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Abstract: Periodontitis is prevalent in half of the adult population and raises critical health concerns
as it has been recently associated with an increased risk of cancer. While information about the topic
remains somewhat scarce, a deeper understanding of the underlying mechanistic pathways promot-
ing neoplasia in periodontitis patients is of fundamental importance. This manuscript presents the
literature as well as a panel of tables and figures on the molecular mechanisms of Porphyromonas gin-
givalis and Fusobacterium nucleatum, two main oral pathogens in periodontitis pathology, involved in
instigating tumorigenesis. We also present evidence for potential links between the RANKL–RANK
signaling axis as well as circulating cytokines/leukocytes and carcinogenesis. Due to the nonconclu-
sive data associating periodontitis and cancer reported in the case and cohort studies, we examine
clinical trials relevant to the topic and summarize their outcome.

Keywords: periodontal disease; cancer; tumorigenesis; Fusobacterium nucleatum; Porphyromonas
gingivalis; RANK ligand; immune response

1. Introduction

Periodontal disease (PD) may occur regardless of age. It is prevalent in Europe in
5–20% of adults aged 35–44 years old and in 40% of the elderly aged 65–74 [1]. It is caused by
an inflammatory reaction to dental plaques as a result of an accumulated bacterial biofilm.
Initially, the inflammation is confined to the gingiva (gingivitis), but if left untreated, it
can develop into periodontitis in more susceptible people, leading to the destruction of
the periodontal ligament and alveolar bone, destabilization of the tooth attachment, and
eventually tooth loss [2]. The susceptibility to periodontal disease is individual—it depends
on possible dysbiosis and immune response to the microbial accumulation, genetics, oral
hygiene and suffering from chronic disease [3,4].

Gram-negative species of bacteria, dominating over species present when healthy, are
responsible for the dysbiosis in periodontal disease [5].

Treponema denticola, Porphyromonas gingivalis and Tanneralla forsythia, also known as
red-complex triad, are common in periodontal disease [5,6]. Fusobacterium spp., Prevotella
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intermedia/nigrescens, Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actino-
mycetemcomitans were described as the most prevalent subgingival pathogens found in
patients with chronic periodontal disease that developed periodontal abscesses [7,8]. Peri-
odontal disease also results in the development of more diverse population of microbiota
and an overall biomass increase, potentially caused by an increase of different nutrients
available to bacteria due to ongoing inflammation and weakened immunity, insufficient to
control bacterial proliferation [5].

Cytokines IL-1, TNF and PGE-2 intensify the immune response [9] and via the RANKL
pathway stimulate osteoclasts and promote bone loss [10]. IL-1beta and PGE-2 in saliva
significantly correlate with PD severity and therefore may be used as markers of treatment
effectiveness [11]. AIDS and diabetes mellitus negatively influence the manifestation of
periodontal disease [8] and worsen the course of the disease due to their immunocom-
promising effect [9]. Cancer patients undergoing and after chemotherapy/radiotherapy
should be aware of the potential risk of exacerbation of their periodontal disease and
maintain good oral hygiene and have frequent dental checkup. Because chemotherapy
causes immunosuppression and xerostomia, and radiotherapy damages oral tissue, they
make cancer patients more susceptible to PD and a more severe course of the PD [12].

Quick detection of PD can be difficult due to minor early symptoms such as painless
bleeding during brushing that is often overlooked by patients. Over time the changes
(rubor, swelling, different texture) pertaining to the gingiva become noticeable. Due to the
damage to the ligament and alveolar bone, the roots of the teeth become exposed and teeth
themselves are more mobile, and eventually they can even fall out. The damaged gingiva
will form deepened periodontal pockets [9]. Gingivitis can be modified by medication, hor-
mones, lifestyle, smoking, stress; e.g., drugs such as phenytoin, nifedipine or cyclosporine
cause gingiva to overgrowth and estrogen worsens the inflammation [8,9].

The American Academy of Periodontology classification system of periodontal and
peri-implant diseases and conditions from 2018 consists of the following categories: (1) gin-
gival diseases (biofilm-induced or non-biofilm-induced); (2)periodontitis encompassing the
following conditions: (a) necrotizing periodontal diseases, (b) periodontitis, c) periodontitis
as a manifestation of systemic disease; (3) other conditions affecting the periodontium com-
prising the following subdivisions: (a) periodontal abscesses and periodontal-endodontic
lesions, (b) periodontal manifestations of systemic diseases and developmental and ac-
quired conditions: systemic diseases or conditions affecting periodontal supporting tissues,
(c) mucogingival deformities and conditions, (d) traumatic occlusal forces, (e) tooth- and
prosthesis-related factors [13].

Inflammation associated with periodontal diseases affects the whole organism and
increases the risk of cardiovascular diseases, progression of diabetes, respiratory infections,
pregnancy problems and also rheumatoid arthritis (Table 1) [14,15].

Chronic periodontitis exposes organisms to bacterial endotoxins, enzymes, metabolic
by-products and constantly stimulates the immune response and secretion of cytokines,
chemokines and prostaglandins [16]. Chronic inflammation inhibits apoptosis, elongates
the cell cycle, stimulates proliferation, migration and angiogenesis [17]. Oxidative stress
damages the mucosa making it more susceptible to other carcinogens such as tobacco,
alcohol, HPV and EBV [17]. All of the aforementioned factors may predispose individuals
to the development of head-and-neck squamous cell carcinoma. The potential carcinogenic
effect of the inflammation and bacteria present in periodontal disease has been analyzed in
connection with the development/progression of oral squamous cell carcinoma (OSCC)
in numerous studies [18–21]. Periodontal disease can induce carcinogenesis in patients
with no previous history of OSCC risk factors such as overuse of alcohol, tobacco or HPV
infection [22].
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Table 1. Mechanisms of systemic diseases associated with periodontal diseases.

Health Problems Associated
with Peridontal Disease Mechanism

Cardiovascular

Elevated acute phase proteins (CRP, haptoglobin,
alfa1-antitrypsin, fibrinogen) due to periodontitis

Elevated CRP is associated with a higher risk of myocardial
infarction and peripheral artery disease

Diabetes Progression of diabetes: IL-1β and TNF-α increase insulin
Endotoxins or LPS→ inflammation

Respiratory

Aspiration of oral bacteria
Enzymes secreted with saliva in periodontal disease may

change mucosa and lead to higher adhesion and
colonization of respiratory microbes

Enzymes secreted in periodontal disease by P. gingivalis
degrade salivary elements that bind pathogens and

preclude them
from mucosal adhesion

Cytokines secreted in periodontal disease may modify
respiratory epithelium

Problems with pregnancy
Low birth weight

Preterm birth: elevated LPS stimulates placenta calls to
secrete IL-1β and PGE-2

Rheumatoid arthritis P. gingivalis synthetizes citrullinated proteins causing the
organism to produce anti-citrullinated proteins antibodies

Bacteria and cytokines from the oral cavity are carried around the body through circu-
lation. Therefore, periodontal disease may stimulate cancer formation and development in
locations relatively distant from the oral cavity [15].

The main question is whether there is a correlation between cancer occurrence and
PD. Several large and medium-scale epidemiological studies and meta-analyses seem
to give affirmative answers to this question. A large epidemiological study including
73,737 participants showed that PD is associated with approximately a 30% higher risk
of breast cancer in postmenopausal women who were current or past smokers [23]. The
importance of this study is strengthened by the fact that those individuals had no history
of breast cancer at the time of PD onset. Periodontal disease may increase the risk of
developing lung cancer [24,25], esophageal and gastric adenocarcinoma [26], serrated
polyps and adenomas [27], postmenopausal breast cancer [23], colorectal cancer [28],
prostate cancer [29] and pancreatic cancer [30]. In the case of OSCC and pancreatic cancer,
the periodontal disease also correlates with a higher mortality [30]. Cancer and cancer
treatment may influence periodontal disease as well; e.g., tamoxifen, used in breast cancer
treatment, can reduce periodontitis [31], whereas androgen deprivation therapy for prostate
cancer can induce periodontal disease [32].

2. Molecular Mechanisms Linking Periodontal Disease with Cancer
2.1. Molecular Mechanisms of P. gingivalis and F. nucleatum Pathogenesis in Cancer

Recent epidemiological studies point towards a positive increase in the risk of cancer
incidence and/or mortality in PD [16]. Dysbiosis occurs in chronic periodontitis reflected by
the prevalence of oral pathogens [33]. P. gingivalis and Fusobacterium nucleatum (F. nucleatum)
are key microbial pathogens in the pathogenesis of periodontitis [34]. They play a pivotal
role in mediating and promoting carcinogenesis [18]. Researchers have taken a particular
interest in exploring the involvement of P. gingivalis in carcinoma due to its ability to
evade the immune system while maintaining a persisting chronic inflammation state in
the surrounding environment [35]. Similarly, but to a lesser extent, F. nucleatum role in
carcinogenesis has been a focal point due to its ability to coaggregate with oral biofilm
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colonizers and modulating other bacteria’s crossing of the host’s epithelial and endothelial
barrier [36–38].

2.1.1. Role of P. gingivalis in Mediating Cellular Transformation

In this section, we take a closer look at the molecular mechanisms by which P. gin-
givalis modulates the cellular machinery to instigate tumor-like properties and cellular
transformation. In an attempt to investigate the underlying pathophysiology of P. gingivalis
chronic infection in OSCC, long-term infections of P. gingivalis in human immortalized
oral epithelial cells (HIOEC) over 15 (HIOEC-15) and 23 (HIOEC-23) weeks were estab-
lished [39]. HIOEC-15 and HIOEC-23 developed slender or anomalous cell shape and
exhibited an absence of cell contact inhibition. The ultrastructure of the infected cells was
marked by aberrant nucleoli and heterochromatin and weakened cellular junctions high-
lighted by a paucity of desmosomes, all being morphological characteristics of cancerous
cells. Interestingly, plakophilin 1 (PKP1), which stabilizes desmosomes, was decreased in
P. gingivalis-infected cells and its decrease was previously associated with a poorer progno-
sis and shorter time to the onset of metastasis in OSCC patients [40]. Tumor-like features
were acquired by HIOEC-15 and HIOEC-23, as they showed increased proliferation, mi-
gration and invasion. Colony-stimulating factor 1 (CSF1), growth arrest specific 6 (GAS6),
friend leukemia virus integration 1 (FLI1), CD274 (also known as B7-H1), programmed cell
death 1 ligand 2, also known as B7-DC (PDCD1LG2), colon-cancer-associated transcript
1 (CCAT1) and nicotinamide N-methyltransferase (NNMT), all of which are markers of
tumorigenesis, were upregulated in P. gingivalis-infected cells. Finally, proMMP9 and
activated MMP9, known as markers of cellular invasion, were increased in P. gingivalis-
challenged cells [39]. The authors postulate that cellular transformation is achieved in
the case of HIOEC P. gingivalis-infected cells ultimately by the binding of transcription
factor FLI1 to the promotor of CCAT1 who is associated with tumor cell migration and
proliferation. P. gingivalis activation of CD274 and PDCD1LG2 may allow the tumor cells
to evade antitumor immune responses. CSF1 upregulation modulates the increase of GAS6
that will bind to TAM (Tyro3, Axl and MerTK) receptor tyrosine kinases (RTKs) to activate
several neoplastic responses. P. gingivalis activation of NNMT may be associated with the
acquisition of cancer stem cells (CSC) properties.

GroEL, a member of the heat shock protein (HSP) 60 family, is considered one of the
virulent factors released by P. gingivalis [41]. The role of GroEL in promoting neovasculoge-
nesis was investigated in vitro and vivo, albeit unorthodoxly, as neither the cells nor the
mice were infected by P. gingivalis but only treated or injected with GroEL. Nevertheless,
we thought it would still be important to report it as previous studies unveiled an impor-
tant role for P. gingivalis-secreted GroEL in periodontal disease [42–44]. GroEL treatment
increased tumor size and volume and the mortality rate of transgenic immunodeficient
BALB/c mice injected with C26 (mice colon cancer) cells [45]. GroEL induced neoangiogen-
esis in epithelial progenitor cells (EPC) and promoted their migration and progression by
upregulating E-selectin via activation of the PI3K i, p38MAPK and JNK/SAPK pathways
and to a lesser extent via the NOS-related pathways [45].

P. gingivalis was shown to activate both the JAK/Stat and PI3K/Akt pathways to
inhibit the apoptotic intrinsic pathway by preventing mitochondrial membrane depolar-
ization and blocking cytochrome c release followed by downregulation of proapoptotic
(caspase 3, caspase 9, Bad and Bax) and upregulation of antiapoptotic genes (survivin, Bcl-2,
bcl-XL and Bfl-1) in gingival epithelial cells (GEC) [46–50]. P. gingivalis is able to manipulate
mitochondrial apoptotic pathways by RgpA adhesin domain peptide A44 translocation
into host mitochondria, triggering upregulation of antiapoptotic genes paralleled by a
simultaneous downregulation of proapoptotic events [51]. P. gingivalis is also able to reg-
ulate prosurvival pathways in GEC by inducing GSH antioxidant activity and inhibiting
eATP-P2X7 receptor/NADPH-oxidase-mediated intracellular and mitochondrial ROS gen-
eration by nucleoside-diphosphate-kinase (Ndk)-eATP consumption, thus blocking P2X7
ligation-mediated apoptosis [52,53]. P. gingivalis’s ability to combat oxidative stress could
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be mediated by a transient surge of the mitochondrial uncoupling protein 2 (UCP2) gene
postinfection [52].

A proteomic analysis aimed at investigating cell cycle pathways in P. gingivalis chal-
lenged GEC, showed that P. gingivalis’s FimA fimbriae, through binding to integrin re-
ceptors on the GEC surface, may activate the transduction of signaling to modulate pro-
liferation by accelerating the progression through S-phase [54]. Specifically, P. gingivalis
acts by upregulating cyclin A, cdk4 and cdk6’s expression and activation of cdk2, while
downregulating the expression of cyclin D and INK4. p53’s levels and activation were de-
creased as well as its respective kinases Chk2, CK1 delta, CK1 epsilon and Aurora A. PI3K,
PDK1, p70S6K and p90RSK on the other hand were increased while PTEN was inactivated
by phosphorylation at s370 and their levels were diminished [54]. Other studies reported
a postinfection increase in both cyclin D1 and cyclin E, both involved in promoting the
transition from the G1 to S phase, paralleled by a decrease in p21 [55,56]. The discrepancy
related to those findings may be due to the use of immortalized human gingival epithelial
(IHGE) cells or other types of cells, i.e., human periodontal ligament fibroblasts (PDLF) in
the latter studies instead of primary GEC. In addition, P. gingivalis induces the production of
inflammatory cytokines IL-6, IL-8, sICAM-1 and MCP-1 and their increase may be partially
dependent on RgpA-Kgp activity, while the secretion of MIP-1α and IL-1α postinfection
were found to be independent of RgpA-Kgp proteinase–adhesin complex [55,57]. This
creates an inflammatory environment that is favorable for tumor growth. P. gingivalis-
infected GEC upregulates the expression of miRNA-203 that exerts its silencing effect on
the suppressor of cytokine signaling 3 (SOCS3) and SOCS6, but mainly SOCS3, which
leads to an increase in Stat3 and culminates in a host cell cytokine response resulting in
increased inflammation, an ideal tumorigenic microenvironment [58]. P. gingivalis increases
TLR2 signaling in CEG through the downregulation of miR-105. Upon TLR2 increase,
subsequent IL-6 and TNF-α production leads to the activation of NF-kB, which promotes
proinflammation, once again creating an adequate tumor microenvironment [59].

2.1.2. Role of P. gingivalis and F. nucleatum in Exacerbating Malignancy

In contrast to the previous section, this subdivision focuses on the molecular mecha-
nisms involved in P. gingivalis and/or F. nucleatum-challenged malignant cells and tissues.
P. gingivalis through its virulent factor gingipain promotes colorectal cancer (CRC) pro-
liferation and progression by activating the MAPK/ERK pathway and upregulating the
transcription of KRAS, BRAF, MEK2, ERK2, c-fos and AP1 [60]. P. gingivalis promotes
invasion in OSCC by the activation of PAR2/PAR4/NF-kB, p38/HSP27 and ERK1–Ets1
pathways leading to an increase in proMMP9 secretion that is cleaved into its active form
by gingipain [61–63].

P. gingivalis altered fatty acid (FA) metabolism in an oral carcinoma mouse model
and promoted tumor growth possibly by de novo FA synthesis pathways reflected by the
upregulation of FASN and ACC1 [64]. Coinfection of P. gingivalis and F. nucleatum was
shown to orchestrate an inflammatory response reflected by an increase in TNF-α and
IL-1β [65]. The same aforementioned oral carcinoma mouse model was used but was
challenged with a coinfection of P. gingivalis and F. nucleatum, which led to tumor growth,
invasion and proliferation [18]. TLR2 and TLR4, but mainly TLR2, induced the increase of
IL-6, which most likely activated NF-kB and STAT3; the latter leading to the transcription
of cyclin D1, promoting proliferation. Moreover, F. nucleatum infection, not P. gingivalis, in
OSCC cell lines led to an increase in TNF-α, cyclin D1 and heparanase, while both bacteria
led to an increase in MMP9 [18].

P. gingivalis-infected OSCC cells develop chemoresistance through the activation of
Notch1 (notch intracellular domain, NICD) and upregulation of Hes1 and Hey2 genes,
resulting in CSC-like properties [66]. P. gingivalis-challenged OSCC cells exhibited higher
invasiveness and metastatic potential, reflected by an IL-8-mediated increase in MMP-
1, MMP-2, MMP-7, MMP-9 and MMP-10 [66–68]. IL-8 plays an important role in EMT
induction [69]. EMT phenotype in OSCC is marked by a decrease in epithelial marker
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cytokeratin 13 (Ck13) and an increase in mesenchymal markers N-cadherin and α-SMA and
epithelial suppressors transcription factors snail, slug and twist [68]. OSCC cells acquired
CSC properties and stemness marked by an increase in CD133 and CD44. Studies report an
acquired chemoresistance in P. gingivalis-challenged OSCC that could be mediated by an
increase in IL-6 and aberrant expression of inflammatory cytokines including IL-2, VEGF
and TNF-α [70]. A slower proliferation rate in P. gingivalis-infected OSCC could be due
to a decrease in cyclin D1 and cdk4 and an increase in cell cycle suppressor p21, which
induces cycle arrest at G1 [68,71]. The decrease in proliferation rate correlates directly with
an increase in ROS-driven autophagy in OSCC cells, marked by an increase in LC3-II and
Atg-5–Atg-12 complex, both involved in mediating autophagy, which may be controlled by
P. gingivalis’s activation of the PI3K–autophagy axis [71].

P. gingivalis, F. nucleatum and T. denticola were shown to increase migration, invasion
and stemness and promote an aggressive phenotype of OSCC via the upregulation of
integrin α V [34]. The authors explored the mechanism behind those carcinogenic features
specifically for Treponema denticola (T. denticola), however, as those oral pathogens behave
similarly, we thought it would be worth mentioning the pathways discovered for T. denticola
as they may also be exploited by P. gingivalis and F. nucleatum. T. denticola was shown to
promote migration and stemness through the TL4/MyD88-mediated activation of integrin
α V/FAK signaling [34].

F. nucleatum promotes tumor growth and proliferation in vivo and in vitro in CRC, via
FadA-binding to E-cadherin and the activation of the β-catenin pathway [72]. FadA binds
to region 3 of the extracellular domain 5 (EC5) of E-cadherin, which in turn gets activated
and internalized by clathrin and activates the β-catenin that translocated to the nucleus, and
activates inflammatory genes NF-kB1 and NF-kB2, cytokines IL-6, IL-8 and IL18, oncogenes
Myc and Cyclin D1, transcription factors LEF/TCF and Wnt genes WNT7a, WNT7b and
WNT9a [72]. Note that the clathrin-dependent pathways control the inflammatory response
only.

Based on the information gathered, we propose a model depicting the various path-
ways involved in P. gingivalis and F. nucleatum’s pathogenesis in tumor development and
progression in neoplastic and non-neoplastic cells (Figure 1).

2.2. The Impact of RANKL–RANK–OPG Signaling in PD

Inflammation in PD is inevitably associated with bone lesions leading eventually to
teeth loss. At the cellular level, bone lesions are caused by the osteoclast activity, while at
the molecular level, the RANK–RANKL–OPG axis is the key player in this process [73].
However, besides bone metabolism, RANKL signaling plays a pivotal role in the immune
system development and function. Furthermore, RANKL can exert its effect in a juxtacrine
fashion during cell-to-cell contacts (membrane-bound), as well as in a paracrine fashion
when it diffuses in body fluids (soluble form). The latter one is a particularly interesting
factor in diseases such as PD since it can have systemic effects and could participate
in the development of accompanying disorders like osteoporosis or cancer. Therefore,
understanding RANKL signaling in bone metabolism and immunity is crucial to infer its
role as a potential linker between PD and cancer.

2.2.1. RANK–RANKL–OPG Axis in Bone Metabolism and Immunity

It is a three-component mechanism composed of the receptor RANK (receptor activator
of nuclear factor κ B, TNFRSF11A), its ligand RANKL (receptor activator of nuclear factor-
kappa-B ligand, TNFSF11) and a soluble decoy receptor OPG (osteoprotegerin, TNFRSF11B).
The RANK–RANKL–OPG axis was discovered in a series of experiments over two decades
ago [74–76]. In a simplified model of action, RANKL binds to its receptor RANK on the
preosteoclasts, inducing osteoclastogenesis and subsequent bone resorption [77]. This
effect can be alleviated by high levels of soluble decoy receptor OPG. Experiments in
transgenic mice corroborate these models as RANKL- or RANK-deficient (-−/−) mice
show osteopetrosis and OPG −/− mice develop the early-onset osteoporosis [78–80].
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Together, RANK, RANKL and OPG compose the key pathway regulating bone metabolism
and turnover in mammals and other vertebrates [81–83].
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Figure 1. Proposed molecular mechanisms of P. gingivalis and F. nucleatum-mediated tumorigenesis
in tumorous and nontumorous cells. Nontumorigenic pathways: (left). P. gingivalis promotes an-
tiapoptosis by activating JAK1/STAT3 and PI3K/AKT prosurvival signaling pathways to inhibit
caspase3 (casp3) and activate survivin. P. gingivalis-mediated activation of PI3K/AKT leads to the
phosphorylation of Bad at serine residue 136 and its activation results in its dissociation from an-
tiapoptotic Bcl2 and Bcl-XL proteins, which enhances the antiapoptotic effect of the Bcl2 family
reflected by the inhibition of apoptotic protein Bax. Furthermore, Bcl-2 and Bcl-XL are upregulated
by P. gingivalis gigipain’s adhesin peptide A44, which also inhibits Casp9 activation at early stages.
Inhibition of Bax impedes cytochrome c (cytc) release from the mitochondria and blocks the cleavage
of casp9 and subsequent activation of effector caspase3, which obstructs the mitochondrial intrinsic
apoptotic pathway. P. gingivalis inhibits P2X7 receptor (P2X7R)/NADPH oxidase-mediated ROS
production and subsequent apoptosis by blocking extracellular ATP (eATP) ligation to P2X7R through
its ATP-scavenging enzyme, nucleoside diphosphate kinase (NDK). Additionally, P. gingivalis induces
antioxidant responses by increasing glutathione (GSH) levels intracellularly possibly by upregulating
the uncoupling protein 2 (UCP2). Carcinogenic pathways: (right). P. gingivalis activates protease-
activated receptor 4 (PAR4), which in turn activates the ERK1/2/Ets1 and p38/Hsp27 pathways
resulting in pro-MMP9 production. P. gingivalis’s activation of PAR2 can mediate pro-MMP9 pro-
duction via the NF-kB pathway. The cleaved active form of pro-MMP9 is MMP9. Metalloproteinase
(MMP) families are involved in ECM and basement membrane degradation and enhance invasion
in neoplastic cells. P. gingivalis through its virulent factor, a cysteine protease termed gingipain, can
cleave pro-MMP9 into its active form MMP9. Gingipains consist of arginine-specific protease A
(RgpA) and B (RgpB) and a lysine-specific protease (Kgp), which are responsible for the cleavage of
pro-MMP9 into MMP9. Apple polyphenol (AP), hop bract polyphenol (HBP) and high-molecular
weight HBP (HMW-HBP) are polyphenols that can inhibit the proteolytic activity of gingipains and
can inhibit the PAR2/NF-kB release of pro-MMP9. Thus, P. gingivalis promotes invasion through
gingipain-mediated activation of MMP9. F. nucleatum’s virulent factor FadA binds to the extracellular
domain 5 (EC5) of E-cadherin receptor and activates β-catenin that stimulate cyclin D1 and Myc
upregulation and binds to T-cell factor/lymphoid enhancer factor (TCF/LEF) to stimulate the secre-
tion of Wnt7a, Wnt7b and Wnt9a, all of which promote cellular growth and proliferation. β-catenin
enhances the production of cytokines IL-6, IL-8 and IL-18 and NF-kB1/2 and promotes inflammation,
an optimal microenvironment for the prosperity of cancerous cells. F. nucleatum and P. gingivalis
can activate toll-like receptor 2 (TLR2) and mediate TNF-α and IL-6 cytokine production via the
TLR2-NF-kB pathway. IL-6 stimulates the activation of the IL-6 receptor (IL-6R), which in turn
activates STAT3, known to ultimately upregulate the production of cyclin D1 and promote cellular
proliferation.
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In parallel to its role in bone metabolism, the importance of RANK–RANKL–OPG
signaling in the immune system has emerged. Experiments with the use of transgenic
mice revealed that RANKL- or RANK-deficient mice show lymph node agenesis and
defects in T cell development [84,85]. Further studies confirmed the role of RANKL-
RANK in T cell maturation and shaping autoimmunity through the regulation of thymic
development [86–88]. The binding of RANKL to RANK results in the activation of NF-kB
in dendritic cells and enhances their potential to stimulate T cells [89]. In T cells, RANKL
binding stimulates JNK kinase, which is required for the effector function of T cells [90,91].
Therefore, RANKL is frequently upregulated in activated T cells and B cells and can mark
dendritic cells interacting with T cells [92–94]. Therefore, RANKL signaling plays a pivotal
role not only in the development of the immune system or maturation of T cells but also in
T cell function and inflammatory responses [95].

2.2.2. RANKL Isoforms and Function

The majority of RANKL is present in the form of membrane-bound protein presented
on the surface of numerous cells such as T and B lymphocytes, mesenchymal cells, chon-
drocytes, osteoblasts, osteocytes and megakaryocytes [96]. In adult human tissues, specific
staining for RANKL could be detected in bone (osteoblasts), lungs (alveolar cells), sweat
glands (epithelial cells), tonsils (crypt epithelium), lymph nodes (lymphocytes and histi-
ocytes) as well as in macrophages scattered within various tissue types [97]. The highest
staining intensity was observed in lymph nodes, which is not surprising, considering
the high abundance of B cells, dendritic cells and proliferating T cells, all expressing
RANKL [97,98]. Immunohistochemical methods detect membrane-bound RANKL, how-
ever, there is also a fraction of RANKL referred to as soluble RANKL (sRANKL). The
soluble form is produced, inter alia, by the bone marrow stromal cells (ST2 cell line) and
stimulated memory B cells [93,99]. Moreover, pathological cells such as multiple myeloma
cancer cells can overexpress sRANKL, which results in their impact on the skeletal system
of patients [100]. Another pathway for the production of the sRANKL is its cleavage by
membrane-bound proteinases such as TACE, ADAM10 and MMP14, with the latter having
the highest contribution to the release of sRANKL [82,101]. It is worth noting that both
forms of RANKL, i.e., membrane-bound and soluble, are inducing osteoclast differentiation,
although the effect of membrane-bound form is stronger [76]. The major difference between
the two isoforms is their range of action. The membrane-bound form acts through direct,
cell–cell contacts whereas the soluble form acts through paracrine diffusion and can have
systemic effects. For instance, sRANKL can serve as an attractant for cells as it was shown
for monocytes, osteoclasts and regulatory T cells [102–104].

2.2.3. Role of RANKL in Periodontal Disease

Bone erosion in PD leads to teeth loss and for a long time this was the major, dishonor-
able role of RANKL in the development and progression of the disease. However, recent
studies revealed that RANKL signaling has a more complex role in the disease and that
tooth loss is an evolutionary mechanism eliminating a source of inflammation [105]. The
disease begins with the pathogen-induced destruction of the barrier formed by gingival
epithelial cells followed by infiltration of leukocytes such as macrophages, dendritic cells
and T cells [106,107]. Experiments using the mice model of PD revealed that indeed, the
expression of proinflammatory cytokines such as IL1B, IL17 and TNF is high at the early
stage of the disease [104]. After 28 days of disease progression, the proinflammatory gene
expression profile is replaced by a wound-healing gene expression marked by high levels of
OPG, COL5A1, CTGF, FGF7, ITGA4, ITGA5 and SERP1. This also correlates with increased
numbers of FOXP3+ regulatory T cells in the surrounding tissue, which downregulate
inflammation, allow wound healing and suppress osteoclastogenesis [104,108]. Treatment
with an antibody raised against RANKL alleviates wound healing and FOXP3+ cell recruit-
ment, indicating that sRANKL acts as a cytokine attracting Treg cells to the inflammation
site. However, when the immune system is incapable of defeating the infection, the pres-
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ence of Th17 cells expressing membrane-bound RANKL stimulates osteoclastogenesis,
bone erosion and eventually tooth loss, removing the source of inflammation [105,109].

One of the consequences of PD that could have systemic effects is an increased level of
sRANKL in the blood serum [110]. In addition to the blood serum, high levels of sRANKL
were observed in tissue homogenates, gingival cervical fluid (GCF) and saliva [92,111,112].
It was suggested that sRANKL is produced mostly by T and B cells infiltrating the diseased
gingival tissue [92]. However, sRANKL can also be produced by the action of matrix
proteinases such as MMP14 and TACE [101,113]. Interestingly, despite the in vitro results
suggesting a low activity of TACE towards RANKL [114], recent studies underscore the role
of this protease in the release of sRANKL and osteoclastogenesis in PD [113]. Furthermore,
the expression of TACE is increased in PD and the enzyme is found in the GCF of PD
patients, which corroborates its involvement in high sRANKL levels in serum and other
body fluids [115,116].

Reports showing levels of sRANKL in serum in human disease are surprisingly scarce
and mostly focused on bone-related diseases such as PD or osteoporosis. Both diseases are
characterized by increased serum sRANKL, as well as increased risk of occurrence of PD
in osteoporosis and vice versa, that is, the development of osteoporosis in PD [29,117]. In
addition to bone-related disease, elevated levels of sRANKL in serum are also observed in
other diseases such as rheumatoid arthritis [118], coronary artery calcification [119], Paget’s
disease of bone [120] and cancers such as multiple myeloma [120,121], neuroblastoma [122],
prostate cancer [123] or breast cancer [124]. In cancer, it is unclear if the high level of
sRANKL is a cause or an effect of the disease. Breast cancer, prostate cancer and multiple
myeloma are characterized by high expression of RANKL [125–127]. Noteworthy, high
expression of RANKL is associated with a high incidence of metastases and poor survival
prognosis in patients with the aforementioned types of cancer [128,129]. To date, it was
shown that high levels sRANKL could perceive the development of type II diabetes [130]
and the risk of developing breast cancer [131]. However, more detailed studies are needed
to determine whether high sRANKL levels can be the cause of human diseases other than
osteoporosis.

2.2.4. RANKL Links Periodontal Disease and Cancer

The most recent studies confirm a higher risk of breast cancer occurrence in PD
and show an increased risk for other cancers such as head and neck cancer, colorectal
cancer and lung cancer [2,25,132–134]. Interestingly, breast, colorectal and lung can-
cers have been shown to have high metastatic potential associated with RANKL–RANK
signaling [135,136]. Furthermore, there is constantly accumulating experimental and epi-
demiological evidence underscoring the role of the RANKL–RANK pathway in cancer
survival and metastasis [135,137,138]. Not surprisingly, RANKL expression is elevated in a
number of primary solid tumors (Figure 2), which frequently metastasize to bones such as
lung squamous cell carcinoma, lung adenocarcinoma or breast cancer. It was also observed
that metastatic prostate tumors show higher expression of RANKL than nonmetastatic
primary tumors, further underscoring a role of RANKL in tumor dissemination [126].
Therefore, RANKL signaling could provide a molecular link between periodontal disease
and the prevalence of cancer or cancer metastasis.
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Figure 2. Bone metastasis and RANKL expression in human cancers. The upper panel shows
the percentage of patients with bone metastasis at the cancer diagnosis time. Studies utilized
Surveillance, Epidemiology and End Results (SEER) and Oncology Services Comprehensive Electronic
Records (OSCER) databases [139–141]. The percentage of patients is presented as a heatmap with
the color intensity corresponding to higher percentage of cases. Missing data for selected cancer
types are in gray. The lower panel shows the expression of RANKL (TNFSF11) in selected primary
tumors. Violin plots show log2-transformed expression of RANKL gene in selected cancer types.
Cancers with the confirmed role of RANKL–RANK signaling in metastases are marked in red.
The horizontal red line shows the median expression for all cancers in the dataset. Abbreviations:
PAAD—pancreatic adenocarcinoma, CHOL—cholangiocarcinoma, READ—rectum adenocarcinoma,
COAD—colorectal adenocarcinoma, STAD—stomach adenocarcinoma, LIHC—liver hepatocellular
carcinoma, ESCA—esophageal carcinoma, LUSC—lung squamous cell carcinoma, LUAD—lung
adenocarcinoma, BRCA—breast invasive carcinoma, BLCA—bladder carcinoma, THCA—thyroid
carcinoma, SKCM—skin cutaneous melanoma, KIRC—kidney renal clear cell carcinoma, KIRP—
kidney renal papillary cell carcinoma, PRAD—prostate adenocarcinoma. Data for GDC Pan-Cancer
(PANCAN) dataset were downloaded from the UCSC Xena portal (https://xena.ucsc.edu/, accessed
on 20 November 2021).

One of the possible mechanisms acting in favor of cancer development in PD is the
generation of the immunosuppressive microenvironment. Serum levels of sRANKL are
elevated in PD patients and recent studies show that sRANKL is the key cytokine in im-
mune response modulation, acting through the recruitment of Treg cells and the transition
between Th17 and FOXP3+ regulatory cells [104,108]. The attraction of Treg cells creates an
immune-suppressive microenvironment that can allow the survival of malignant cells and
is frequently observed in solid tumors [142]. In tumors, excessive stimulation of tumor-
infiltrating T cells results in exhaustion phenotype, reduced proliferation, responsiveness
or cytotoxicity of T cells [143]. Interestingly, the upregulation of exhaustion markers such
as LAG-3 and TIM-3 is also observed in PD, suggesting that the chronic inflammation in
gingival tissue shares immune phenotypes with tumor microenvironment [144]. In addi-
tion to Treg accumulation, periodontal inflammation recruits myeloid-derived suppressor
cells [145], suggesting that chronic inflammation in PD creates a multicellular, immunosup-
pressive microenvironment, similar to the microenvironment of tumors. Further studies are
required to elucidate whether gingival immunosuppressive foci in PD could be associated
with tumorigenesis.

Another possible mechanism linking PD, sRANKL and cancer is metastasis. Recent
studies show that sRANKL plays a crucial role in bone metastatic cancers [135,146,147].
Experiments with sRANKL-deficient mice (Tnfsf11∆S/∆S) revealed significantly decreased
bone metastasis in melanoma and breast cancer models [148]. Another recent study also
showed the involvement of RANKL in metastases of colorectal cancer (CRC) cells express-
ing high levels of RANK [136]. Interestingly, immunofluorescent staining revealed that
CD3+CD25+FOXP3+ Treg cells were colocalized together with RANKL+ cells in CRC

https://xena.ucsc.edu/
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tissue. A similar phenomenon was observed in breast cancer metastasis suggesting that
CD4+CD25+FOXP3+ Treg cells are the major source of RANKL-promoting metastasis [149].
It is unclear exactly how RANKL produced by Treg cells could lead to bone lesions and
metastases, especially considering the fact that Tregs can suppress osteoclastogenesis in
PD [108]. However, it is likely that membrane-bound RANKL present on tumor-infiltrating
lymphocytes is being cleaved by proteases and released to the bloodstream where it acts
in a paracrine manner. By promoting bone resorption and the formation of bone lesions,
sRANKL in PD could create potential entry sites for metastatic cancers. While the exact
mechanism linking sRANKL with cancer needs to be elucidated, the importance of sRANKL
for cancer dissemination is underscored by clinical trials with denosumab adjuvant therapy
showing a reduced incidence of skeletal metastases in multiple tumors [150,151]. However,
controlling sRANKL levels with the antibody in PD is associated with frequent denosumab-
related osteonecrosis of the jaw (DRONJ) and further studies are required to optimize the
treatment or develop alternative control strategies [152].

2.3. Periodontal Disease and Immune Response
2.3.1. Periodontal Disease and Alterations in Blood: The Impact on Systemic Diseases

Periodontal disease should not be only perceived as localized inflammation. It has
been proven that any sort of irritation to the inflamed gingiva, even such as daily brushing
and flossing, can cause transient bacteremia and in some cases a distant infection [153]; e.g.,
monocytes/macrophages activated by periodontitis adhered to vascular endothelium, start-
ing the process of arteriosclerosis and leading to aortic inflammation [154]. Inflammatory
mediators, cytokines, chemokines, bacterial toxins, fragments of bacteria and bacteria them-
selves can enter the bloodstream directly, via lymph, transported by lymphocytes [155].

The model of experimentally induced inflammation of the gingiva has shown that
it has systemic consequences. Increased levels of CRP, IL-6 and MCP-1 were observed in
the blood [156]. The same observations have been reported in patients diagnosed with
PD. Proinflammatory cytokines such as IL-1β, IL-2, IL-8 and CRP were also in abundance
in the systemic circulation [157]. Conversely, other studies have generated contradictory
data. Cheng et al. focused on the influence of periodontal disease on immune cells subsets
and cytokines present in the peripheral blood by comparing the blood samples collected
from patients with chronic or aggressive periodontitis with samples from participants with
healthy periodontium [145]. There were no significant differences between CD4+, CD8+
and γδ T cells, CD19+ B cells, CD14+ monocytes and CD56+ NK cells subsets among the
three groups; CD45RA+ or CD45RO+ cells within CD4+ T cell population were similar
amongst them. CD markers (CD14, CD16, CD40, CD54, CD86 or HLA-DR) expressed on
CD14+ monocytes were not significantly different between the groups either. Although
CD4+ T cells expressed more TNF-α in comparison to anti-inflammatory IL-10 in chronic
periodontitis, there was no significant difference when collated with the other groups. The
results for CD14 and CD16 are inconsistent with another study, which showed that an
increased percentage of CD14+CD16+ monocytes was observed in the blood in chronic
periodontitis [158]. Analogically, even though levels of IL-4, IL-6, IL-10, IL-17F, IL-33 and
TNF-α were elevated in the serum obtained from patients with chronic periodontitis, there
were no significant differences in comparison to healthy subjects. The level of IL-17 in the
peripheral blood has been noticed to increase during ongoing periodontal disease and drop
after treatment [159]. There are also studies suggesting that a consensus on the matter of
changes in serum levels of INF-γ, IL-4 and IL-17 has not been reached [145]. This variability
amongst studies shows that new data and meta-analyses summarizing and validating
changes in blood and tumor microenvironment adjusted for PD should be considered. A
focus on every single molecule might be necessary.

In their cross-sectional study on a potential correlation between coronary artery disease
and periodontal disease Kampits et al. analyzed IL-1β, IL-6, IL-8, IL-10, IFN-γ and TNF-α
levels in the blood samples obtained from patients with stable coronary artery disease who
met the study criteria. After classifying the severity of the periodontitis among participants
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it was observed that the levels of cytokines such as IFN-γ, IL-10 and TNF-α were elevated
in PD. However, there was no association between IL-1β, IL-6 and IL-8 concentrations and
PD [160].

Pregnancy complications such as preterm delivery may also be the result of circulating
cytokines connected to active periodontitis. A pregnant woman with diagnosed periodontal
disease had increased levels of IL-2, IL-4, IL-6, IL-10, TNF-α and INF-γ [159]. Moreover,
in the study of Panezai et al., the authors analyzed three cohorts of patients, one with
PD (n = 38), the second with rheumatoid arthritis (n = 38) and the third with healthy
subjects (n = 14) [161]. The study reported the positive correlation of chemokines CCL8,
CX3CL1, CXCL10, CXCL11, CCL11, CCL4, CCL20, CXCL5, CXCL6, and CCL23 with the
number of teeth. Chemokines such as CCL8 and CXCL10 were inversely associated with
marginal bone loss (MBL). CD markers such as CD244, CD40, CDCP1, LIF-R, IL-10RA, CD5
and CD6 were significantly related to bleeding on probing (BOP), MBL, number of teeth
and shallow and deep pockets. In addition, some inflammatory proteins like fibroblast
growth factor 19, sulfotransferase 1A1 and neurotrophin 3 were positively correlated
with BOP, probing pocket depth and MBL [162]. In general, the mentioned molecules are
involved in different proinflammatory processes and may be treated as the indicators of
systemic response [162–164]. It was also shown that CD5 and CD6 levels (surface molecules
expressed on both T and B lymphocytes) are significantly associated with the increased
number of deep pockets, which is an important parameter determining the severity of
PD [162,165]. The level of CD6 was also correlated with MBL [162]. We summarized the
congregated data in Figure 3.
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Figure 3. The inflammatory response in periodontal disease and its systemic consequences. The
figure illustrates changes in chemokines, proteins, interleukins levels and CD markers present on
lymphocytes in the periodontal disease. Inflammatory molecules enter the bloodstream and increases
the susceptibility of the organism to systemic diseases like cardiovascular, respiratory, metabolic
diseases and pregnancy problems.
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It is worth pointing that some studies’ statistical analyses were based on comparing
differences amongst some cytokines or circulating cells levels, as an approach to demon-
strate significant pathological implications between healthy controls and patients with
PD. A more specific and direct approach was used by investigating a correlation between
PD parameters such as clinical attachment loss and probing death and alterations in the
blood. The application of different approaches and the lack of consistency may result in
diversified conclusions and difficulties in the comparison of studies. In studies evaluating
some changes in blood during PD, both direct comparison (healthy subjects vs. PD patients)
and parameters-based correlations should be made in order to provide a complete picture
of variability.

2.3.2. Potential Mechanisms Linking with Cancer

Although some alterations of cytokines and immune cells in PD were observed, up
to date little is known about their impact on carcinogenesis. There are many unanswered
questions due to the lack of models investigating the interaction between PD and cancer.
Nevertheless, the literature indicates that cancer and its treatment affect the systemic
immune response, which in turn affects cancer development and can be considered an
important player in prognosis [166–172].

As it was mentioned above, a significant change in cytokine levels or immune cells
number were observed in PD. For example, two of them were increased CD5 and CD6
levels [162]. CD5 and CD6 molecules play a role in cancer and chronic lymphocytic
leukemia [173–175]. The CD5 has an inhibitory function in T and B1a cell activation [173].
However, its different alleles influence the outcome and mortality in melanoma in op-
posite direction, depending on its capacity to downregulate TCR-mediated intracellular
signals [174]. For CD6, there is still a lack of studies investigating associations with ma-
lignancies. Interestingly, the study based on mouse models reported that the absence or
blockade of CD5- and CD6-mediated signals resulted in the dysfunction of the immune
response, subsequently enhancing cancer progression [175]. Based on the small number of
data associating CD5 and CD6 with cancer, we cannot draw a clear conclusion and thus a
question remains in mind: are they a potential link between PD and cancer? Certainly, the
role of CD5 and CD6 in PD-associated cancers should be furtherly investigated. Another
example may be Il-17, whose level was increased in ongoing PD [160]. Increased levels
of Il-17 promoted the development and epithelial-to-mesenchymal transition in prostate
cancer and others [175]. A similar question to the one pertaining to CD5 and CD6 can be
raised regarding IL-17.

Only one of the available studies analyzed directly common PD and cancer model [145].
It was shown that PD significantly correlated with a greater frequency of lymph node mi-
crometastases. Surprisingly, the authors observed that injection of LPS in the peritoneal
cavity did not stimulate metastatic response, whereas a sterile model of periodontal inflam-
mation induced metastasis. Moreover, PD seemed to attract metastases directly toward
the inflammation site [145]. The authors focused on macrophages and myeloid-derived
suppressor cells (MDSC), which were significantly more numerous in lymph nodes in com-
parison between mice with and without PD. It was reported that MDSC may be recruited in
the periodontal inflammation, being induced by Porphyromonas gingivalis infection [145,176].
Both M2 and M1 were recruited to the inflammation site. Macrophages migrated to tumor
niche, leaving the spleen, and were more numerous during infiltration in mice with PD.
Moreover, it was proven that IL-1β is a major player that promotes CCL5, CCL2, CXCL5
and CXCL12 expression. Mainly, these chemokines participate in MDSC and macrophages
recruitment process, creating the proinflammatory microenvironment that is a niche for
metastasis of breast cancer cells the in place of inflammation [145]. The study of Cheng is
one of the first trying to understand the mechanism. In the literature, there are numerous
meta-analyses proving the association between PD and cancer risk, but there is a lack of
mechanism-focused analytic studies.



Int. J. Mol. Sci. 2022, 23, 970 14 of 23

3. ClinicalTrials.gov Analysis

In order to provide an insight into clinical trials linking PD and cancer, the registry
ClinicalTrials.gov (accessed on 3 November 2021) was analyzed. For the search, the term
“periodontal disease and cancer” was used. Then, 5 of the 20 searched trials were selected
for analysis. The number of studies investigating PD in the context of cancer is still highly
limited. In addition, all of the analyzed studies focus only on oral cancer (n = 3) and
breast cancer (n = 2). In contrast, the term “periodontal disease and cardiovascular disease”
produced 42 results. The studies investigate the increased predisposition to oral cancer
incidence in the presence of PD, the etiology and mechanism of postradiotherapy dental
disease, the viral etiology of PD in relation to radiotherapy of head and neck cancers
and the impact of aromatase inhibitors on oral health and quality of life. Only one study
(NCT03244943) that evaluates cytokine profiles in breast cancer patients during systemic
chemotherapy treatment may give a more precise insight into potential mechanisms linking
the PD severity and cancer prognosis. The authors adjusted this analysis to some dental
parameters such as, e.g., probing depth, assessing the impact of nonsurgical periodontal
therapy and related remission of PD on cytokine profile and final outcome of patients.
As we suggested in our study, new studies assessing the mechanism may account for
discovering new treatment methods or prognostic and diagnostic biomarkers. There is
a need for clinically orientated trials specifically focusing on PD and cancer associations.
A high number of analyzed subjects is necessary in order to detect some alterations. We
summarized and detailed all analyzed studies in Table 2.
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Table 2. Studies which are registered in ClinicalTrials.gov system regarding periodontal diseases and cancer aspects. ND—no data; NA—not applicable.

Title of Project ClinicalTrials.gov
Identifier/Current Status Condition Number of

Particiapnts (n) Intervention Primary Outcome Secondary Outcome Country

The Link Between
Periodontitis, Smoking and

Oral Cancer

NCT04047212/not yet
recruiting

• Chronic periodontitis
• Oral cancer 200

• Diagnostic test:
biopsy for oral cancer

• Diagnostic test:
periodontal
examination

Periodontitis: occurrence of
periodontitis or increase in

the grade of an already
existing case of
periodontitis

Oral cancer: occurrence of a lesion of oral
cancer or a premalignant lesion Egypt

Postradiation Dental
Disease Amongst Head and

Neck Cancer Patients
NCT03703648/recruiting

• Head and neck cancer
• Caries
• Periodontal diseases
• Radiotherapy side effect

215
Radiation: radiotherapy

(curative) for head and neck
cancer

Dental caries: the mean
number of carious teeth
amongst head and neck

cancer patients
postradiotherapy

• Periodontal disease: the proportion of
head and neck cancer patients with
periodontal disease postradiotherapy.

• Xerostomia measured using the
Xerostomia Questionnaire (XQ): change
from baseline. Range of scores from 0
(no xerostomia) to 90 (worst xerostomia)

• Oral health Quality of life: change from
baseline. Fourteen oral health problems
presented—patients asked to score how
often they are personally encountered
(very often, fairly often, occasionally,
hardly ever, never, do not know)

• Salivary flow rate: change from baseline
• Mouth opening: change from baseline
• Diet assessed by question 13 of the

World Health Organisation’s Oral
Health Questionnaire for Adults: change
from baseline. Respondents asked to
detail how often they consume, e.g.,
sugar buns

• Oral hygiene practice assessed by
questions 7, 8, 9 of the World Health
Organisation’s Oral Health
Questionnaire for Adults: change from
baseline. Patients asked to indicate, e.g.,
how often they brush their teeth

• Tooth loss
• Costs of treatment to patients and NHS

UK

Cytokine Profiles in Breast
Cancer Patients

Undergoing Chemotherapy
NCT03244943/completed

• Mammary neoplasm,
human

• Periodontal diseases
• Chemotherapy effect

40 Procedure: nonsurgical
periodontal treatment

Cytokines: cytokine levels
and changes before and

after posttreatment

Correlation of cytokines:
cytokine levels between parameters clinical Brazil

Oral Health in Breast
Cancer Survivors on
Aromatase Inhibitors

NCT01693731/completed
• Periodontal disease
• Quality of life 300 ND Periodontal diseases

• Alveolar bone loss using salivary and
serum-derived bone markers.

• Oral Health Related Quality of Life
(OHRQoL) assessed via questionnaire

USA

Towards a Viral Etiology of
Periodontal Disease in

Relation to Radiotherapy
Treatment of Head and

Neck Cancers

NCT02180932/completed Periodontal disease 25 Biological: periodontal
pocket samples

Measure of level of EBV
nucleic acids

Measure of level of EBV
nucleic acids

NA France
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4. Conclusions and Future Perspectives

Periodontal disease is an inflammatory disease with systemic effects leading to the
development of secondary health complications, among them cancer. In cancer, it is
still unclear whether PD is a cause or a consequence of cancer, since there are studies
supporting both hypotheses. This review provides an overview of recent discoveries and
putative mechanisms linking PD and cancer development and progression. Herein, the
three prominent hallmarks of PD are presented: the direct effects of bacterial infection, the
RANKL signaling pathway and the systemic effects of cytokine signaling. We highlighted
the role of the etiological factor of PD, namely the infection with P. gingivalis and F. nucleatum
that is directly involved in tumorigenesis of OSCC through suppression of apoptotic
pathways, stimulation of prosurvival signals in gingival epithelial cells and interfering with
the cell cycle. An interesting common ground between PD and cancer could also be the
RANKL–RANK signaling pathway, which is frequently disrupted in both diseases. RANKL
cytokine is required for attracting regulatory T cells to the inflammation site. While this
mechanism physiologically leads to the extinguishing of the inflammation, it can have side
effects in creating an immunosuppressive microenvironment. Moreover, RANKL signaling
is also associated with cancer metastasis and since sRANKL is elevated in PD, it may
be the factor responsible for tumor cell dissemination and metastasis. Another systemic
consequence of PD is an alteration of proinflammatory cytokines levels, which could
influence the immune response and tumor microenvironment. In particular, cytokines
could promote the migration and dissemination of MDS cells, which can enable tumor
growth. While the above mechanisms have proven general roles in cancer development,
their exact influence in the course of PD needs to be further investigated. Specifically, more
studies are required to elucidate whether bacterial factors could be associated with nonoral
cancers or to assess whether PD-associated RANKL secretion leads to tumorigenesis and
tumor dissemination. In addition, more longitudinal studies are needed to determine
whether PD is a cause or a consequence of cancer.
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