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Abstract: Heart failure (HF) is a leading cause of death in the United States, with a 5-year mortal-
ity rate of 50% despite modern pharmacological therapies. Plant-based diets are comprised of a
diverse polyphenol profile, which lends to their association with reduced cardiovascular disease
risk. Whether a polyphenol-rich diet can slow the progression of or reverse HF in humans is not
known. To date, in vitro and in vivo studies have reported on the protective role of polyphenols
in HF. In this review, we will discuss the major mechanisms by which polyphenols mitigate HF
in vitro and in vivo, including (1) reduced cardiac inflammation and oxidative stress, (2) reduced
mitochondrial dysfunction, (3) improved Ca2+ homeostasis, (4) increased survival signaling, and (5)
increased sirtuin 1 activity.

Keywords: polyphenols; flavonoids; plant-based diets; heart failure; inflammation; oxidative stress;
mitochondrial dysfunction; Ca2+ homeostasis; survival signaling; Sirt1

1. Introduction

Heart failure (HF) is a major cause of death in the United States. In 2013, one in nine
death certificates reported death to be due to HF [1]. HF remains a major public health
concern with a 5-year survival rate of 50% even with modern medical therapies. HF is
characterized by diminished ejection fraction (EF), the percent of blood pumped out of the
left ventricle (LV) during each contraction, and LV hypertrophy (LVH), characterized by
thickening of the LV wall [2]. HF develops due to a variety of factors, of which ischemia
and hypertension are major causes. In ischemia, hypoxic conditions induce cardiomyocyte
apoptosis, necrosis and promote hypertrophic signaling leading to thickening and scarring
of the heart [3]. In the case of hypertension, as a maladaptive response to chronically ele-
vated LV wall stress, hypertrophy of cardiomyocytes occurs, which also leads to apoptotic
signaling and scarring of the heart [4]. To manage HF clinically, the major goals are to
modify contractile signaling and improve cardiac output by reducing stress on the walls of
the heart [5]. However, these therapies often neglect the underlying maladaptive cellular
processes that underlie HF. Plant-based diets have been associated with reduced cardiovas-
cular disease (CVD) risk independent of physical activity [6], inflammation [7,8], and may
even be a viable adjunct treatment of HF, improving EF and decreasing LV mass [9–11].
Indeed, the consumption of a Mediterranean diet and the Dietary Approaches to Stop
Hypertension (DASH) diet, which are characterized by increased fruit and vegetable intake,
is associated with reduced incidence of HF and cardiac deaths [12]. However, no interven-
tional studies utilizing diet have been used to clinically treat overt HF with reduced EF,
with only a few case studies utilizing strict plant-based diets demonstrating reversal of
diminished EF and LVH (Table 1).
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Table 1. Case studies utilizing plant-based diets in the clinical treatment of heart failure accompanied by reduced ejection fraction.

Subject
Characteristics Intervention Duration Findings Author

1 overweight male,
79 years of age

Plant-based diet comprised
of fruits, vegetables,

legumes,
nuts and whole grains

2 months ↑ EF
↓ angina Choi et al. 2017 [9]

1 obese female,
54 years of age

Plant-based diet comprised
of fruits, vegetables,

legumes,
nuts and whole grains

5 1/2

months ↑ EF Alllen et al. 2019 [10]

1 obese female
(46 years),

2 obese males
(58 and 70 years

of age),

Plant-based diet comprised
of primarily raw fruits,

vegetables and seeds with
some whole grains

~79 days

↑ EF,
stroke volume, cardiac

output
↓ LV mass, angina

Najjjar and Montgomery,
2019 [11]

↑ denotes increase, and ↓ denotes decrease. Abbreviations: EF: ejection fraction; LV: left ventricle.

Plant-based diets are typically lower in saturated fat [13], which is a variable indepen-
dently associated with reduced HF mortality [14], and higher in fiber, which is associated
with reduced LV mass [15] and CVD mortality [16]. Plant-based diets are associated with
reduced body weight [17], hypertension [18], type II diabetes [19,20] and low-density
lipoproteins [21], all of which are known risk factors in the development of HF [22–25].
However, a clinically understudied component of plant-based diets in the context of HF is
the polyphenol content of plants. Since polyphenols are found nearly exclusively in plant
foods, plant-based diets are inherently rich in polyphenolic compounds, which have bioac-
tive properties that can mitigate a variety of chronic diseases at the molecular level [26].
Indeed, the intake of fruits and vegetables, which are rich in polyphenols are associated
with reduced CVD risk [27]. Independently, total flavonoid and lignan consumption, rich
in fruits, vegetables and whole grains, are also independently associated with reduced
CVD [28]. Both the DASH diet and Mediterranean diet are rich in plants and are found to
be high in polyphenols [29–31], which may partially explain the associated reduction in HF
risk [12]. For example, in a randomized study, the consumption of an Indo-Mediterranean
diet classified as rich in whole grains, fruits, vegetables and nuts was associated with a re-
duction in sudden cardiac death and non-fatal myocardial infarction (MI) after 2 years [32].
Further, fiber-rich diets from whole-food sources are associated with reduced CVD mor-
tality [33]. However, since fiber intake is directly proportional to plant-food intake, and
considering that a significant portion of polyphenols are bound to dietary fiber and require
microbial liberation [34–37], increased fiber intake is inherently tied to increased polyphe-
nol intake. Thus, dietary patterns which are associated with reduced CVD risk are also
associated with increased plant-food intake, and correspondingly, increased polyphenol
intake.

Illustrative of the efficacy of plants, investigations utilizing plant-based diets are
some of the only interventional studies to clinically demonstrate regression of coronary
atherosclerotic plaque [38,39]. However, investigations which aim to examine plant-based
diets or even polyphenol-rich plants in the treatment of overt HF are entirely lacking, with
only a limited number of case reports demonstrating clinical efficacy (Table 1). In vitro
(Table S1), ex vivo and in vivo preclinical (Table S2) studies demonstrate that polyphenols
derived from plants are highly efficacious in treating HF by preventing or reversing
functional and morphological abnormalities of the heart by targeting underlying cellular
pathways which drive the disease-process forward. Very few studies have investigated
the use of plant-based dietary approaches or polyphenol-rich plants to treat HF in both
preclinical models and human studies. Although polyphenols have differing structure and
biological activity, they offer cardio-protective effects in the context of HF through differing
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mechanisms with significant overlap. These mechanisms include (1) reduction of cardiac
oxidative stress and inflammatory signaling, (2) reduced mitochondrial dysfunction, (3)
improved Ca2+ homeostasis, (4) increased survival signaling, and (5) increased sirtuin (Sirt)
1 activity (Figure 1). Thus, the aim of this review is to summarize the major cellular targets
of polyphenols in the context of HF and provide evidence for future translational research
utilizing plant-based dietary approaches in humans.
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Figure 1. Mechanisms by which polyphenols, derived from plant-food consumption, may attenuate heart failure (HF).
Under chronic, pathological conditions, HF occurs due to a variety of compensatory cellular processes. Polyphenols have
many overlapping targets which can attenuate these processes in the following manner: (A) polyphenols, such as the ellagic
acid metabolite urolithin B, reduce inflammation by decreasing nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) and mitogen-activated protein kinase (MAPK) phosphorylation, preventing pro-apoptotic signaling and
inflammatory cytokine release; (B) polyphenols also increase mammalian target of rapamycin (mTOR) and Akt, which
reduces autophagy, apoptosis, and bcl-2-associated X protein (Bax) while increasing B-cell lymphoma extra-large protein
(Bcl-xL); (C) Ca2+-dependent and calmodulin-dependent protein kinase II, calpain and calcineurin activity are attenuated
by polyphenols, such as the anthocyanin cyanidin, and Ca2+ sarcoplasmic reticulum (SR) leak is reduced, thus normalizing
cellular Ca2+ flux; (D) polyphenols act as substrates of the electron transport chain (ETC), improving ETC efficiency. They
also increase the reductive state of cytochrome C (Cyt c) and prevent mitochondrial permeability transition pore opening,
maintaining membrane polarization; (E) polyphenols, such as the phenolic acid gallic acid, reduce NADPH-oxidase (Nox)
expression and increase antioxidant and detoxifying enzyme activity. This occurs due to increased nuclear factor erythroid
2-related factor 2 (Nrf2) nuclear translocation, as well as increased crosstalk between Sirt1, leading to attenuation of excessive
reactive oxygen species and free heme, thus, oxidative stress and cytotoxicity is reduced. Lastly, (F) sirtuin 1 (Sirt1) is
upregulated by polyphenols, such as the stilbene resveratrol, and also by Nrf2 activity which correspondingly increases
endogenous antioxidant activity, inhibits pro-apoptotic p53, and inhibits inflammatory signaling of the NF-κB complex
via deacetylation. Cumulatively, these multiple and overlapping targets of polyphenols present a potential therapeutic
treatment of HF using a plant-based diet. Created with BioRender.com.
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2. Polyphenols

Edible plants contain polyphenols in varying concentrations (see Lorenzo et al. [40]
for compiled concentrations), which can be categorized into four overarching categories:
flavonoids, phenolic acids, lignans and stilbenes [41]. Flavonoids can be further subcat-
egorized into: flavonols, flavanols, flavones, flavanones, isoflavones and anthocyanins.
Flavonoids are classified based on the carbon attachment of the C ring to the B ring as well
the oxidative state of the C ring as illustrated in Figure 2.
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Flavonols and flavanols are the most common flavonoids found ubiquitously in most
legumes, fruits and vegetables [41]. Flavonols are ketones with a hydroxyl group at
position 3 of the C ring. Quercetin, kaempferol, rutin and myricetin are the most abundant
flavonols. Flavanols lack the ketone of flavonols and are also called flavan-3-ols because
the hydroxyl group is always at position 3 of the C ring. Flavanols exist as monomeric
(catechin, epicatechin, epigallocatechin) and polymeric (proanthocyanidins, also known as
condensed tannins which are simply monomeric flavanols with primarily C4→C8 bonds
forms [43].

Flavones, compounds with a double bond between position 2 and 3 of the C ring
and a ketone at position 4 of the C ring, are less common and typically found in peppers.
Luteolin and apigenin are examples of classically studied flavones [44]. Flavanones are
nearly identical in structure to flavones; however, they contain a single bond between
carbons 2 and 3 of the C ring. Flavanones are typically found in citrus fruits and include
hesperidin, naringenin and eriodictyol [45]. Isoflavones including daidzein and genistein
are typically found in soy products and act as phytoestrogens since they have the ability
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to bind estrogen receptors in mammalian cells [46]. Unlike other flavonoids, the B ring of
isoflavones is attached at position 3 of the C ring relative to oxygen.

Anthocyanins are derived from flavonols and have a positively charged oxygen at
position 4 of C ring [47,48]. They are responsible for the blue, purple and red pigment of
plant foods. Cyanidin, delphinidin, malvidin, pelargonidin, peonidin and petunidin are
the most common anthocyanins found in their glycosylated form. They are referred to as
anthocyanidins if they are devoid of the glycosyl moiety. Darkly pigmented plants, such as
black beans [49], purple sweet potatoes [50], red cabbage [51], red lettuce [52], as well as
berries [47] are known to have particularly high concentrations of anthocyanins.

Phenolic acids contain one or more aromatic rings with a carboxylic acid and include
a large number of compounds primarily classified as hydroxycinnamic acids, which have a
saturated tail followed by carboxylic acid and include compounds such as caffeic, chloro-
genic, ferulic and p-coumaric acid. Hydroxybenzoic acids have no tail saturation [53] and
include gallic, ellagic, protocatechuic, vanillic and syringic acids (Figure 3). Phenolic acids
are found nearly ubiquitously in all plant foods; however, their proportions and concentra-
tions vary [41]. Hydrolysable tannins are high-molecular weight compounds comprised of
phenolic acids, such as ellagic and gallic acid, that are released under acidic conditions in
the stomach and small intestine [43]. In contrast, condensed tannins or proanthocyanidins
are non-hydrolysable polymers of flavonoids including catechin and epicatechin [43].
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Lignans are a separate polyphenol class and include linked diphenol compounds
with two phenylpropanoids. They have differing combinations of linked lactone or carbon
bonds [54] (Figure 3). Flaxseeds are one of the richest dietary sources of lignans; however,
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grains and nuts do contain small quantities [55]. Common lignans include secoisolari-
ciresinol, matairesinol and lariciresinol.

The last of the major polyphenol class includes stilbenes, the most well studied of
which is resveratrol, found in high concentrations in the skin of purple grapes. However, it
is also found in smaller quantities in certain blueberry varieties, strawberries, lingonberry,
tomato skin and cocoa [56–58]. Less commonly known stilbenes contain two phenolic rings
linked by an ethylene; these include piceatannol and pterostilbene (Figure 3). They are
found in a variety of edible berries [57].

2.1. Polyphenol Metabolism

Parent compounds, polyphenols which have not undergone metabolic breakdown, are
typically poorly absorbed in the intestinal lumen [59]. However, these parent compounds
typically undergo hydrolysis, deglycosylation, dehydroxylation, and demethylation re-
actions to facilitate absorption, which is carried out mostly by the gut microbiota [59].
In the liver, polyphenol metabolites act as substrates for cytochrome P450, and these
modified compounds are then further catalyzed by phase II enzymes and undergo glu-
curonidation with UDP-glucuronosyl transferases and sulfonation with sulfotransferases
to increase solubility [60]. Adequate bioaccessibility of polyphenols in food facilitates
availability for metabolism and absorption [40]. Mastication and changes in intestinal
pH can increase bioaccessibility. Further, microbial degradation of food matrices that are
indigestible to humans, namely, fiber, can liberate polyphenols for metabolism [34–37]. In
fact, non-extractable polyphenols (those bound to plant matrices) comprise ~78% of the
total polyphenol content of the Spanish diet [36].

Additionally, various cooking methods can increase or decrease bioaccessibility de-
pending on the plant food (reviewed in detail by Lorenzo et al. [40]). For example, steaming
cauliflower can increase the total polyphenol content [61], but steaming kale may decrease
the total polyphenol content [62]. In a study where subjects consumed fresh tomato or
tomato sauce, naringenin was not detected in the serum of subjects who consumed fresh
tomatoes but appeared in those that consumed tomato sauce [63]. Naringenin glucoro-
nide appeared in the serum of subjects that consumed tomato sauce at nine times the
concentration of fresh tomatoes, while caffeic acid glucuronide appeared in serum at a
greater concentration with fresh tomatoes compared to tomato sauce. In rats consuming
a high-fat diet with pitaya cactus, oven cooking decreased the total phenolic content by
~37%, which was reflective in serum, as decreased antioxidant activity was observed in
these animals eating oven cooked pitaya compared to fresh pitaya [64]. Whether these
changes in bioaccessibility are of substantial therapeutic relevance in humans remains to
be fully elucidated.

2.1.1. Flavonoid Metabolism

Non-hydrolysable tannins, such as proanthocyanidins also undergo microbial
metabolism to facilitate absorption, which has been reviewed extensively by Mena et al. [65].
For example, the estimated absorption of the whole flavanol intact is low, roughly 7.5% [65];
however, following microbial metabolism, approximately 95% of flavanols may be ab-
sorbed in the form of metabolites [66]. These microbial reactions include cleavage of
the inflavan bond and C-ring and a series of dihydroxylation and oxidation reactions
yielding a number of metabolites, including 5-(3′,4′-dihydroxyphenyl-γ-valerolactone),
5-(3′,4′-dihydroxyphenyl) valeric acid and 2-(3′,4′-dihydroxyphenyl) acetic acid, among
others [67]. Exemplifying the importance of these metabolites, the flavanol metabolite
(δ-(3,4-dihydroxyphenyl)-γ-valerolactone) was found to accumulate in both human mono-
cytes and endothelial cells and exert potent anti-inflammatory effects at low µM concen-
trations [68]. However, the parent compound (+)-catechin had minimal cellular uptake
in vitro in EA.hy 926 cells, as demonstrated by negligible cellular antioxidant activity [69].
Interestingly, the parent compound cyanidin-3-glucoside can enter the cell by membrane
transporter bilitranslocase [69], while metabolites may enter through monocarboxylate
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transporters [68] or even may diffuse through lipid membranes if hydroxyl groups are
deficient in number [70]. In vitro in a cell-free system, the relative hydrophobicity of certain
flavonoids, such as chrysin and apigenin, is higher, whereas the attachment of a glucoside
typically extinguishes hydrophobic interactions [70] necessitating the use of membrane
transporters or colonic metabolite generation in vivo.

2.1.2. Phenolic Acid Metabolism

Phenolic acids are the most diverse polyphenols found in plant foods and are also
the most common metabolite derived from the metabolism of both flavonoids and parent
phenolic acids. For example, ellagitannins, polymers of ellagic acid and gallic acid, are
found in high concentrations in most edible berries and nuts [71]. Following hydrolytic
liberation in the stomach and small intestines, ellagic acid is metabolized by the gut
microbiome to yield urolithin A, B and other urolithin derivatives, which have independent
bioactive properties [72]. These urolithin metabolites can remain in serum for up to 48 h
and may undergo subsequent phase II glucuronidation or sulfonation reactions even 12 h
following consumption [73]. Further, phenolic acids can be derived from flavonoids; the
anthocyanin cyanidin-3-glucoside is very poorly absorbed (<1% absorption) [74]. However,
the phenolic acid protocatechuic acid is a metabolic byproduct of cyanidin-3-glucoside
produced by bacteria in the gut, yielding a variety of other phenolic metabolites including
vanillic acid, hippuric acid, caffeic acid, and ferulic acid [75]. Phenolic acids also exist
unbound, some of which include chlorogenic acids, p-coumaric acids, syringic acid and
gallic acid [76–78]. Chlorogenic acid, a hydroxycinnamic acid found in abundance in a
variety of fruits, vegetables and berries [78–80], is hydrolyzed by gut microbes to yield
caffeic acid [81]. In humans, caffeic acid is absorbed in the small intestine at three times the
rate of chlorogenic acid [82].

2.1.3. Lignan and Stilbene Metabolism

As with most other parent polyphenol compounds, lignans also undergo a series of
dehydroxylation and demethylation reactions to yield enterodiol and enterolactone [83], of
which the metabolite enterolactone is mildly associated with reduced CVD events [84]. The
absorption of the common stilbene, resveratrol, is nearly zero; however, resveratrol under-
goes extensive microbial metabolism, including double bond reduction, dihydroxylation,
and demethylation to allow for the absorption of metabolites that are further modified
in the liver [85,86]. Most resveratrol metabolites constitute resveratrol-3-O-glucuronide,
resveratrol-4′-O-glucuronide, resveratrol-3-O-sulfate and resveratrol-4′-O-sulfate [87].

Thus, based on the metabolic fate of polyphenols, it is likely that the therapeutic
efficacy of the polyphenols utilized in preclinical models is due to the molecular action
of the metabolites and not necessarily the parent compounds. For example, a number of
anthocyanins and flavanols with glycosides as well as ellagitannins can be found in red
raspberry fruit, with polyphenol content between 71.6 and 281.0 mg per 100 g of fresh
red raspberries [88]. However, following consumption of 125 g red raspberry for four
weeks and 250 g red raspberry on the last and first day, pooled data indicate 62 different
metabolites identified in serum, breast milk and urine, including a number of benzoic
acids and urolithins derived from the metabolism of flavonoids and ellagitannins [88]. In
a randomized, crossover postprandial study, 200 and 400 g red raspberry resulted in a
significant improvement in endothelial function at 2 and 24 h compared to control [89].
The total concentration of polyphenols in serum at baseline was ~88 µM but increased to
~112 µM and ~119 µM at 2 and 4 h, respectively, suggesting the direct effects of polyphenol
metabolites on the vasculature. In a separate investigation, the consumption of 500 mg of
cyanidin-3-glucoside resulted in various peaks of hydroxybenzoic and hydroxycinnamic
acids at 1, 6 and 24 h in serum with fluctuations in the nM and µM concentration range [75].
Human umbilical vein endothelial cells (HUVECs) were treated with these polyphenols
at their respective serum concentrations during the differing time points in addition to
10 ng/mL of TNF-α for 24 h [90]. Even at 0.1 times the concentration of polyphenols found
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in serum, endothelial inflammatory protein expression of vascular cell adhesion molecule 1
and intracellular adhesion molecule 1 were significantly reduced, suggesting the potent
effects of polyphenols even at sub-physiological concentrations.

3. Polyphenols in Heart Failure: Role of Oxidative Stress and Inflammation

Excessive cardiac oxidative stress derived primarily by overexpression of nicoti-
namide adenine dinucleotide phosphate (NADPH)-oxidases (Nox) and an increase in
mitochondrial-derived reactive oxygen species (ROS) are major drivers of HF [91–94].
Increased ROS activates inflammatory signaling pathways including mitogen-activated
protein kinases (MAPKs): p38MAPK, extracellular signal-regulated kinases (ERK)1/2 and
c-Jun N-terminal kinase (JNK) [95–98], which can induce cellular apoptosis via modification
functional domains of p53 [99]. Independently, ROS leads to phosphorylation and nuclear
translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [100]
in the cardiomyocyte, leading to the transcription of inflammatory cytokines including
transforming growth factor (TGF)-β, interleukin (IL)-6, IL-1β and tumor necrosis factor
(TNF)-α [101,102]. Inflammation facilitates macrophage recruitment into the myocardium
via chemoattractants and also leads to differentiation of fibroblasts into myofibroblasts,
promoting fibrosis [103]. Cumulatively, these signaling effects lead to cardiomyocyte hy-
pertrophy, apoptosis, pro-fibrotic signaling and, at the organ level, reduced functional
capacity.

To counteract the detrimental effects of oxidative stress, cellular antioxidant and
detoxifying enzymes neutralize ROS and ameliorate cytotoxic conditions [104–106]. These
enzymes include superoxide dismutase (SOD), catalase, glutathione S-transferase, glu-
tathione peroxidase (GPx), heme oxygenase (HO)-1 and NADPH dehydrogenase quinone
1 (NQO1), which are mostly co-regulated by Sirt1 and nuclear factor erythroid 2-related
factor 2 (Nrf2) [107–109]. In a state of exacerbated oxidative stress and inflammation as
observed in HF, the detoxifying system is overwhelmed, as NF-κB overexpression can
inhibit Nrf2 nuclear activity, and vice-versa [110,111]. Thus, mediating the inflammatory
and antioxidant response is of major therapeutic relevance in HF.

3.1. Flavonoids

Of the flavonoids, flavanols, flavonols, anthocyanins and flavanones are the most
commonly consumed and ubiquitously found in edible plants [112,113]; however, flavones
and isoflavones are also of dietary significance and may be cardio-protective in HF. In H9c2
cardiac myoblasts treated with 5 µM of the flavanol catechin, anthocyanidins cyanidin and
delphinidin, and the flavonol quercetin under hypoxic conditions to mimic ischemia, cell
viability was improved compared to control cells [114]. Additionally, under conditions of
oxidative stress with 400µM tert-Butyl hydroperoxide (tBuOOH) for 24 h, 1 h pretreatment
with 25 µM epigallocatechin gallate was cytoprotective, whereas 3-day pretreatment was
ineffective. However, under both 1 h and 3-day pretreatment conditions with quercetin,
cell survival was 95% and 66%, respectively, following tBuOOH stimulation. These data
suggest the differing cytoprotective roles of flavonoids under differing treatment conditions,
likely due to direct cellular antioxidant effects as well as secondary effects by increasing
detoxifying enzymes to neutralize ROS. Further, H9c2 myoblasts were pretreated for 25 h
with 10 ng/mL of lingonberry extract, a rich source of anthocyanins including cyanidin
derivatives: cyanidin-3-galactoside, cyanidin-3-arabinoside and cyanidin-3-glucoside [115].
Following pretreatment, 600 µM of H2O2 was added to cell culture to induce apoptosis.
All three anthocyanins, cyanidin-3-galactoside, cyanidin-3-arabinoside and cyanidin-3-
glucoside independently prevented cell apoptosis, as did the lingonberry crude extract.

Illustrative of these antioxidant effects, primary rat cardiomyocytes were pretreated
for 45 min with 6.55 µg/mL of total flavonoids or blueberry anthocyanin extract followed
by 0.25 µM norepinephrine stimulation for 24 h [116]. Norepinephrine targets the β-
adrenergic receptor (β-AR), which is overstimulated during times of decreased cardiac
output, a compensatory mechanism to increase cardiomyocyte excitation and contrac-
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tion [5]. Overstimulation can cause cardiomyocyte toxicity. In fact, transgenic animal
models in which β-AR is increased by 15-fold show a progressive decline in heart function
with EF reduced to 20%, which causes overt HF [117]. In the aforementioned study [116],
cardiomyocyte hypertrophy and apoptosis was increased following norepinephrine treat-
ment; however, these changes were attenuated with flavonoid and blueberry anthocyanin
extracts. Norepinephrine treatment also increased total oxidative stress and decreased SOD
and catalase activity, which were reversed by blueberry crude extract (isolated fractions
were not used). Additionally, in neonatal rat cardiomyocytes, pretreatment with 50 µM
delphinidin for 30 min followed by 24 h treatment of 1 µM angiotensin (Ang) II, an inducer
of oxidative stress via the angiotensin type-1 receptor (AT1R), significantly reduced both
H2O2 and O2

•−, which was reflective of reduced Nox activity, particularly Nox2 [118].
Interestingly, Ang II-mediated hypertrophy was attenuated by delphinidin, which was
reflective of reduced activation of ERK1/2, p38MAPK and JNK. In conjunction with this
in vitro model, transverse aortic constriction (TAC) in mice results in pressure overload, an
acute model of hypertension-induced HF. Delphinidin, at a dose of 15 mg/kg/day deliv-
ered via intraperitoneal injection for eight weeks following TAC, preserved EF, reduced
cardiac collagen accumulation, cardiac hypertrophy, O2

•− production and Nox activity.
It is likely that AMP-activated protein kinase (AMPK), a cardio-protective enzyme [119],
is downregulated due to TAC, which is reversed by delphinidin [118]. Upregulation of
AMPK leads to inhibition of GTP-binding protein Rac1, a key regulatory subunit of both
Nox1 and Nox2 [120].

While these flavonoids may be protective as they reduce oxidative stress, which
thereby reduces inflammatory signaling [121–123], it is likely that flavonoids reduce in-
flammation in an ROS-independent manner. For example, the flavonol myricetin was
administered to mice via gavage at a concentration of 200 mg/kg/day for six weeks fol-
lowing TAC, which attenuated cardiac dysfunction, hypertrophy and collagen synthesis
compared to control TAC [124]. Further, Nrf2 nuclear translocation was upregulated, which
corresponded with increased HO-1, decreased NF-κB nuclear translocation, and decreased
MAPK signaling compared to control. Surprisingly, Nrf2 knockdown did not prevent a
reduction in inflammatory signaling. In vitro, significant oxidative stress was unable to
be abrogated by myricetin induced by H2O2 and Nrf2 silencing. The protective effects
of myricetin are both ROS-dependent and independent, as myricetin may inhibit TAK1
by facilitating ubiquination of tumor necrosis factor receptor (TNFR)-associated factor 6
(TRAF6), just upstream of TAK1, resulting in reduced NF-κB and MAPK signaling, which
are downstream of TAK1. Thus, flavonoids likely reduce oxidative stress and inflammation
in a multi-targeted manner.

Flavones (luteolin and apigenin), flavanones (naringenin and hesperetin) and
isoflavones (genistein and daidzein) also appear to reduce oxidative stress and inflam-
mation in HF through similar mechanisms and pathways [125–133], by mediating Nrf2
and decreasing inflammatory signaling. In the case of isoflavones, it is interesting to note
that this class of flavonoids is one of the only polyphenols used in clinical trials, albeit
very few, and the cardioprotective effects are in moderate accordance with preclinical
studies [131–133]. In patients with ischemic stroke, soybean isoflavone extract (55% genis-
tein and 23% daidzein) significantly increased serum Nrf2 mRNA and SOD protein, and
decreased inflammatory cytokines IL-6 and TNF-α. These changes corresponded with
improved arterial function as assessed by flow-mediated dilation. Further, evidence also
exists that, in subjects with metabolic syndrome, genistein improved EF compared to
control subjects. These effects are particularly profound because both control and genistein
treatment groups followed a Mediterranean diet and exercised as part of the intervention;
however, control subjects did not improve functional parameters of the heart. Based on
the presented evidence thus far in addition to numerous other in vitro and in vivo mod-
els [134–145] (Table S1), it is clear that flavonoids possess potent anti-inflammatory and
antioxidant effects and attenuate HF.
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3.2. Phenolic Acids

Similar to flavonoids, phenolic acids likely reduce ROS and inflammation in a multi-
targeted manner. For example, rats receiving 10 mg/kg/day of vanillic acid or 20 mg/kg/day
of losartan, an AT1R blocker, orally for 10 days had significantly greater expression of
cardiac catalase, GPx and SOD with vanillic acid compared with losartan alone [146]. In a
separate investigation, mice underwent TAC and were monitored for eight weeks, after which
they received treatment with gallic acid (100 mg/kg/day), losartan (3 mg/kg/day), carvedilol
(1 mg/kg/day), or furosemide (3 mg/kg/day) for two weeks [147]. These drugs (with the
exception of gallic acid) are used in the clinical care to treat HF. Interestingly, gallic acid
treatment was able to reverse both functional and morphological abnormalities associated
with TAC, such as fractional shortening, LV end-systolic dimension (LVESD), end diastolic
dimension (LVEDD), measures of LV function, as well as heart weight and perivascu-
lar fibrosis despite established HF. Neither AT1R inhibition (losartan), β-AR inhibition
(carvedilol), nor reduced vascular pressure due to diuresis (furosemide) were able to reverse
or blunt these pathological characteristics due to TAC. Further illustrated by Jin et al. [147],
in primary rat cardiac fibroblasts, despite a 3 h pretreatment with TGF-β1 (5 ng/mL), an
inducer of collagen synthesis, gallic acid treatment (unspecified concentration) for 9 h
reversed collagen synthesis and myofibroblast differentiation.

Other phenolic compounds also are of therapeutic relevance under a variety of cardiac
stressors. For example, ellagic acid (20 µM) was able to completely blunt O2

•− production
induced by hyperglycemic conditions (30 mM glucose) in isolated rat aortas. In addition,
treatment with ellagic acid reduced Nox4 and ERK1/2 expression in human aortic en-
dothelial cells under hyperglycemic conditions [148]. Gallic acid can also directly affect
Nox expression in the heart, as Nox2 protein, as well as Nox1, Nox2 and Nox4 mRNA
expression, were significantly reduced in spontaneously hypertensive rats due to gallic
acid treatment (1% of water drinking water) for two weeks following TAC [149]. Ellagic
acid (7.5 mg/kg and 15 mg/kg orally) pretreatment for 10 days followed by subcuta-
neous injection of 100 mg/kg isoproterenol (an agonist of β-AR) for 2 days resulted in a
blunting of the arrhythmic and hypertrophic effects induced by isoproterenol [150]. In an
ischemic model of HF using CAL, a derivative of p-coumaric acid (4-O-(2”-O-acetyl-6”-O-p-
coumaroyl-β-D-glucopyranosyl)-p-coumaric acid) in a dose-dependent manner (15, 30 and
60 mg/kg/day) improved EF (61%, 69% and 71%, respectively, compared to 56% in control)
in addition to decreasing cardiac TNF-α, IL-6 and IL-1β expression after eight weeks [151].
In a separate investigation, 0.7 mg/kg of urolithin B, a metabolite of ellagic acid metabolism,
was injected subcutaneously in rats 24 and 48 h prior to ischemia-reperfusion (I/R) to
induce HF [152]. While urolithin B did significantly reduce the infarct size, cardiac Nrf2
nuclear translocation was up-regulated, which corresponded with increased SOD activity
and decreased malondialdehyde (a marker of lipid peroxidation) and O2

•− levels. This
was hypothesized to be due to increased p62 expression, a scaffolding protein involved
in a variety of cellular processes that can directly bind to the binding pocket of Keap1, a
cytosolic Nrf2 sequestering protein, allowing for increased nuclear translocation [153].

Further illustrating the multiple targets of phenolic acids, cardiomyocytes treated
with TNF-α alone (40 ng/mL) for 24 h were apoptotic compared to control. Nonetheless,
these apoptotic effects were completely blunted by pretreatment with chlorogenic acid
(1 µmol/L) for 12 h [154]. Further, NF-κB phosphorylation was increased due to TNF-α
treatment; however, chlorogenic acid reduced NF-κB phosphorylation to control levels.
Interestingly, an NF-κB inhibitor (QNZ) decreased cardiomyocyte apoptosis induced by
TNF-α, though not to the extent of chlorogenic acid. It was observed that chlorogenic
acid was able to reduce phosphorylation of JNK, which was primarily driving apoptosis.
Chlorogenic acid also appears beneficial in attenuating hypertrophy in vivo due to MI [155]
and in vitro due to β-AR agonist [156]. Thus, phenolic acids can reduce both inflammation
and oxidative stress in an ROS-dependent and -independent manner.
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3.3. Lignans

In vitro, enterolactone increases Nrf2 activity under basal conditions in a
dose-dependent manner in HUVECs [157]. However, limited preclinical studies exist
that assess lignans and their metabolites in traditional HF models, with a primary and
secondary analysis identified utilizing I/R in vivo, one cell culture iron overload model,
and another using pulmonary arterial hypertension to induce right ventricle dysfunc-
tion [158–161]. These limited investigations suggest that lignans are cardio-protective by
decreasing cardiac oxidative stress and inflammation. Nonetheless, further investigations
in acute HF models are needed.

3.4. Stilbenes

Of the stilbenes, resveratrol is the most widely studied in HF. In HUVECs, resveratrol
under basal conditions significantly increases GPx1 and SOD1 mRNA and decreases Nox4
mRNA in a dose-dependent manner (1, 10, 30, 60 and 100 µM) after 24 h [162]. In primary
cardiomyocytes exposed to high-glucose conditions (30 mmol/L) for 12 h, significantly
increased inflammatory cytokines were detected in medium from cardiomyocytes, MAPK
proteins (p38MAPK and ERK1/2) were increased, and nuclear NF-κB expression increased.
However, these effects were significantly attenuated by 1-h pretreatment with 20 µmol/L
of resveratrol [163]. In an isoproterenol model of HF in BALB/c mice, 100 mg/kg of
resveratrol was injected subcutaneously for two weeks and concurrent isoproterenol injec-
tion occurred during the final week (50 mg/kg) [164]. Resveratrol treatment significantly
reduced cardiac inflammatory cytokine protein expression, as well as mRNA of monocyte
chemoattractant protein (MCP)-1. In addition, treatment with resveratrol significantly
attenuated the infiltration of macrophages in the heart, a key process in the formation of
collagen and scaring [165,166], which was accompanied by a significant reduction in car-
diac collagen accumulation. Despite promising in vitro and in vivo findings from injected
resveratrol, due to extremely low intestinal absorption of the intact stilbene [86], animal
models utilizing ingested resveratrol are far more physiologically relevant due to microbial
metabolism of the stilbene.

In a TAC model of HF in C57BL/6 male mice, resveratrol was provided by oral
gavage (10 mg/kg) for 28 days following TAC surgery [167]. Compared to control animals
which underwent TAC, resveratrol treatment significantly improved EF, reduced cardiac
hypertrophy, collagen accumulation, macrophage infiltration, and cardiomyocyte apoptosis.
It is interesting to note the 10-fold lower concentration of resveratrol used in this trial
compared with Li et al. [164] who utilized subcutaneous injections of isoproterenol to
induce HF, despite illustrating comparable cardio-protective effects. It could be argued that
the mode of HF induction could account for these differences; however, Riba et al. [168] also
utilized an isoproterenol model, albeit for eight weeks, with dietary resveratrol (15 mg/kg)
and found significantly reduced cardiac MAPK signaling, collagen accumulation, LV mass
and improved EF. Thus, resveratrol intestinal and microbial metabolites are likely as
efficacious as the parent compound. Nonetheless, comparative studies are lacking.

4. Role of Polyphenols in Cardiac Mitochondrial Dysfunction

Mitochondria comprise 30% of total cardiomyocyte volume [169] and at the organ
level, energy demands of the heart are so high that 30 kg of ATP are consumed daily
by the heart in humans [170]. Mitochondrial dysfunction is a hallmark of HF, and is
characterized by excessive ROS leak, which occurs in Complex I and III of the electron
transport chain (ETC) leading to opening of the mitochondrial permeability transition pore
(mPTP), causing membrane depolarization, inhibition of ATP synthesis, and cytochrome
c (Cyt c) release from the mitochondria [171–173]. This activates the caspase class of
proteins, triggering apoptosis. Complex IV in the ETC is a Cyt c oxidase, transferring
electrons to oxygen to form water, while also priming Cyt c for reduction in Complex
III [174]. Interestingly, while Cyt c cytosolic translocation can activate caspase-3 and -9
leading to apoptosis, the oxidation state of Cyt c is of relevance, as oxidized Cyt c is a



Int. J. Mol. Sci. 2021, 22, 1668 12 of 26

much more potent agonist of caspase activation and cleavage than its reduced form [173].
N,N,N′,N′-tetramethylphenylene-1,4-diamine (TMPD), a Cyt c reductase, significantly
attenuated caspase activation, which ultimately attenuated cardiomyocyte apoptosis in
ischemic, isolated rat hearts [175].

Similar to TMPD, polyphenols themselves may act as a Cyt c reductase. For exam-
ple, anthocyanins, 40 µM delphinidin 3-glucoside and cyanidin 3-glucoside significantly
increased the reduction state of Cyt c in a cell-free system maximally by 78% and 50%,
respectively, after 6 min. [176]. However, 6-min incubation with 40 µM pelargonidin-3-
glucoside, malvinidin-3-glucoside and peonidin-3-glucoside only marginally increased the
reduction state of Cyt c by 12%, 21% and 14%, respectively. In cardiomyocytes isolated
from rat hearts that were perfused with or without 20 µM of cyanidin 3-glucoside and
then underwent ischemia for 45 min, Cyt c translocation was significantly increased in
the cytosolic fraction of both treated and untreated hearts. However, caspase activity
was reduced to nearly non-ischemic levels due to cyanidin 3-glucoside eliciting Cyt c
oxidative reduction.

In a separate investigation, mitochondria isolated from rat hearts treated with del-
phinidin 3-glucoside and cyanidin 3-glucoside that had undergone 45 min of ischemia were
able to improve state 3 respiration (high ADP and Pi) in the presence of NADH-yielding
proteins: malate + pyruvate or glutamate + malate, compared to ischemic mitochondria
alone [177]. Based on the respiratory control index, a function of state 3 respiration over
basal respiration (lacking ADP and Pi), ETC efficiency was reduced by 60% under is-
chemic conditions with pyruvate + malate. However, 20 µM of delphinidin 3-glucoside
or cyanidin 3-glucoside treatment ameliorated this effect, improving ETC efficiency by
~55% compared to ischemic mitochondria. This corresponded to overall increased ATP
production with delphinidin 3-glucoside and cyanidin 3-glucoside compared to ischemic
mitochondria alone. These protective effects are likely attributable to improved complex
I activity. Under ischemic conditions, Complex I activity was reduced by 59%; however,
delphinidin 3-glucoside and cyanidin 3-glucoside significantly increased NADH oxidation,
which approached levels of that of non-ischemic control mitochondria. Interestingly, de-
priving coenzyme Q1 resulted in negligible NADH oxidation in Complex 1 of the ETC in
both non-ischemic and ischemic mitochondria. Nonetheless, delphinidin 3-glucoside and
cyanidin 3-glucoside significantly increased Complex 1 activity multifold despite a lack of
coenzyme Q1. These data suggest that delphinidin 3-glucoside and cyanidin 3-glucoside
can substitute coenzyme Q1 as electrophiles, which improves Complex I activity, thus
improving overall ETC efficiency under ischemic conditions.

Similar protective effects were observed in cardiomyocytes pretreated with chlorogenic
acid (1 µmol/L for 12 h) followed by TNF-α treatment (40 ng/mL for 24 h) [154]. While
TNF-α alone increased mPTP and protein expression of cleaved caspase-3 (activated),
chlorogenic acid pretreatment completely blunted these effects, which corresponded to a
significant attenuation in TNF-α-induced apoptosis. In vivo, senescence-accelerated prone
8 (SAMP8) mice (mice with accelerated aging) at 10 months of age received chlorogenic
acid bound to a phospholipid complex (to increase absorption) at 10 or 20 mg/kg/day for
two weeks [178]. Following treatment, I/R injury was induced, after which animals were
immediately sacrificed. Chlorogenic acid significantly decreased cardiac mitochondrial
ROS, which corresponded to increased total SOD and GPx activity, compared to I/R alone
in a dose-dependent manner. Further, isolated cardiac mitochondria from I/R mice had
decreased oxygen consumption compared to control, which was ameliorated by chlorogenic
acid. Additionally, cytosolic Cyt c was reduced due to chlorogenic acid not only compared
to I/R control mice, but sham-operated mice as well, demonstrating cytoprotective effects
even in a non-pathological state.

Mitochondria undergo regular fission and fusion, and, in healthy cardiomyocytes,
this dynamic is at equilibrium [179]. In HF, this equilibrium is disrupted, and mito-
chondria undergo excessive fission, leading to fragmented, dysfunctional mitochondria.
Fragmented mitochondria due to excessive fission produce excessive ROS [179]. Further,
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Bcl-2 19-kD interacting protein 3 (Bnip3) is a pro-apoptotic protein, which can associate
with mitochondria following hypoxia (ischemia) or other forms of cytotoxicity (doxoru-
bicin) facilitating mitochondrial ROS and mPTP opening [180,181]. Ellagic acid (50 and
100 µM for 1 h) has been previously shown to prevent the inhibitory effects of bevacizumab
(50 µg/mL; anti-cancer drug) on succinate dehydrogenase in rat heart mitochondria as
well as preserve mitochondrial membrane potential [182]. In both hypoxic and doxoru-
bicin (10 µM)-induced rat cardiomyocyte toxicity, 10 µM ellagic acid co-treatment for 18 h
reduced mitochondrial fragmentation and Bnip3 protein expression, which corresponded
with reduced mPTP, ROS and an attenuation of apoptosis [183]. Thus, polyphenols likely
target mitochondria in a cytoprotective manner in a multitude of ways, including increased
ETC efficiency, oxidative reduction of Cyt c, and prevention of mPTP opening.

5. Polyphenols in Ca2+ Homeostasis

Ca2+ in the cardiomyocyte is primarily stored in the sarcoplasmic reticulum (SR).
Transient flux of Ca2+ from the SR to the cytosol enables excitation–contraction coupling,
and contraction occurs via cross-bridge formation between myofilaments in the cell [184].
Ca2+-dependent and calmodulin-dependent protein kinase II (CaMKII) responds to ROS
(at physiological concentrations), as well as β-AR activation [185,186]. CaMKII activation
leads to phosphorylation of ryanodine receptor 2 (RYR2) on the SR, allowing calcium
to be released [184]. Immediately following RYR2-mediated Ca2+ release, sarcoplasmic-
endoplasmic reticulum Ca2+ ATPase (SERCA2a) sequesters Ca2+ back in the SR. In HF,
Ca2+ accumulates in the cytosol due to CaMKII overexpression, as well as decreased
SERCA2a activity facilitating SR leak, preventing repolarization for contraction [184]. This
is further exacerbated by calpains, Ca2+ sensitive proteases, which degrades the SR due
to excessive Ca2+ accumulation [187]. Calpains are also activated independent of Ca2+

by NF-κB activity (IκBα of the NF-κB complex binds directly to calpains), as well as
direct phosphorylation of calpains by ERK [188]. Elevated Ca2+ leads to the activation of
calcineurin, a phosphatase, which dephosphorylates calcineurin–nuclear factor of activated
T cells (NFAT), which dimerizes with NF-κB and translocates to the nucleus initiating
hypertrophic transcription [189,190]. Polyphenols may play a role in maintaining Ca2+

homeostasis via a variety of pathways.
In primary rat cardiomyocytes pretreated with 6.55 µg/mL of polyphenols extracted

from blueberries for 45 min followed by 0.25 µM norepinephrine stimulation for 24 h,
calpain activity was found to be significantly increased due to norepinephrine but was
significantly attenuated with pretreatment with blueberry polyphenols [116]. Further,
dibucaine alone, a calpain inducer, significantly induced cardiomyocyte apoptosis [116].
Interestingly, blueberry polyphenols were able to completely blunt dibucaine-induced
cell death and dibucaine-induced ROS. However, the Nox inhibitor VAS-2870 did not
reduce norepinephrine-induced apoptosis, suggesting that these polyphenols were acting
on a calpain-specific mechanism [116]. Further, norepinephrine significantly impaired
cardiomyocyte contractility as evidenced by decreased peak shortening and velocity of
shortening, which was also attenuated by blueberry polyphenol treatment. In a separate
investigation, H9c2 cardiomyocytes and primary rat ventricular neonatal cardiomyocytes
were treated with metabolites (12 µM catechol-O-sulphate, 6 µM pyrogallol-O-sulphate and
3 µM 1-methylpyrogallol-O-sulphate) found in human serum following the consumption
of blueberry, blackberry, raspberry and strawberry [191]. Cardiomyocytes were treated
for 2 h with these polyphenols, washed, and then treated with 200 µM isoproterenol for
24 h. Interestingly, polyphenols without isoproterenol increased CaMKII phosphorylation
compared to control; however, isoproterenol alone increased CaMKII phosphorylation to a
significantly greater extent. Treatment with both polyphenols and isoproterenol attenuated
CaMKII phosphorylation compared with isoproterenol alone. These results demonstrate
attenuation in aberrant and excessive Ca2+ flux and asynchronous beating induced by
isoproterenol, particularly with catechol-O-sulphate and 1-methylpyrogallol-O-sulphate.
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Both flavonoids and phenolic acids appear to have this Ca2+ clearing effect. For ex-
ample, serum was collected from rats with cardiac physically induced trauma (resulting
in significantly increased serum TNF-α) and without trauma. Serum was added to H9c2
cardiomyocytes, of which, serum containing significant TNF-α-induced significant Ca2+

flux which corresponded with increased apoptosis and ROS. However, quercetin (10µM)
pretreatment for 24 h following 3 h treatment with serum containing TNF-α completely
abrogated these detrimental effects [192]. In a separate investigation, cardiomyocytes
were isolated from streptozotocin-induced diabetic rats treated with urolithin A or B
(2.5 mg/kg/day) delivered by intraperitoneal injection for three weeks [193]. Improved
Ca2+ clearance was observed due to urolithin treatment compared with streptozotocin
alone, as was contractile function which reflected improved hemodynamic data in vivo.
Additionally, direct effects on the sarcoplasmic reticulum were observed, as SERCA2a
protein expression was significantly increased with urolithin treatment compared to strep-
tozotocin alone. Further, spontaneously hypertensive rats treated with gallic acid (1% of tap
water) for three months had reduced cardiac CaMKII at the proteome and transcriptional
level [194]. Lastly, in neonatal rat cardiomyocytes treated with gallic acid (10 µM) after
24 h treatment with Ang II (100 nM), both calcineurin and NFAT protein expression were
significantly reduced compared to Ang II alone [195]. Based on these data, polyphenols
likely have direct effects on maintaining calcium homeostasis in HF, including regulation
of CaMKII, calpains and calcineurin as well as maintenance of SR.

6. Polyphenols in the Regulation of Survival Signaling

Mammalian target of rapamycin (mTOR) is part of protein complexes mTOR com-
plex 1 (mTORC1) and mTOR complex 2 (mTORC2). Survival signaling is mediated by
mTOR [196], and genetic knockout of mTOR results in dysfunctional mitochondria, car-
diomyocyte apoptosis and increased autophagy [197]. For example, mTORC1 phosphory-
lates unc-51-like kinase (ULK) 1, preventing the formation of the autophagosome complex,
inhibiting autophagy [198]. Inhibition of chronically elevated autophagy has beneficial
effects in improving cardiomyocyte survival and reducing apoptosis [199,200]. For exam-
ple, TAC in mice resulted in an increase in cardiomyocyte autophagy, while inhibition of
autophagosome formation attenuated pathological remodeling of the heart [201]. Further,
phosphoinositide 3-kinase (PI3K) phosphorylation due to growth hormones, including
insulin-like growth factor-1 (IGF-1) [202], can phosphorylate mTORC2, which in turn
phosphorylates Akt [196]. Akt phosphorylation prevents apoptosis via the downstream
inhibition of Bnip3 [203,204] and pro-apoptotic Bcl-2-associated X-protein (Bax), both of
which translocate from the cytosol to mitochondria, disrupting mitochondrial membrane
integrity, causing Cyt c release resulting in cellular apoptosis [205]. B-cell lymphoma
extra-large (Bcl-xL) is also increased by Akt [206]. Bcl-xL is anti-apoptotic by disrupting
the caspase-3 cascade preventing apoptosis [207]. Akt inactivation is apparent in mice that
undergo TAC and it is accompanied by activation of fetal genes leading to pathological
hypertrophy [208].

Interestingly, mTORC1 activation appears to act in both a beneficial and detrimen-
tal manner, and its partial inhibition may preserve its physiological functions (increased
mitochondrial biogenesis and oxidative capacity of nutrients) but blunt its maladaptive
response (cardiac hypertrophy). mTORC1 does indeed inhibit autophagy [198] and lyso-
somal activity [209] and while its genetic deletion results in a rapid progression towards
HF [197], partial mTORC1 inhibition in mice that underwent TAC and CAL resulted in
significantly improved cardiac function and reduced cardiomyocyte apoptosis. Yet, Akt
phosphorylation was preserved compared with control mice [210]. Further, mTORC1
overexpression in a high-fat diet mouse-model of MI increases infarct size and cardiomy-
ocyte apoptosis; decreased autophagy was implicated in these detrimental effects [211].
It is interesting to note that autophagy was protective in this model which is in direct
contrast with other investigations [199,200]. However, total mTOR, which upregulates
both mTORC1 and mTORC2, does not appear to induce these detrimental effects [212].
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In transgenic mice which underwent TAC with overexpressed mTOR, cardiac function
was preserved, and fibrosis was significantly reduced compared to wild-type mice. Ad-
ditionally, transfected cardiomyocytes with upregulated mTOR in vitro challenged with
lipopolysaccharide, a traditional inducer of inflammation and apoptosis, resulted in de-
creased NF-κB signaling and decreased inflammatory cytokine expression compared with
non-transfected cardiomyocytes. Unlike mTORC1, inhibition of mTORC2 in HF does not
appear protective [213], as Akt phosphorylation appears highly dependent upon mTORC2
activation [214]. Despite these complexities, which are likely attributable to the mode of
HF induction [196], it can be tentatively surmised that total mTOR activation appears to be
of importance in attenuating HF.

Polyphenols likely play a direct role in the regulation of total mTOR, thus modulating
its downstream effectors. For example, in a streptozotocin-induced diabetes model of
HF, extracted black rice anthocyanins (72% cyanidin 3-glucoside) were provided to rats at
250 mg/kg/day for four weeks following induction of type 1 diabetes [215]. Interestingly,
anthocyanins increased both cardiac IGF-1 and IGF-1 receptor, which corresponded with
increased Akt phosphorylation compared with untreated diabetic rats. Concurrently,
reduced Bax, cytosolic Cyt c, cleaved caspase-3 and apoptosis were observed, while,
functionally, EF was improved. In an in vitro I/R model, neonatal rat cardiomyocytes were
pretreated with urolithin A (10 µM) at 24 and 1 h followed by I/R (3 h hypoxia then 3 h
reperfusion) [216]. There was an increase in the phosphorylation of Akt compared to I/R
alone, which paralleled reduction of Bax, increased Bcl-2 and a reduction of cleaved caspase-
3. The protective effects of urolithin A were ameliorated with an inhibitor of PI3K, LY294002.
In a separate investigation, urolithin B were injected into mice (0.7 mg/kg) at 48 and 24 h
prior to induction of I/R [152]. Phosphorylation of mTOR in cardiac tissue was reduced due
to I/R but restored with urolithin B, which also paralleled ULK1 phosphorylation. Further,
cleaved caspase-3 and cardiomyocyte apoptosis were reduced due to urolithin B treatment.
In H9c2 cells pretreated with 20 µM urolithin B for 12 h followed by hypoxia for 3 h and
3 h of reperfusion, mTOR phosphorylation was increased, as was Akt phosphorylation
and ULK1, all of which reflected reduced apoptosis. While phosphorylation of mTOR,
Akt and ULK1 were ameliorated by LY294002, cleaved caspase-3 and apoptosis were not
significantly increased. These effects highlight differences in polyphenol activity. For
example, in vitro, urolithin A seemed to primarily mediate survival signaling in I/R [216],
while urolithin B operated in a more Nrf2-dependant manner in I/R [152].

7. Polyphenols in the Regulation of Sirtuin 1

Sirtuins are a class of NAD+-dependent deacetylases which are localized in mitochon-
dria, the nucleus and cytoplasm. There are seven classes of sirtuins; however, Sirt1 may
be of particular relevance in HF due to modifications of various cellular targets, includ-
ing p53 inhibition [217], increased AMPK [218], SOD2, catalase and GPx [219–221], and
an attenuation of NF-κB [222]. In a cross-sectional analysis of human subjects, reduced
circulating Sirt1 mRNA in leukocytes was associated with HF compared with healthy
controls and was also tied to reduced serum antioxidant status and increased oxidative
stress [223]. Reduced Sirt1, SOD2 and Bcl-xL as well as increased p53 and Bax protein
expression were also evident in atrial myocytes extracted from HF patients compared with
healthy controls [224].

Polyphenols likely act to increase Sirt1 in a multifaceted manner. For example, in HU-
VECs, quercetin increased Sirt1 mRNA under basal conditions in a dose-dependent manner
(2.5, 5 and 10 µM) in 24 h suggesting transcriptional regulation of Sirt1 without stress [225].
However, polyphenols not only regulate Sirt1 expression, but also enhance protein–protein
interactions between Sirt1 and its substrates [226]. For example, in both C2C12 myoblasts
and neonatal rat ventricular myocytes, Ang II treatment (100 µmol/L) for 8 h significantly
increased ROS and apoptosis which was ameliorated with 4 h of pretreatment with 40
and 100 µmol/L resveratrol [221]. Sirt1-siRNA completely abolished the protective effects
of resveratrol. Nonetheless, resveratrol did not increase Sirt1 protein expression in the
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absence of Sirt1-siRNA suggesting that resveratrol was exerting its effects by improving
protein–protein binding affinity between Sirt1 and substrate. In human coronary arterial en-
dothelial cells, both 48 h pretreatment of 10 µmol/L resveratrol and transfection with Sirt1
overexpression attenuated basal mitochondrial ROS [227]. Under high glucose conditions
(30 mM), resveratrol decreased mitochondrial ROS in a dose-dependent manner. This effect
was abolished by Sirt1-siRNA. Similar protective effects of resveratrol have been observed
in Sirt1-dependent mechanisms in vitro by inhibiting hypoxia-induced apoptosis in en-
dothelial cells [228], as well as H2O2-induced apoptosis [229] and norepinephrine-induced
hypertrophy [230] in cardiomyocytes.

Resveratrol is not exclusive in its Sirt1-mediated effects. In isolated primary rat
cardiomyocytes which underwent 3 h of anoxia (95% N2 and 5% CO2) and 2 h of reoxy-
genation (95% O2 and 5% CO2), pretreatment with kaempferol (20 µM) for 24 h improved
cell viability to such a great extent that it was near that of control cells that did not undergo
anoxia [231]. However, cells which underwent anoxia without kaempferol had an ~80%
reduction in viability. Co-incubation of kaempferol with 60 µM of sirtinol, a Sirt1 inhibitor,
ameliorated the protective effects of kaempferol. Interestingly, protein expression of Sirt1
was significantly increased by anoxia + kaempferol treatment compared with anoxia alone
which again was abrogated by sirtinol. These findings ran in exact parallel with improved
mitochondrial potential, reduced mPTP, ROS, apoptosis and reduced protein expression of
Cyt C, cleaved caspase-3, and increased Bcl-xL. These effects were mediated by kaempferol
and Sirt1. Further, mice received 100 mg/kg/day of curcumin, via oral gavage, for one
week, then underwent coronary artery ligation (CAL) and were sacrificed four weeks
later [232]. Mice that received curcumin had significantly greater cardiac Sirt1 protein
expression compared to animals that did not receive curcumin. Additionally, curcumin sup-
plementation significantly reduced fibrosis accumulation in the myocardium and reduced
infarct size. Similar results were observed in high-cholesterol-diet-fed rats supplemented
with 100 mg/kg epigallocatechin-3-gallate; Sirt1 protein expression in the myocardium was
increased, as was catalase, SOD and GPx, which corresponded with reduced neutrophil
infiltration of cardiac tissue and improved muscle fiber architecture [233].

Despite the protective role of Sirt1 described thus far, extreme overexpression of Sirt1
likely has pathological effects. In six-month-old transgenic mice, a 12.5-fold increase in the
overexpression of Sirt1 paradoxically resulted in mitochondrial dysfunction and detrimen-
tal effects in heart function and morphology, namely, reduced EF and LVH, characteristics
of HF, compared with a 2.5–7.5-fold increase in the overexpression of Sirt1 [219]. Because
Nrf2 nuclear acetylation is a necessary modification in facilitating the transcription of
endogenous antioxidants, deacetylation of Nrf2 facilitated by Sirt1 prevents Nrf2 transcrip-
tional activity and shunts nuclear Nrf2 back into the cytosol in transfected K562 cells [234].
In contrast, glomerular mesangial cells that overexpressed Sirt1, increased Nrf2 nuclear
accumulation and transcriptional activity. Thus, the co-regulatory role of Nrf2 and Sirt1
may be tissue- or cell-specific. For example, in a cerebral artery occlusion animal model,
Sirt1 inhibition inhibited Nrf2 and vice-versa [235]. These findings may be attributed to ex-
cessive oxidative modifications of Sirt1 due to a compromised Nrf2-mediated endogenous
antioxidant response including ROS-mediated carbonylation, S-glutathionylation and S-
nitrosylation of cysteine residues, inhibiting Sirt1 activity [236]. Thus, modest upregulation
of Sirt1 activity mediated by polyphenols as observed thus far likely acts in a protective
and not a pathological manner, maintaining Nrf2 transcriptional activity as observed in
prior investigations.

8. Conclusions

In this review, we have highlighted multiple targets and pathways that polyphenols
modulate in HF, namely, a reduction of cardiac oxidative stress and inflammation, improved
mitochondrial function and integrity, preserved sarcoplasmic reticulum dynamics, and
increased mTOR, Akt and Sirt1 expression. Plant-based foods contain a wide variety of
polyphenols; thus, consumption of whole plant-based foods may be more efficacious than
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treatments utilizing single polyphenols (parent compound or metabolites). This is because
the multiple polyphenols found in plant-based foods can work in a synergistic or additive
manner, targeting several pathways underlying HF. To date, there is a paucity of human
studies reporting on the role of plant-based foods or diets in the treatment of HF. The
compelling preclinical findings summarized in this review demonstrate a need for well-
controlled clinical trials utilizing polyphenol-rich plant-based foods and diets to treat HF.
This would ultimately lead to the development and recommendation of complementary or
alternative nutritional strategies to prevent and/or manage HF. This would be of major
significance to HF patients who take an average of 6.8 prescription drugs daily [237], which
put them at increased risk for drug interaction. In addition, these prescription drugs are
costly and not free of side effects. Therefore, the search for natural therapeutic strategies to
manage HF is warranted.
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