic enhancer, which is required for hematopoietic stem cell
genesis (Gao et al. 2013) and is also found on diverse hematopoi-
etic-regulatory genes (Wadman 1997; Hewitt et al. 2015, 2017).
All ChIP-seq, motif, and enhancer features supported biological
relevance of these six gene models.

To experimentally validate these six models, we performed
semiquantitative reverse transcription PCR (semi-qRT-PCR) in un-
treated and 48-h ß-estradiol-treated G1E-ER-GATA1 cells (Supple-
mental Tables 22, 25; Supplemental Fig. 36). We chose this
system because it had the largest number of computationally in-
ferred expressedmodels (TPM≥1 in all RNA-seq replicates of a con-
dition): two in untreated and four in treated cells (Supplemental
Table 26). In contrast, atmost, onemodelwas inferred as expressed
in eachof the twoconditions of theother three systems (AGM, fetal
livers, and ES in Supplemental Table 26). In untreated cells, semi-
qRT-PCR showed that CUFFm.chr12.33668, CUFFm.chr17.20196,
CUFFp.chr10.20259, and CUFFp.chr12.15498 (faint band for iso-
form 2) were expressed, while the other two models were not de-
tected or yielded nonspecific amplification (Fig. 3C). This result
echoes the computationallyestimated status for fiveof the sixmod-
els: CUFFm.chr12.33668 and CUFFp.chr10.20259 had TPM>1,
CUFFp.chr12.15498 had TPM slightly lower than 1, and two
out of the other three models had TPM<1 in all three replicates
(Supplemental Table 26). Only the expression status of
CUFFm.chr17.20196 was discordant between semi-qRT-PCR and
computational inference. In cells treated by ß-estradiol for 48 h,
all of the fourmodels, CUFFm.chr12.33668, CUFFm.chr17.20196,
CUFFp.chr10.20259, andCUFFp.chr12.15498, which had TPM>1
in all three replicates, were detected by semi-qRT-PCR, whereas the
other twomodels thathadTPM<1 inall three replicateswere either
notdetectedorhadnonspecific amplification (Fig. 3C; Supplemen-
tal Table 26). These results not only confirmed the existence of
PRAM transcripts but also illustrated PRAM’s strength in character-
izing their splicing structures. We further remark that only two of
the four validated gene models were successfully predicted by 2-
Step methods (Supplemental Note 8; Supplemental Tables 27,
28), highlighting the higher sensitivity of the 1-Step approach
over the 2-Step approach.

Expression of PRAM models correlates with neighboring

gene Pik3cg

Since we had detected CUFFm.chr12.33668, CUFFm.chr
17.20196, CUFFp.chr10.20259, and CUFFp.chr12.15498 in un-
treated and 48-h ß-estradiol-treated G1E-ER-GATA1 cells, we
decided to validate their expression levels under the corres-
ponding condition. All four of them had higher average expres-
sion levels in treated cells than in untreated ones (Fig. 4A;
Supplemental Fig. 37). In particular, CUFFm.chr12.33668,
CUFFp.chr12.15498, and CUFFm.chr17.20196 were significantly
differentially expressed (Fig. 4A; Supplemental Fig. 37).
CUFFm.chr12.33668 and CUFFp.chr12.15498’s upstream and
downstream neighbors, Pik3cg and Prkar2b, were also signifi-
cantly differentially expressed (Fig. 4A). Moreover, both genes
and both gene models had fold changes greater than two in
the RNA-seq data sets between the same two conditions and in
the RNA-seq data sets of wild type versus +9.5 enhancer-mutant
AGM (Fig. 4B). The expression patterns of our gene models and
their neighboring genes instigated us to further investigate their
expressions during erythroid maturation of fetal liver cells. Both
gene models were differentially expressed (Supplemental Fig. 38),
which again confirmed their existence and PRAM’s strength in
predicting unannotated transcripts. Pik3cg and Prkar2b were not
differentially expressed in fetal liver cells (Supplemental Fig.
38), indicating that their relationship with our gene models is
system-dependent. We examined protein-coding potential for
the two transcripts of CUFFm.chr12.33668 and a transcript of
CUFFp.chr12.15498 that was differentially expressed in untreated
and treated G1E cells (Fig. 4A). All of them matched at least
one mammalian protein containing ≥60 amino acids with
≥75% of its sequence aligned under a BLASTX e-value cutoff of
10−15 (Supplemental Table 29). CUFFm.chr12.33668.2 and
CUFFp.chr12.15498.2 aligned to multiple protein segments lon-
ger than 100 amino acids, whereas CUFFm.chr12.33668.1, the
longest transcript of the three, only aligned to a protein segment
of 69 amino acids. Comparison with a recent mouse GENCODE
annotation (vM18) showed that CUFFm.chr12.33668.1 and
CUFFm.chr12.33668.2 overlapped with newly annotated tran-
scripts in similar 5′ and 3′ ends (Supplemental Fig. 39). The

Table 1. Genomic features of PRAM-predicted mouse gene models

Gene model ID
Is differentially expressed

Number of GATA2 ChIP-seq data
setsa

Number of GATA2-TAL1 ChIP-
seq data setsb

AGMc Fetal liversd G1Ee ESf Total
Peak overlapping

with a predicted enhancer Total Peak with a +9.5 motifg

CUFFm.chr12.32594 Yes No Yes No 2 1 0 0
CUFFm.chr12.33668 Yes No Yes No 5 2 3 2
CUFFm.chr17.20196 Yes No Yes No 2 0 0 0
CUFFp.chr10.20259 Yes No Yes No 1 1 0 0
CUFFp.chr12.15498 Yes No Yes No 5 2 3 2
CUFFm.chr10.13181 No No Yes Yes 1 0 0 0

aHaving a GATA2 ChIP-seq peak in <10 kb to a gene model.
bHaving GATA2 and TAL1 ChIP-seq peaks overlapped and in <10 kb to a gene model. GATA2 and TAL1 ChIP-seq data are required to be obtained
under the same condition.
cRNA-seq data set of wild type versus deletion of Gata2 +9.5 enhancer aorta-gonad-mesonephros.
dRNA-seq data set of wild type versus knockout of Gata2 −77 enhancer fetal livers.
eRNA-seq data set of untreated G1E-ER-GATA1 versus treated by ß-estradiol for 48 h.
fRNA-seq data set of wild type versus Exosc10 mutant pluripotent embryonic stem cells.
g Gata2 +9.5 element motif CANNTG-[N6-14]-AGATAA (N represents A, C, T, or G; the spacer in between ranged from 6 to 14 nucleotides).
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new GENCODE annotation suggested again the existence of
PRAM mouse transcripts.

Given CUFFm.chr12.33668 and CUFFp.chr12.15498’s inter-
esting features, we asked whether they had a human counterpart
and, if so, whether they neighbored the same genes and coex-
pressed as in mouse. We collected all ENCODE RNA-seq data sets
for human K562 erythroleukemia cells (Supplemental Table 30)
andappliedPRAMtopredict transcriptmodels. TwoPRAMmodels,
CUFFm.chr7.6148 and CUFFp.chr7.6106 overlapped with the lift-
ed genomic span of CUFFm.chr12.33668 (Fig. 4C; Supplemental
Fig. 40). Neithermodel overlappedwith any transcript in the latest
GENCODE (version 29) or CHESS annotation (version 2.1) (Pertea
et al. 2018). Both of them neighbored with PIK3CG and PRKAR2B

(Supplemental Fig. 41), displaying conserved synteny between
mouse and human at this locus. Moreover, PIK3CG, PRKAR2B,
and both PRAM models resided within chromosome segment
7q22, ofwhich deletions had been identified inmyeloid leukemias
(Fischer et al. 1997). CUFFm.chr7.6148 had an estimated TPM>1
and expected fragment counts >500 in a large fraction of K562
RNA-seqdata sets (Supplemental Fig. 42A,B), supporting its expres-
sion in K562. In contrast, CUFFp.chr7.6106 was not expressed in
K562 (Supplemental Note 9; Supplemental Figs. 42, 43). K562
RAMPAGE and RNA Pol II ChIP-seq data sets also supported
this observation (Fig. 4C). Both RAMPAGE replicates had a
peak near the 5′ end of CUFFm.chr7.6148, suggesting a potential
transcription start site, whereas no RAMPAGE peak was observed

E

F

BA

C

D

Figure 4. Expression of PRAM transcripts correlate with the neighboring gene Pik3cg in mouse and human. (A) Expression levels of PRAM transcripts and
their neighboring genes in untreated (Unt) and 48-h ß-estradiol (ß-est)-treated G1E-ER-GATA1 cells. CUFFp.chr12.15498’s isoform 1 was not detected by
semi-qRT-PCR and thus was not measured here. Two-tailed Student’s t-test; (∗∗) P-value < 0.01, (∗∗∗) P-value < <0.001. (B) Fold changes of PRAM mouse
transcripts and their neighboring genes in the RNA-seq data sets of untreated and 48-h ß-estradiol-reated G1E-ER-GATA1 cells (G1E) and wild type versus
deletion ofGata2 +9.5 enhancer aorta-gonad-mesonephros (AGM). (C) Counterparts of PRAMmouse transcripts in humanwith their supporting genomic
features. (D) Semi-qRT-PCR measurement of PRAM human transcripts and their neighboring genes. Gene model name prefixes were removed for brevity.
(E,F ) Correlation of gene expression levels between CUFFm.chr7.6148 with PIK3CG and PRKAR2B in K562 cells (E) and TCGA-LAML patients (F).
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for CUFFp.chr7.6106 (Fig. 4C). Similarly, both RNA Pol II ChIP-seq
replicates had a strong peak around the 5′ end of CUFFm.
chr7.6148, and no peak was observed around CUFFp.chr7.6106
(Fig. 4C). Following this analysis, we carried out experiments to as-
sess whether CUFFm.chr7.6148 was a bona fide expressed tran-
script in K562. Our semi-qRT-PCR detected the two junctions of
isoform 1 of CUFFm.chr7.6148, while not detecting the unique
splice junction for the second isoform (Fig. 4D), indicating that iso-
form 1 was expressed in K562. This isoform matched to multiple
mammalian proteins under the same criteria we used for the three
mouse transcripts (Supplemental Table 31). Taken together, our
computational and experimental results as well as evidence from
ENCODE data all revealed the existence of CUFFm.chr7.6148 in
K562.

We further considered the potential biological relevance of
CUFFm.chr7.6148 by using additional genomic analysis. A pre-
dicted enhancer that resided in the intron of the first isoform
and downstream of the second isoform of mouse transcript
CUFFm.chr12.33668 (Fig. 3B) successfully lifted over to the intron
of human CUFFm.chr7.6148 (Fig. 4C). This enhancer region was
highly conserved across vertebrates, had high chromatin accessi-
bility as suggested by DNase-seq, and had ChIP-seq signal for en-
hancer mark H3K27ac (Fig. 4C), indicating relevance of this
predicted enhancer in K562. Moreover, this predicted enhancer
was also occupied by TAL1 in the corresponding ChIP-seq
experiment, as were its counterparts in mouse (Figs. 3B, 4C; Sup-
plemental Table 32), further suggesting its potential involvement
in the hematopoietic system. We assessed coexpression of
CUFFm.chr7.6148 with its two neighboring genes, PIK3CG and
PRKAR2B, both in K562 and relevant The Cancer Genome Atlas
(TCGA) samples. In K562, expression of CUFFm.chr7.6148 signifi-
cantly correlated with both PIK3CG and PRKAR2B (Fig. 4E). In
TCGA Acute Myeloid Leukemia patients (TCGA-LAML) (https://
portal.gdc.cancer.gov/projects/TCGA-LAML), CUFFm.chr7.6148
was expressed at low levels (Supplemental Fig. 42C,D); however,
its expression significantly correlated with that of PIK3CG (Fig.
4F). In mouse, Pik3cg encodes a catalytic subunit of PI3K, and
mice lacking this subunit have reduced thymocyte survival and de-
fective T lymphocyte activation (Sasaki et al. 2000). The expression
pattern of PIK3CG and CUFFm.chr7.6148 together with a poten-
tially active enhancer harbored in CUFFm.chr7.6148’s intron indi-
cates possible involvement of PRAM models in hematopoiesis.

Discussion

Transcript discovery and characterization opens up new dimen-
sions in cell regulation across a broad spectrum of research fields.
There is strong support for the existence of many unannotated
transcripts in the well-characterized human and mouse genomes
(Mudge and Harrow 2016). To innovate new strategies to identify
such transcripts, we developed a computational framework named
PRAM that pools multiple RNA-seq data sets to build transcript
models as a master set independent of cell type or condition. We
demonstrated that PRAM’s 1-Step transcript reconstruction ap-
proach outperforms the conventional 2-Step approach in data-
driven computational experiments. In our application of PRAM
to mouse and human genomes, we discovered unannotated tran-
scripts in hematopoietic cell systems, which were supported by
multiple lines of genomic data evidence and validated by semi-
qRT-PCR and differential expression experiments. Moreover, one
transcript shared an expression pattern with its neighboring genes
in bothmouse and human. Collectively, our experiments indicate

that PRAM provides an efficient and reliable method to extend ex-
isting technologies to discover transcripts.

To discover new transcripts in intergenic regions, PRAMpools
multiple RNA-seq data sets first and then builds transcript models.
This new approach increases both the depth and coverage of input
sequencing data for predicting transcript models and therefore en-
ables PRAM to have higher recall than other methods (Fig. 1A).
PRAM is computationally feasible since it leverages the observa-
tion that the number of RNA-seq fragments aligning to intergenic
regions is much smaller than that aligning to known genes
(Supplemental Tables 7, 8). Moreover, stratifying model building
by chromosome and strand for parallel computingmakes the com-
putational cost of 1-Stepmethods only slightly higher or compara-
ble to 2-Step methods (Supplemental Table 9).

We have not yet explored whether PRAM is useful for predict-
ing additional transcripts at known genic regions. We anticipate
that the pooling feature of PRAM would increase the detection
power for novel transcripts that partially overlap with existing an-
notations. Furthermore, PRAM’s parallel-processing capability and
its ability to run on specified genomic regions make it computa-
tionally feasible to apply PRAMto predict novel transcripts at genic
regions.However, the issue of chimeric transcript prediction is like-
ly to bemore significant at known genic regions, due to the highly
overlapping nature of alternative isoforms. Nevertheless, the high-
er detection rate enabled by poolingwithin intergenic regions sug-
gests that it would be worthwhile to investigate whether a 1-Step
approachmay improve detection of alternatively spliced isoforms.

Methods

Benchmark test on 1-Step and 2-Step methods

For each alignment file, we only considered fragments that had
both mates properly paired and uniquely mapped to the same
chromosome (1 to 22 andX) to avoid any ambiguity during count-
ing. When different fragments aligned to the same genomic re-
gion, we kept, at most, 10 of them for each of the uni- and
multimapping fragments to speed up transcript assembly. Based
on the 1256 target transcripts, we filtered RNA-seq data sets by
keeping spliced fragments thatmatched to any transcript junction
and nonspliced fragments that solely aligned to exons.

In all five transcript reconstruction methods, we used 0.1 as
the minimum isoform fraction cutoff. We removed transcript
models that did not have strand assignments (not labeled as ‘+’
or ‘−’) or that were labeled with a strand inconsistent with the in-
put RNA-seq data (e.g., a model built from RNA-seq alignments on
‘+’ strand, but labeled as ‘−’ strand). For Cufflinks (version 2.2.1)
and StringTie (version 1.3.3), we allowed 100% multireads per
transcript and required at least one fragment to report a transfrag.
Cufflinks provided options that enabled us to use bias correction
by human genome sequences and a ‘rescuemethod’ formultimap-
ping fragments. For StringTie-merge and TACO (version 0.7.0), we
allowed transcript models to be reported regardless of their expres-
sion levels (Cuffmerge does not have an option for this purpose).
Because the input reads were strand-specific, we used TACO’s op-
tion to disable assembly of unstranded transfrags.

Prediction and validation of master set human intergenic

transcript models

After a master set of transcript models was built, we merged
them with GENCODE (version 24) transcript annotations and
quantified their expression using ENCODE’s STAR-RSEM protocol
(https://github.com/ENCODE-DCC/long-rna-seq-pipeline).
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RAMPAGE signals (in RPM) for a transcript’s promoter were calcu-
lated by ENCODE’s RAMPAGE processing pipeline (https://github
.com/ENCODE-DCC/long-rna-seq-pipeline/blob/v2.3.0/dnanexus/
rampa ge/rampage-signals/resources/usr/bin/rampage_signal.sh).
ChIP-seq alignments labeled as unmapped, not passing filters (e.g.,
platform/vendor quality controls), or PCR/optical duplicateswere re-
moved.We kept, atmost, five strand-specific identical alignments to
avoid PCR artifacts and calculated ChIP-seq signals (in RPKM)
over all of a transcript’s exons and introns.

Discovery and characterization of new mouse

and K562 transcripts

Wedefined ‘intergenic regions’ as genomic intervals thatwere 10 kb
away from any known genes on either strand of Chromosomes 1 to
19, X, and Y according to GENCODE annotation version M9. We
aligned each RNA-seq FASTQ file by STAR (Dobin et al. 2013) with
ENCODE’s protocol. In order to detect more novel splice junctions
for predicting transcript models, we ran STAR in its ‘2-pass’ mode.
To look formodels thatweremore likely to be true transcripts, we re-
moved single-exonmodels andmodels with genomic span <200nt.
We also removedmodels that were labeledwith the incorrect strand
(e.g., built from ‘+’ strand RNA-seq data but were labeled as ‘−’
strand). To make sure transcript models could be validated experi-
mentally, we removed models with overall (exons and introns)
mappability score <0.8, all exons’mappability score <0.8, or any ex-
on’s mappability score <0.001. Since we were interested in tran-
scripts that were conserved between mouse and human, we only
kept models that had all of their exons and introns mapped to the
same strand on the same chromosome after being lifted over from
mouse genome (mm10) to human genome (hg38).

Abundances were estimated by STAR and RSEM using
ENCODE’s protocol. Differential expression analysis was carried
out with EBSeq (Leng et al. 2013). Differentially expressed tran-
script models were selected at a false discovery rate (FDR) of 0.05
with additional requirements of fold change ≥2 and normalized
fragment counts ≥10 in all RNA-seq replicates from at least one
condition. For ChIP-seq data with multiple replicates and control,
PRAM called peaks using SPP (Kharchenko et al. 2008) and IDR
(Li et al. 2011) by ENCODE’s protocol with an IDR threshold of
0.05. For ChIP-seq data with no replicate and with control, peaks
were called by SPP only. For ChIP-seq data without control, all
ChIP-seq replicates were pooled into one, and peaks were called
by MOSAiCS (Kuan et al. 2011) with a fragment length of 200 nt
and a bin size of 200 nt. A one-sample MOSAiCS model was fitted
with estimated background, and peaks were called by a two-signal-
component model with default MOSAiCS options. DNA motifs
and enhancers were searched within 10 kb of transcript models.
PRAM used UCSC Genome Browser’s liftOver to examine the con-
servation of transcript models and nearby predicted enhancers be-
tween genomes (e.g., mouse and human). PRAM also used UCSC
Genome Browser’s bigWigSummary and available mappability fi-
les to calculate mappability scores of the transcript models at the
exon and transcript level. Since the predicted enhancers were pub-
lished in mouse genome version mm9, we lifted them over to
mm10. We predicted and characterized K562 transcript models
by PRAM following the same procedure used for mouse.
Intergenic regions were defined based on GENCODE version 25.
Enhancers were lifted from mm9 to mm10 first and then lifted
to hg38 due to lack of direct conversion between mm9 to hg38.

Experimental validation

G1E-ER-GATA1 cells were maintained as described previously
(Tanimura et al. 2018). ER-GATA1 activitywas induced by addition

of 1 μM β-estradiol (Steraloids) to the medium for 48 h. K562 cells
were maintained in RPMI medium (Gibco) with 10% fetal calf se-
rum (Gemini). Fetal liver (FL) precursors were collected from
E14.5 embryos and lineage-depleted as described previously
(McIver et al. 2018). Cells were cultured in a humidified incubator
at 37°C (5% carbon dioxide) for 48 h. FACS of erythroid matura-
tion was conducted on a FACSAriaII (BD Biosciences) using
CD71 and Ter119 markers (antibody catalog number: PE-CD71
BioLegend #113808 and APC-Ter119 BioLegend #116212). R1:
CD71lowTer119−; R2: CD71hiTer119− C; R3: CD71hiTer119+; R4:
CD71low/−Ter119+.

Total RNA was purified with TRIzol (Thermo Fisher
Scientific). DNase (Thermo Fisher Scientific) treatment was per-
formed on 0.1–1 μg RNA at 25°C for 15 min, followed by addition
of 2.5mMEDTA at 65°C for 10min. cDNAwas prepared by anneal-
ingwith 250 ng of a 1:5mixture of randomhexamer and oligo (dT)
primers incubated with m-MLV Reverse Transcriptase (Thermo
Fisher Scientific) with 10 mM DTT, RNasin (Promega), and
0.5 mM dNTPs at 42°C for 1 h, and heat-inactivated at 95°C for
5 min. For confirmation of transcripts, PCR reactions were per-
formed with GoTaq polymerase (Promega) according to the man-
ufacturer’s instructions prior to running on a 2% agarose gel. For
qPCR, cDNA was analyzed in reactions (20 μL) containing 2 μL
of cDNA, primers (Supplemental Table 25; Supplemental Fig.
36), and 10 μL of Power SYBR Green (Applied Biosystems) by
real-time RT-PCR with a Viia7 real-time RT-PCR cycler (Applied
Biosystems). Standard curves of serial 1:5 dilutions of cDNAs
were prepared from control cDNA with the highest predicted
gene expression. Values were normalized to the standard curve
and 18S control. Results are displayed as mean ± SEM. Statistical
comparisons were performed using two-tailed Student’s t-tests
(two conditions) or Tukey’s multiple comparison test (multiple
conditions) in GraphPad Prism.

Software availability

The PRAM package is available in Supplemental Code as well as at
Bioconductor (https://bioconductor.org/packages/pram).
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