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A B S T R A C T

Objective: Short stature, central hypothyroidism and infertility are common in those with a Fontan circulation.
Given that the Fontan circulation often results in hepatic portal venous congestion, we hypothesize that the
hypothalamic-pituitary portal circulation is also affected, contributing to subsequent hypothalamic-pituitary axis
dysfunction.
Methods:MRI data from the Australian and New Zealand Fontan Registry (86 cases) was compared to 86 age- and
sex-matched normal published controls. Total pituitary volumes (both anterior and posterior glands) were
measured using a manual tracing segmentation method, and hypothalamic (and subunit) volumes using an
automated segmentation tool. Measured gland volume was normalized to total brain volumes. A generalized
linear model was used for statistical analysis.
Results: Normalized total pituitary volumes (nTPV) were increased in Fontan patients compared to controls (p <
0.0001), due to an increase in anterior pituitary volumes (nAPV) (p < 0.0001), with no difference in normalized
posterior pituitary volumes (p = 0.7). Furthermore, normalized anterior and tubular hypothalamic subunit
groups) were increased in Fontan patients compared to the controls (p < 0.01 and p < 0.0001, respectively).
The time between Fontan and MRI was positively related to nTPV, nAPV and bilateral hypothalamic volumes.
nTPV increased with age, and the increase in nAPV was greater in Fontan patients.
Conclusions: Segmental MRI Pituitary and Hypothalamus volumes post Fontan are increased and are related to
the time since Fontan procedure. These findings are consistent with venous congestion of the anterior
hypothalamic-pituitary portal venous system and may explain the high frequency of endocrine dysfunction in
this patient group.
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1. Introduction

The Fontan procedure is the destination treatment for children born
with a functional single ventricle. It results in diversion of systemic
venous blood directly to the pulmonary arteries such that there is no
sub-pulmonary ventricle. Consequently, the central venous pressure is
elevated, and cardiac output reduced. Hepatic portal venous congestion
is common, as is progressive liver disease [1].

The special characteristic of the hypothalamus is that it connects to
the pituitary gland by two different mechanisms: by neuroendocrine
neurons projecting directly to the posterior lobe of the pituitary, or by
portal vessels to the anterior lobe of the pituitary [2]. This is anatomy is
illustrated in Fig. 1. Since the anterior pituitary is a portal venous sys-
tem, it is at potential risk of congestion as per the hepatic portal system.
Hypothalamic-pituitary-axis (HPA) dysfunction may be more common
than realized in post Fontan circulation given the high frequency of
short stature, central hypothyroidism and hypogonadic hypogonadism
reported in this unique patient population [3–6]. One previous study has
demonstrated significantly larger pituitary volumes in children post
Fontan compared to controls, however the sample size was small, and
methodology did not allow segmental volumetrics. To date these find-
ings have not yet been replicated [7]. There have also been no studies to
date investigating the hypothalamus volumetrics in Fontan patients.
Given the vital role this structure plays in the HPA axis and its differ-
ential (neuroendocrine or portal venous) anatomical link to the anterior
and posterior pituitary gland, assessing its volumetrics may provide
more knowledge on the effect Fontan circulation has on the HPA.

Our study aimed to compare both the pituitary and hypothalamus
volumes from the Australian and New Zealand (ANZ) Fontan Registry
with published normative controls. The ANZ Fontan Registry is a large
population-based Fontan registry and provides an opportunity to repli-
cate aspects of the previous study in a larger population. We hypothesize
that anterior (and therefore the total) pituitary volumes are increased in
Fontan patients compared to normative controls. We were able to utilize
a segmentation protocol to MR images, thus increasing the accuracy of
measurement and allowing quantification of anterior and posterior

gland volumes separately. We also hypothesize that hypothalamus vol-
umes related to the anterior pituitary are increased in patients with a
Fontan circulation due to portal venous congestion of the hypothalamic-
pituitary axis.

2. Methods

2.1. Participants

Patients with a Fontan circulation were recruited as part of the
Australia and New Zealand Fontan Registry ‘Functional Outcomes after
Fontan Surgery’ Study between April 2015 and November 2018 [8].
Recruitment occurred across four sites: The Children’s Hospital at
Westmead, Sydney; Royal Prince Alfred Hospital, Sydney; The Royal
Children’s Hospital, Melbourne; Starship Children’s Hospital, Auckland.
The study protocol was approved by the appropriate institutional review
board for each site, and written informed consent was obtained from all
participants. Please refer to supplementary material for details.

Inclusion criteria encompassed individuals with a Fontan circulation
who were between 13 and 49 years of age, ≥5 years post-Fontan
completion and who were enrolled in the Australian and New Zealand
Fontan Registry.

Exclusion criteria included those that had a contraindication to un-
dergo MRI (therefore had no MRI data available) and/or an existing
diagnosis of severe intellectual disability or a clinically diagnosed ge-
netic syndrome associated with cognitive impairment identified from
their medical record.

2.2. Controls

MRI brain data was acquired on a 1:1 basis matching each Fontan
participant for age and sex. This data was obtained from three public-
access brain MRI databases: Autism Brain Imaging Data Exchange
(ABIDE) I and II (https://fcon_1000.projects.nitrc.org/indi/abide/) and
Pediatric Imaging, Neurocognition, and Genetics (PING) data repository
(http://pingstudy.ucsd.edu) [9–11]. ABIDE I and II subjects were
selected from the ‘typical controls’ pool: people without neurological or
neurocognitive disorder or congenital heart disease. PING participants
were a ‘normal’ cohort without neurological or neurocognitive
disorders.

2.3. Data collection

2.3.1. Brain MRI
Brain MRI data was acquired using Siemens 3 T MRI scanners at each

site [8]. The sequences utilized for segmentation included 3D T1-and
T2-weighted imaging. Further details can be found in the supplemen-
tary material.

One hundred Fontan cases in the registry had MR brain imaging.
Eighty-six of these had sufficient scan quality (fourteen failed image
processing). Demographics and other characteristics of these subjects
and of matched controls are detailed in Table 2.

3D T1-weighted data was pre-processed using the standard ‘recon-
all’ pipeline in the FreeSurfer image analysis suite (version 6.0; https:
//surfer.nmr.mgh.harvard.edu/) [12,13]. This pipeline performed in-
tensity non-uniformity correction and normalization, skull stripping,
and resampled all T1-weighted images to 1.0 mm isotropic resolution.
Total brain volume (TBV) was calculated for each participant using the
‘BrainSeg’ volume output from the ‘recon-all’ pipeline. The TBVwas used
to normalize the pituitary and hypothalamus subgroup volumes.

2.3.2. Pituitary gland segmentation protocol
The pituitary gland was segmented by manually tracing the structure

of 3D T1-weighted images using the MRtrix3 software. This was per-
formed by Dr JYMY, a neurosurgery research fellow with expert
neuroanatomic knowledge, and over 10 years of advanced

Fig. 1. Hypothalamic and Pituitary Vascular Supply. This simplified sche-
matic demonstrates the relationship between the hypothalamus and the ante-
rior and posterior pituitary in regard to their respective blood supply systems.
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neuroimaging research experience. We adopted the segmentation pro-
tocol described by Farrow et al., 2020 [14]. This protocol was chosen
based on the simplicity of its anatomical descriptions, and excellent
intra- and inter-rater reliability demonstrated by all previous studies
adopted this protocol for pituitary volumetrics [15–20]. Please refer to
the supplementary material for details of the protocol from Farrow.
Fig. 2 demonstrates an example of the pituitary segmentation protocol
and relevant anatomy,

The total pituitary gland volume (TPV) is the sum of the anterior
pituitary gland (APV), and posterior pituitary gland (PPV) volumes. All
volumes were calculated by summing the voxel volumes within each
respective traced region.

For New Zealand site participants (n= 21), the sellar region anatomy
was not able to be clearly visualized based on the type of 3D T1-
weighted data (MP2RAGE) used. 3D T2-weighted data was used
instead. It was pre-processed the same way as the T1-weighted data

(intensity non-uniformity correction and normalization, resampled to
1.00 mm isotropic resolution). The T2-weighted data did not have the
image contrast required to differentiate anterior and posterior pituitary
glands; thus, only total pituitary volumes were calculated for these
cases.

2.3.3. Hypothalamus and subunit segmentation protocol
Manual delineation of the hypothalamus and its nuclei suffers from

inaccuracy and reproducibility issues due to lack of T1-weighted image
contrast within the hypothalamus. We adopted an automated tool based
on a deep convolutional neural network (CNN; https://github.com/BBill
ot/hypothalamus_seg) for segmentation of the hypothalamus and its
subunits (anterior-superior, anterior-inferior, superior tubular, inferior
tubular and posterior) from T1-weighted MRI scans [21]. The training
data for this CNN network was based on previously described manual
delineation of hypothalamus and its five hypothalamic subunits in
healthy adults (Fig. 3), using anatomical landmarks visible on standard
3D structural T1-weighed images [22,23]. It has been demonstrated that
both the whole hypothalamus and the five hypothalamic subunits can be
reliably segmented at standard 1.0 mm resolution using this method [22,
23]. This schema of morphometric parcellation of the human hypo-
thalamus is similar to the classical approach of subdivision of this
structure; parcellating it into three general groups (anterior, tubular and
posterior) [21]. Fig. 3 and Table 1 demonstrate example parcellation
images and detailed anatomical descriptions.

2.4. Statistical analysis

2.4.1. Accuracy and reliability of pituitary and hypothalamus segmentation
To assess the intra-rater test-retest reliability of the pituitary seg-

mentations, Dr JYMY repeated tracing on a randomly chosen subset of
24 pituitary glands (14 Fontans, 10 controls), with four months between
the two tracing attempts. We reported both the intra-rater intra-class
correlation coefficient (ICC) scores and the dice similarity coefficient
(DSC) between the test-retest pituitary segmentations. The DSC score
reflects the degree of spatial agreement between the two segmentation
attempts, ranged between 0 (no overlap) to 1 (perfect overlap). In-
terpretations of both the ICC and DSC scores are as follows: poor
(<0.40), fair (0.40 ≥ I, <0.60), good (0.60 ≥, <0.75), and excellent
(≥0.75).

Separately, the same 24 cases were reviewed independently by the
two study radiologists (Dr SB and Dr WG), who were blinded to the case
groupings, for pituitary gland segmentation accuracy.

Dr JYMY assessed all hypothalamus and subunit segmentation out-
puts, based on the anatomical landmarks used to define the hypothala-
mus boundaries and its five subunits [23].

2.4.2. Groupwise volumetric comparison
Generalized Linear Model (GLM) was carried out to compare the

pituitary and hypothalamus volumes and other demographic and clin-
ical variables between Fontan/Control groups and age groups (<18 and
>18 years old). Variables examined included: demographic (sex,
gestational age*, birth weight*, BMI, height percentile, clinical variables
(time from Fontan to MRI (i.e. duration of Fontan circulation), age at
first Fontan surgery), and Fontan surgical variables (number of cardiac
operations prior to Fontan procedure, predominant ventricular
morphology, type of Fontan procedure (Atriopulmonary (AP), Extrac-
ardiac Conduit (ECC), AP converted to ECC, Lateral Tunnel (LT), LT
converted to ECC)). Two-way analysis of variance using Fontan/control
and age groups was applied where appropriate. Multivariable regression
with age as a continuous variable, by Fontan/Control groups by volumes
was also carried out. Means and standard deviation were presented. Chi-
squared test for categorical measures were presented as counts and
percentages. Statistical analyses were carried out using SAS 9.4 (SAS
Institute Inc., Cary, NC, USA.). p-values of <0.05 were considered sig-
nificant. *Due to the low number of cases (<30 %) with gestational age

Table 1
Summary of the five hypothalamic subunits and the included nuclei.

Subunits Nuclei included

Anterior-superior
(a-sHyp)

Preoptic area; paraventricular nucleus

Anterior-inferior (a-
iHyp)

Suprachiasmatic nucleus; supraoptic nucleus

Superior tubular
(supTub)

Dorsomedial nucleus; paraventricular nucleus; lateral
hypothalamus

Inferior tubular
(infTub)

Arcuate (or infundibular) nucleus; ventromedial nucleus;
supraoptic nucleus; lateral tubular nucleus;
tuberomammillary nucleus

Posterior (posHyp) Mamillary body (including medial and lateral mamillary
nuclei); lateral hypothalamus; tuberomammillary nucleus
and posterior nucleus

(Adopted andmodified from Billot 2020, CC by 4.0 DEED copyright permission.)

Table 2
Clinical and demographic characteristics of participants.

Fontan Control

N Mean (SD) N Mean (SD)

Age at time of MRI (y) 85 23.0 (7.9) 86 23.0 (8.2)
Height Centile 83 42.1 (30.4)  
BMI 83 23.5 (5.1)  
Age at First Surgery (d) 83 201.2 (378)  
Duration of Fontan Circulation (y) 85 16.9 (6.5)  
  N (%)  N (%)
Sex    
Female  37 (43.53)  37 (43.02)
Male  48 (56.47)  49 (56.98)

No. operations prior to Fontan completion
0  1 (1.18)  
1  25 (29.41)  
2  32 (37.65)  
3  16 (18.82)  
4  9 (10.59)  
5  2 (2.35)  

Predominant ventricular morphology
Biventricular  6 (7.06)  
Indeterminate  5 (5.88)  
Left  49 (57.65)  
Right  25 (29.41)  

Fontan Type
AP  9 (10.71)  
AP converted to ECC  1 (1.19)  
ECC  56 (66.67)  
LT  17 (20.24)  
LT converted to ECC  1 (1.19)  

Presence of Protein-Losing Enteropathy
Yes  1 (1.2)  
No  82 (98.8)  

Abbreviations: AP = atriopulmonary, LT = lateral tunnel, ECC = extracardiac
conduit.
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and birthweight data available, these were not included.
All volume metrics were normalized for total brain volume (TBV) by

simple division, since the previous publication using the same Fontan
cohort had demonstrated significantly smaller brain volumes compared
to the age- and sex-matched healthy controls [8]. The normalized vol-
umes were very small (i.e., in the order of 10− 4), thus, we multiplied the
values by 104, to assist with readability and results interpretation.

3. Results

Eighty-six cases from the Fontan registry were included, with eighty-
six matched controls. Clinical and demographic data was available for
eighty-five of the Fontan cases, with omission of data for one case. Only
age and sex data were available for the published normative controls.

The mean age and sex demographics are comparable between the
Fontan and control groups (Table 2). Height centiles and BMI were
higher in the over 18-year-old group than the under 18-year-old group
within the Fontan cohort (p = 0.08 and 0.003 respectively). Age (in
days) at time of first cardiac surgery was greater in the over 18 group
(260 days compared to 87 days) (p = 0.05).

We excluded one Fontan case from pituitary volumetric analysis,
who had an ectopic posterior pituitary gland, as a congenital abnor-
mality. One control case had a partially empty sella. This case was
included in the final analysis given it is considered a normal variant
[24].

The accuracy and reliability of the pituitary and hypothalamus seg-
mentation was assessed as follows. The intra-rater ICC scores were 0.99
for all pituitary volumetrics. The DSC scores for all pituitary segmen-
tations were (APV: median= 0.982, IQR= 0.978–0.988; PPV: median=

0.966, IQR = 0.948–0.977; TPV: median = 0.984, IQR = 0.980–0.988).
The two study radiologists independently reviewed the twenty-four
randomly selected sample cases and agreed all segmentations were
anatomically accurate. The anatomical accuracy of all hypothalamus
and subunit segmentation outputs were assessed and deemed satisfac-
tory by the study neurosurgery research fellow (Dr JYMY).

Absolute TPV, APV and PPV were not significantly different between
the Fontan and Control groups. When normalized for total brain volume,
the mean nTPV and nAPV were significantly higher in the Fontan group

compared to the controls (p < 0.0001 for both). The mean difference
between the groups for nTPV was 1.17 units (gland volume as a per-
centage of total brain volume x 100), and for nAPVwas 0.81 units. There
was no significant difference in mean nPPV between groups (p =

0.5285), which suggested the increased TPV in the Fontan group was
driven by enlarged APV (Table 3 and 4, Fig. 4).

Normalized bilateral hypothalamus volumes (nLHV and nRHV) were
both significantly larger in Fontan patients compared to controls, with
mean difference 0.28 and 0.30 units respectively (p values < 0.0001).
Normalized bilateral anterior and tubular hypothalamic subunits were
also significantly larger in Fontan patients than controls (p < 0.0087
and < 0.0001, respectively). The posterior hypothalamic subunit vol-
umes were not significantly different between groups (p = 0.9767
[right)]and p = 0.2703 [left)] (Table 3 and 4, Fig. 4).

Age stratification above and below 18 years did not have a signifi-
cant effect on any of the mean measured volumes. Multivariable
regression analysis with age as a continuous variable however demon-
strated a significant positive association between nTPV and increasing
age (nTPV increases by 0.03 units per year of age, p = 0.03). The
interaction term for nTPV was not significant (p = 0.82), suggesting that
the association between nTPV and age did not differ significantly be-
tween the Fontan and Control groups. There was a significant positive
association between both nAPV and nPPV with age (p = 0.002 and
0.004). The interaction term for nAPV was significant, p = 0.0046,
suggesting the increase in nAPV with age is greater in the Fontan group
than the Control group; this is illustrated in Fig. 5. The interaction term
for nPPV was not significant. There was no significant association be-
tween nRHV or nLHV with age (p = 0.46 and 0.11).

There are significant positive associations between nTPV and nAPV
with increasing time between Fontan and MRI acquisition (i.e., duration
of the Fontan circulation), (p = 0.04 and 0.002). There are two apparent
peaks at approximately 14 years and 25 years post-Fontan.

The height centile had a significant positive association with nAPV
(p = 0.0163). There were no significant associations with the remaining
clinical and surgical variables investigated: sex, age at first surgery, BMI,
number of cardiac surgeries prior to Fontan, predominant ventricular
morphology, and Fontan type (p-values ranged 0.1 to 0.9. Protein-losing
enteropathy was only present in one case, precluding statistical analysis.

Fig. 2. Pituitary gland anatomy and segmentation protocol on T1-weighted MRI. The pituitary gland is identified in the mid-sagittal plane, located within the
sella turcica (ST) of the sphenoid bone. It is superiorly bounded by the diaphragm sellae, laterally bounded by the cavernous sinuses (CS) and inferiorly bounded by the
sphenoid sinus (SpS). It has an anterior gland (APG), and a posterior gland (PPG), which is a direct caudal extension of the hypothalamus via the infundibulum (Infd.).
The pituitary stalk is formed by the infundibulum and pars tuberalis of the APG. The T1W hyperintensity displayed by the PPG helps separate tracing of the APG (in
yellow) and PPG (in cyan). Other abbreviations: AC = anterior commissure; OC = optic chiasm; A = anterior; P = posterior; R = right; L = left.
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4. Discussion

4.1. Interpretation of results

We have demonstrated that normalized anterior pituitary and ante-
rior and tubular hypothalamic subunit volumes were increased in those

with a Fontan circulation compared to controls, and anterior pituitary
volumes in particular were more significantly increased with age. These
findings support the hypothesis that the HPA and the hypothalamic-
pituitary portal venous system are affected by the Fontan circulation.

The enlargement of the anterior pituitary independent of the poste-
rior pituitary is in keeping with the physiology of the pituitary vascular

Fig. 3. Hypothalamus and hypothalamic subunit anatomy on T1-weighted MRI. A: schematic showing the hypothalamic anatomy and conventional groupings
of hypothalamic nuclei into an anterior (purple), a tubular (blue), and a posterior (green) group. The anatomical landmarks used to define the hypothalamus and its
five subunits are labelled, in mid-sagittal (B), para-sagittal (C), coronal (D), and axial (E) planes. In B. the hypothalamus is highlighted by the red dotted outline. It is
bounded antero-superiorly by the anterior commissure (AC), anteriorly by the lamina terminalis (LmT), and antero-inferiorly by the optic chiasm (OC); inferiorly by the
pituitary infundibulum (infd), tuber cinereum (TbC), and the mamillary body (MB); posteriorly by the posterior extend of MB; superiorly by the hypothalamic sulcus and
the thalamus (Thalm); and medially by the third ventricle (3rdV). At the midbrain (MidB) level, it is bounded laterally by the optic tract (OpT). The two white dotted
lines shown in B mark the division of the three main hypothalamic groups. The anterior group is bounded anteriorly by the anterior-most extent of AC, and pos-
teriorly by the anterior-most extent of the pituitary infundibulum. The tubular group is bounded anteriorly by the pituitary infundibulum, and posteriorly by the
anterior-most extent of the MB. The posterior group is bounded posteriorly by the posterior-most extent of the MB. The yellow dotted line shown in B and D are at the
level of the anterior perforating substance (APS, in D; a.k.a. the floor of substantia innomianta). It provides the anatomical landmark to split the anterior and tubular
groups into respective superior and inferior subunits. The post-commissural column of fornix (FxC) terminates at the MB, thus is excluded from the hypothalamic
segmentation.
Other abbreviations: a-sHyp = anterior-superior subunit; a-iHyp = anterior-inferior subunit; supTub = superior tubular subunit; infTub = inferior tubular subunit;
postHyp = posterior subunit; Fx = fornix; A = anterior; P = posterior; R = right; L = left; S = superior; I = inferior.

W. Gee et al. International Journal of Cardiology Congenital Heart Disease 18 (2024) 100549 

5 



supply; the anterior pituitary gland is supplied by the portal circulation
(blood descends from the hypothalamus along the infundibulum in the
hypophyseal portal venous plexus), whereas the posterior pituitary is
supplied by arterial branches from the systemic circulation (branches
from the internal carotid artery) [25]. This anatomy is illustrated in
Fig. 1. Enlargement of the anterior pituitary and anterior and tubular
hypothalamic subunits could be either due to venous congestion or
potentially if there is endocrine feedback or “hyperstimulation of the
hypothalamic-pituitary axis”. The nAPV increases with increasing
height centile; it is likely the two are related, as the anterior pituitary
releases growth hormone. Future studies including collection of
comprehensive hormonal data and circulatory data that can directly or
indirectly infer portal venous pressure in the hypothalamic-pituitary
system are required to disentangle the potential pathophysiological
mechanisms behind our study observation. In our search for literature to
support these potential mechanisms, we have been unable to find spe-
cific reports on the impact of other forms of heart failure on pituitary and
hypothalamic volumes, but can speculate that systemic venous conges-
tion and hepatic portal venous congestion may both have indirect effects
on the HPA. Increased levels of angiotensin II in systemic venous
congestion (as reported by Colombo et al., 2013), may affect renal
vascular reactivity and therefore result in an insult on the adrenal,
indirectly impacting the hypothalamic-pituitary-adrenal axis [26]. He-
patic portal venous hypertension may also be indirectly related to
neuroendocrine dysfunction, in that it can result in hepatic encepha-
lopathy from accumulation of ammonia and other neurotoxins. Hepatic
portal venous hypertension can also activate the
renin-angiotensin-aldosterone system [27]. It is worth noting there are
multiple potential insults a Fontan patient can be exposed to that may
result in damage to the hypothalamic-pituitary axis, for example hy-
potension or impaired cerebral protection during cardiac surgery [28].
Not enough is currently known about the type of endocrine

abnormalities that can result from insults such as these, let alone their
time course. Our study brings these issues to attention and should
encourage future studies to review endocrine abnormalities in more
detail.

The finding of larger normalized hypothalamic nuclei volumes in
Fontan participants supports the effect of hyperstimulation of the hy-
pothalamic pituitary axis due to downstream hormone deficiency, or
from the “upstream” congestion of the portal system; this study cannot
delineate. Increased bilateral normalized anterior and tubular subunit
group volumes were noted in Fontan participants. The arcuate nucleus,
located in the inferior tubular subunit, secretes various hormones into
the hypothalamic-pituitary portal venous system to act on the anterior
pituitary gland. These hormones include growth hormone releasing
hormone, thyrotropin-releasing hormone and gonadotrophin-releasing
hormone, among others. [29], Fig. 6 outlines relevant hormone pro-
duction and regulation by the hypothalamic-pituitary axis.

Growth hormone-releasing hormone triggers growth hormone
release by the anterior pituitary gland. Alteration in this mechanism
may be implicated in the high incidence of short stature seen in Fontan
populations [3,6]. Regarding low IGF-1 levels and Fontan surgery,
Stenbøg (2000) showed that non-adjusted IGF-1 levels were low before
surgery but normalized as weight improved up to two years post-surgery
[30]. The normalization of IGF-1 after the procedure indicates the
positive impact of the palliative surgery rather than signaling a growth
hormone deficiency prior to surgery that has persisted.

Thyrotropin-releasing hormone triggers thyroid-stimulating hor-
mone production by the anterior pituitary gland; this system may be
involved in the high incidence of hypothyroidism as well as short stature
in Fontan populations [3,4,6].

Gonadotropin-releasing hormone neurons are found in the medial
preoptic nucleus (in the anterior superior subunit) and in the arcuate
nucleus. These trigger follicular stimulating hormone and luteinizing
hormone production by the anterior pituitary gland via the portal cir-
culation [31]. Subsequent deficiency in estrogen and testosterone pro-
duction may be a potential explanation for the high frequency of
hypogonadism seen in Fontan populations [5,6].

A significant positive association was demonstrated between nTPV
and age in all subjects, with no difference in this relationship between

Table 3
Absolute and normalized pituitary and hypothalamus volumetric
measurementsa.

Fontan Control

N Mean (SD) N Mean (SD)

TPV 85 596.74 (134.09) 86 526.94 (132.33)
APV 64 480.14 (118.07) 86 419.34 (114.8)
PPV 64 103.02 (46.39) 86 107.62 (45.56)

nTPV 85 5.55 (1.54) 86 4.38 (1.11)
nAPV 64 4.31 (1.22) 86 3.48 (0.97)
nPPV 64 0.92 (0.43) 86 0.89 (0.37)

RHV 86 384.1 (47.9) 86 388 (59.3)
R anterior-inferior 86 13.95 (5.85) 86 12.53 (7.05)
R anterior-superior 86 21.51 (4.86) 86 19.16 (6.76)
R posterior 86 108.55 (21.82) 86 119.48 (20.56)
R tubular inferior 86 129.24 (15.27) 86 126.37 (25.27)
R tubular superior 86 110.84 (15.31) 86 110.45 (20.03)

LHV 86 392.0 (45.6) 86 400.8 (50.1)
L anterior-inferior 86 14.53 (5.11) 86 13.8 (5.86)
L anterior-superior 86 20.49 (4.05) 86 20.34 (5.66)
L posterior 86 106.58 (19.44) 86 114.45 (17.59)
L tubular inferior 86 140.08 (16.86) 86 140.55 (20.92)
L tubular superior 86 110.35 (15.34) 86 111.62 (15.52)

nRHV 86 3.51 (0.36) 86 3.21 (0.49)
nR anterior-inferior 86 0.13 (0.05) 86 0.1 (0.06)
nR anterior-superior 86 0.2 (0.04) 86 0.16 (0.05)
nR posterior 86 0.99 (0.18) 86 0.99 (0.18)
nR tubular inferior 86 1.18 (0.13) 86 1.04 (0.20)
nR tubular superior 86 1.02 (0.13) 86 0.92 (0.17)

nLHV 86 3.59 (0.38) 86 3.32 (0.40)
nL anterior-inferior 86 0.13 (0.05) 86 0.11 (0.05)
nL anterior-superior 86 0.19 (0.04) 86 0.17 (0.05)
nL posterior 86 0.97 (0.16) 86 0.95 (0.15)
nL tubular inferior 86 1.28 (0.15) 86 1.16 (0.16)
nL tubular superior 86 1.01 (0.14) 86 0.93 (0.13)

a Absolute gland volumes are measured in mm3, normalized gland volumes
are a percentage of total brain volume scaled by a factor of 100.

Table 4
Mean differences in normalized pituitary and hypothalamus volumes between
groups.

Group Difference (Fontan -
Control)

95 % CI p

Estimate (SE)

nTPV 1.17 (0.20) 0.77–1.57 <.0001
nAPV 0.81 (0.17) 0.47–1.15 <.0001
nPPV 0.02 (0.06) − 0.25 0.72

nLHV 0.27 (0.06) 0.15–0.39 <.0001
nL anterior-

inferior
0.02 (0.01) 0.01–0.03 .009

nL anterior-
superior

0.02 (0.01) 0.01–0.03 .002

nL posterior 0.03 (0.02) − 0.02–0.07 0.28
nL tubular inferior 0.12 (0.02) 0.07–0.17 <.0001
nL tubular

superior
0.09 (0.02) 0.05–0.13 <.0001

nRHV 0.30 (0.07) 0.17–0.43 <.0001
nR anterior-

inferior
0.02 (0.01) 0.01–0.04 .0073

nR anterior-
superior

0.04 (0.01) 0.02–0.05 <.0001

nR posterior 0.0003 (0.03) − 0.05–0.05 0.99
nR tubular

inferior
0.14 (0.03) 0.09–0.19 <.0001

nR tubular
superior

0.1 (0.02) 0.05–0.15 <.0001

Normalized gland volumes are a percentage of total brain volume scaled by a factor of
100. Significant p-values (< 0.05) are in bold.

W. Gee et al. International Journal of Cardiology Congenital Heart Disease 18 (2024) 100549 

6 



Fontan and Control groups. This may suggest a “normal” age related
phenomenon. However, when total pituitary was divided into anterior
and posterior glands, the increase in nAPV with age was greater in the
Fontan group compared to the controls. This suggests a possible element
of congestion in Fontan circulations contributing to the anterior pitui-
tary volume increase over time.

Both the normalized TPVs and APVs were seen to increase with time
since Fontan with two apparent peaks at 14 years and 25 years post-
Fontan. Note the mean age of Fontan completion was 6.2 years. A
possible explanation for the first peak may be onset of (delayed) puberty
[32]. The second peak at 25 years post-Fontan aligns with published
evidence that pituitary heights peak in the age group between 20 and 29
in a normal population, however the mechanism for this is unclear [33].

4.2. Strengths and limitations

Observations from Muneuchi (2018) in 40 children post Fontan
surgery showed significantly larger pituitary volumes on brain MRI
compared to a control population (nearly 80 % larger) and correlated
this to higher central venous pressures [7]. The reported pituitary vol-
umes were estimates based on dimensional measurements (height,
depth and width measured on T1-weighted sagittal and coronal images),
and anterior or posterior gland measurements were not assessed sepa-
rately. To date this study’s findings had not yet been replicated.

Access to data from the ANZ Fontan Registry for our study allowed
analysis of a larger Fontan population than previously reported. The
volumetric analyses performed in our study utilized both expert-based
manual segmentation and deep-learning based automated image seg-
mentation techniques, the accuracy of which was independently

Fig. 4. Group comparisons of normalized pituitary (A), bilateral hypothalamus (B) and hypothalamus subunit (C) volumes. Note the normalized pituitary
and hypothalamus volumetric values are a percentage of total brain volume scaled by a factor of 100. Differences between groups for anterior and total pituitary,
bilateral hypothalamus, and bilateral anterior and tubular subunit volumes were significant (bolded). *p < 0.001, **p < 0.0001. The differences between posterior
pituitary and posterior hypothalamus subunit volumes were not significant.
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validated by anatomical experts. Our adopted approach enables region
specific image segmentations (e.g., the ability to compute the APV and
PPV, and hypothalamus subunit volumes). The 3D nature of these

segmentations are preferred over volumes estimated based on 2D
dimensional measurements from MRI in standard orthogonal planes. To
our best knowledge, this is the first study that investigated the

Fig. 5. Group comparison of the relationship between age (years) and normalized anterior pituitary volumes, with lines of best fit. Note the normalized
pituitary volumes are a percentage of total brain volume scaled by a factor of 100.

Fig. 6. Summary of Hypothalamic-Pituitary-End Organ Axes. Release of hormones from the anterior pituitary gland is regulated by positive feedback from
hypothalamic hormones, and by negative feedback from the hormones produced by the various end-organs.
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hypothalamus and hypothalamus subunit volumetrics in Fontan
patients.

The current study is an exploratory retrospective analysis utilizing a
clinical and MRI dataset from an existing ANZ Fontan Registry study.
This meant the exclusion criteria may not necessarily align with exclu-
sion criteria we may have proposed if recruiting participants prospec-
tively. Patients with severe intellectual disability and/or genetic
syndromes with cognitive impairment were excluded from the studies,
thus the participants studied may not reflect the worst-functioning
Fontan population [8]. Retrospective data collection also meant that a
small number of cases had incomplete clinical and demographic data-
sets. Lack of comprehensive hormonal data and circulatory data pre-
cluded us to make direct statements about the status of endocrine
function and HPA portal venous pressure of the Fontan participants, at
the time when the study data was being collected.

As with all multi-site MRI studies, a degree of heterogeneity due to
variation in scanner hardware can be an issue. All of the Fontan
participant MRIs were acquired on hardware from a single vendor and
with tightly controlled acquisition parameters, which helped reduce
variance. We utilized open-source normative control MRI data due to
lack of recruitment of study specific normative controls. The normative
control data from the ABIDE and PING databases was acquired by
different centers on hardware from varying vendors. Furthermore, we
have assumed the normative controls described in the ABIDE and PING
databases are without congenital heart disease; this is only explicitly
confirmed in a few of the ABIDE constituent cohorts, and not specified
for the PING participants [9,10,34].

Future prospective studies in the current or separate Fontan cohort
with co-recruitment of study-specific healthy controls, and importantly
the collection of comprehensive hormonal and circulatory data, may be
able to shed light on exact pathophysiological mechanism accounting
for the observed enlargement of anterior pituitary and hypothalamus
volumes in this study.

5. Conclusions

This study from the ANZ Fontan registry has shown that adolescents
and adults with a Fontan circulation have increased anterior pituitary
volumes, and increased hypothalamus volumes (specifically anterior
and tubular hypothalamic subunit groups). This supports the hypothesis
that the hypothalamic-pituitary portal venous system is also affected by
duration of Fontan circulation, therefore increasing the risk of pro-
gressive HPA dysfunction in these patients over time. Our findings
suggest that monitoring growth, puberty and pituitary function in
children and adolescents following Fontan surgery is warranted, and
further prospective studies should consider correlating cardiac, venous
and HPA evaluations with clinical outcomes and growth.
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nRHV Normalized right hypothalamus volume
R anterior-inferior Right anterior-inferior hypothalamic subunit
R anterior-superior Right anterior-superior hypothalamic subunit
R posterior Right posterior hypothalamic subunit
R tubular inferior Right tubular inferior hypothalamic subunit
R tubular superior Right tubular superior hypothalamic subunit
L anterior-inferior Left anterior-inferior hypothalamic subunit
L anterior-superior Left anterior-superior hypothalamic subunit
L posterior Left posterior hypothalamic subunit
L tubular inferior Left tubular inferior hypothalamic subunit
L tubular superior Left tubular superior hypothalamic subunit
nR anterior-inferior Normalized right anterior-inferior hypothalamic

subunit
nR anterior-superior Normalized right anterior-superior hypothalamic
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nR posterior Normalized right posterior hypothalamic subunit
nR tubular inferior Normalized right tubular inferior hypothalamic
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nR tubular superior Normalized right tubular superior hypothalamic

subunit
nL anterior-inferior Normalized left anterior-inferior hypothalamic

subunit
nL anterior-superior Normalized left anterior-superior hypothalamic
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nL tubular inferior Normalized left tubular inferior hypothalamic
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