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a  b  s  t  r  a  c  t

Conventional  methods  for  monitoring  lung  function  can require  complex,  or special,  gas  analysers,  and
may therefore  not  be  practical  in  clinical  areas  such  as  the  intensive  care  unit  (ICU)  or  operating  theatre.
The  system  proposed  in  this  article  is a compact  and  non-invasive  system  for  the  measurement  and
monitoring  of  lung  variables,  such  as alveolar  volume,  airway  dead  space,  and  pulmonary  blood  flow.  In
contrast  with  conventional  methods,  the  compact  apparatus  and  non-invasive  nature  of the proposed
method  could  eventually  allow  it to be  used  in  the ICU,  as  well  as  in  general  clinical  settings.  We  also
propose  a novel  tidal  ventilation  model  using  a non-invasive  oscillating  gas-forcing  technique,  where
both  nitrous  oxide  and  oxygen  are  used  as indicator  gases.  Experimental  results  are  obtained  from  healthy
idal ventilation
odel
scillating
as-forcing
itrous oxide

volunteers,  and  are  compared  with  those  obtained  using  a  conventional  continuous  ventilation  model.
Our  findings  show  that  the  proposed  technique  can  be  used  to  assess  lung  function,  and  has  several
advantages  over conventional  methods  such  as  compact  and  portable  apparatus,  easy  usage,  and  quick
estimation  of cardiopulmonary  variables.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license. 

xygen

ndicator gas

. Introduction

Patients in the intensive care unit (ICU) often require mechani-
al ventilatory support using positive pressure ventilation (Rouby
t al., 2004). Estimation of lung variables benefits these patients
ecause they help the clinician to determine the most suitable val-
es in therapeutic measures such as positive end-expired pressure
PEEP). They could also help to avoid the common problem of ven-
ilator induced lung injury (VILI). Three key lung variables are:

. alveolar volume at the end of an expiration, VA

. airway dead space volume, VD
. pulmonary blood flow, Q̇P

Current techniques for measuring these variables can require
he cooperation of the patient, or a modification of the patient’s

∗ Corresponding author at: Institute of Biomedical Engineering, Department of
ngineering Science, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford
X3 7DQ, UK. Tel.: +44 01865 617670.
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569-9048 © 2013 The Authors. Published by Elsevier B.V. 
ttp://dx.doi.org/10.1016/j.resp.2013.05.015

Open access under CC BY-NC-ND 
ventilator system. ICU patients depend on complex life support and
monitoring equipment, and thus are usually unable to cooperate
with the physician. These patients are therefore some of the most
difficult to assess using conventional lung function tests.

Zwart et al. pioneered the non-invasive oscillating gas-forcing
technique (Zwart et al., 1976, 1978), and used halothane as the
forcing gas at a very low concentration (around 0.02, v/v) to mea-
sure the average ventilation-perfusion ratio (V̇/Q̇ ) in the lung.
Hahn et al. further developed this method by using biologically
inert gases such as nitrous oxide (N2O) and argon (instead of
halothane) to measure VA, VD, and Q̇P non-invasively (Hahn et al.,
1993; Williams et al., 1994). They later proposed that oxygen (O2)
can be used to measure VA and VD (Hahn, 1996; Hamilton, 1998).
When O2 was  used together with N2O, their model can also be
used to measure Q̇P . However, their initial technique required a
respiratory mass spectrometer that presented considerable diffi-
culty when used in the ICU due to its size, noise, complexity, high
maintenance requirements, and lack of portability (Farmery, 2008).
Moreover, their prototype gas mixer is not compatible with mod-
ern ICU ventilators. There was  therefore a clinical need to design
a new system to deliver indicator gases according to the patient’s
breathing flow rates in real time.
A conventional existing model based on continuous ventilation
is described in Section 2; we  propose a novel non-invasive method
for estimating the cardiopulmonary variables, VA, VD, and Q̇P in Sec-
tion 3. Indicator gases O2 and N2O are injected into the patient’s

license. 
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Fig. 1. Schematic diagrams for a continuous ventilation model and the breath-by-breath “balloon-on-a-straw” tidal ventilation model, shown in (a) and (b), respectively.
Whereas the traditional continuous ventilation model regards the lung as a box of a rigid volume with a continuous flow passing through it, and a parallel dead space also
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ith  a continuous flow, the tidal ventilation model, has a volume VA at the end of an
as  enters the dead space of volume VD before entering the lung, and the expired g
ung  at flow rate V̇(t) at time t.

irway breath-by-breath “on the fly” to make the concentration of
hese gases vary sinusoidally in the inspired gas. The apparatus is
ompact in size and is portable, consisting of a flow rate sensor,

 gas concentration sensor, and two mass flow controllers (MFCs).
e improve the original Bohr equation for dead space calculation in

ection 4. Results obtained using the proposed single alveolar com-
artment tidal ventilation model are compared with those obtained
sing the continuous ventilation model in Section 5. A discussion

s presented in Section 6, and conclusions are drawn in Section 7. A
ist of abbreviations can be found in the appendix.

. The continuous ventilation model

The continuous ventilation model (Zwart et al., 1976; Hahn et al.,
993; Hahn, 1996; Williams et al., 1994), as shown in Fig. 1(a), treats
he lung as a rigid volume with a constant and continuous flow pass-
ng through it. Dead space is regarded as a tube of negligible volume
arallel to the lung, with another constant flow passing though it.
he inspired concentration of an indicator gas FI(t) is controlled by a
as mixing apparatus, and is forced to vary sinusoidally at a chosen
requency.

I(t) = MI + �FI sin(2�ft + �), (1)

here MI and �FI are the mean and amplitude of the forcing indi-
ator gas sinusoid, respectively, f is the forcing frequency in min−1,
nd � is the phase of the sine wave.

In the absence of venous recirculation, and assuming that the
nspired indicator gas concentration is in equilibrium in all tissues
hroughout the respiratory and cardiovascular systems, the mixed-
xpired and end-expired (i.e., alveolar) indicator gas concentrations
re also forced to be sinusoidal (Zwart et al., 1976; Hahn et al., 1993;
illiams et al., 1994).
Let FA be the indicator gas concentration in the alveolar com-

artments of the lung, and �FA be the amplitude of FA measured
rom its mean; we therefore have (Hahn et al., 1993)

�FA

�FI
= 1√(

1 + �b(Q̇P/V̇A)
)2 + ω2�2

(2)

n which �b is the blood-gas solubility coefficient; note that
b = 0.03 for O2, and �b = 0.47 for N2O. ω is the forcing frequency

n radians; i.e., ω = 2�f. � is the lung ventilatory time constant,
 = V ′
A

V̇A

, (3)
tion and which expands to volume VA + VT at the end of an inspiration. The inspired
vels through the dead space before entering the mouth. Gas enters and leaves the

where V ′
A is the effective lung volume given by (4) below, and V̇A

is the ventilation rate in L/min (Gavaghan and Hahn, 1995). The
relationship is given by

V ′
A = VA + �bVbl + �tlVtl, (4)

where Vbl is the volume of blood in the lung, Vtl is the volume of lung
tissue, and �tl is the lung tissue-gas partition coefficient. Indicator
gas O2 can be approximately regarded as a non-soluble gas with
�b ≈ 0 and �tl ≈ 0, hence V ′

A = VA. Therefore, � for O2 is

�O2 ≈ VA

V̇A

, (5)

For the soluble gas N2O, using the values of the above variables
given in Gavaghan and Hahn (1995), (4) can be re-written as V ′

A =
VA + 0.43. Therefore � for N2O is

�N2O = VA + 0.43

V̇A

. (6)

We can express the ventilation rate V̇A by (Williams et al., 1994)

V̇A = R(VT − VD), (7)

where R is the respiration rate in breaths/min, VT is the tidal volume,
and VD is the airway dead space volume.

At high frequencies ω, the term ω2�2 dominates the denomina-
tor in (2), therefore allowing � to be estimated using

�FA

�FI
→ 1

ω�
, (8)

where �FA, �FI, and ω are known values. The estimated � is then
subsequently used to determine lung volume VA using (3) and (4).

Conversely, at low values of ω, the term �b
Q̇P

V̇A
dominates the

denominator in (2), and therefore reveals information concerning
Q̇P . This indicates that careful selection of ω allows the variable
determination of both lung volume VA and lung perfusion Q̇P .

Hahn et al. (1993) found that the forcing sinusoidal frequency

should be f > 1
−1

min, when N2O is used as the forcing gas.
Lung volume VA derived from a continuous ventilation model

is greater than the actual VA, due to the assumption that VA is
constant. In reality, the lung volume including dead space volume
VD varies tidally between (VA + VD) at the beginning of inspiration
and (VA + VD + VT) at the end of inspiration. Sainsbury et al. (1997)
showed that subtracting a correction term Vc from the lung volume

determined by the continuous ventilation model produces a more
realistic estimate of the lung volume,

Vc = 1
2

(VT + VD) (9)
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In our proposed new system, we have used both O2 and N2O to
stimate VA and Q̇P . With the indicator gas O2 regarded as a non-
oluble gas with �b ≈ 0, (2) therefore becomes

�FA

�FI

)
O2

= 1√
1 + ω2�2

O2

, (10)

here
(

�FA/�FI

)
O2

indicates �FA/�FI obtained using O2 data.

From (5) and (10), we have

A = V̇AT

2�

[(
�FA

�FI

)−2

O2

− 1

]1/2

(11)

here V̇A is given by (7), and T is the forcing sinusoidal period in
inutes; i.e., T = f−1 = 2�(ω)−1. Here we have reached the estimate

f lung volume VA, using (11).
For the soluble indicator gas N2O, (2) can be re-written as

�FA

�FI

)
N2O

= 1√(
1 + 0.47(Q̇P/V̇A)

)2 + ω2�2
N2O

(12)

rom (5), (6), (10) and (12), we have

˙ P = V̇A

0.47

{[(
�FA

�FI

)−2

N2O
−

(
VA + 0.43

VA

)2
·
(

�FA

�FI

)−2

O2

+
(

VA + 0.4
VA

here V̇A is given by (7), and VA is given by (11).
A set of VA and Q̇P can be produced at any sinusoidal period

, using (11) and (13) where both O2 and N2O contribute to the
stimation.

In previous work concerning the continuous ventilation model
Hahn, 1996; Hamilton, 1998), only one type of indicator gas was
sed, hence VA and Q̇P had to be estimated separately. One contri-
ution of the proposed system is that, for the first time, VA and Q̇P

an be estimated at the same time using the continuous ventilation
odel, and this therefore reduces the time to obtain estimates VA

nd Q̇P . This is achieved by injecting two types of indicator gases
2 and N2O simultaneously, where O2 data are used to estimate
A, and N2O data are used to estimate Q̇P , when the continuous
entilation model is applied.

A drawback of the continuous ventilation model is that it
equires a relatively long period of time to obtain its measurements,
ainly because obtaining �FA/�FI requires the duration of sig-

als to be at least one period T (and is typically taken to be several
eriods). In the ICU or operating theatre where prompt response to
hanges in patient conditions is required, it is essential to estimate
atient lung function in a short time. In Section 3, we propose a
reath-by-breath tidal ventilation model (assuming a single alve-
lar compartment), which allows fast estimation of patient lung
unction in a non-invasive manner.

. The tidal ventilation model

.1. A breath-by-breath model

In contrast with the continuous ventilation model discussed in
ection 2, a tidal ventilation model was introduced by Gavaghan
nd Hahn (1996), and later modified by Williams et al. (Williams
t al., 1998; Whiteley et al., 2000, 2003; Farmery, 2008). We  employ

 “balloon-on-a-straw” tidal ventilation model (Hahn and Farmery,
003), shown in Fig. 1(b).

In a “balloon-on-a-straw” tidal ventilation model, the gases

nter and leave the lung via a common dead space (the straw)
f volume VD. Compared with the rigid volume of the continuous
entilation model, the lung volume (the balloon) in the “balloon-
n-a-straw” model reflects the reality of breathing, where the
Neurobiology 189 (2013) 174– 182

]1/2

− 1

}
, (13)

lung expands during inspiration and empties during expiration. A
detailed description of the “balloon-on-a-straw” tidal ventilation
model can be found in Hahn and Farmery (2003).

Let FA,n be the indicator gas concentration in the lung during
breath n; we  assume that FA,n is constant during any breath n, and
hence is not dependent on time t. The volumes of the indicator gas at
the end of breath (n − 1) and n are VAFA,n−1 and VAFA,n, respectively.
Let VI be the volume of indicator gas delivered into the lung during
breath n, let VE be the expired volume of the indicator gas during
breath n, and let VQ be the uptake of the indicator gas (i.e., the
amount of indicator gas absorbed by the pulmonary capillary blood
in the lung) during breath n. Conservation of mass requires that
at the end of breath n, the volume change of indicator gas in the
alveolar compartments is equal to the inspired indicator gas less
the sum of expired volume and the pulmonary uptake. Hence,

VAFA,n − VAFA,n−1 = VI − VE − VQ . (14)

In the remainder of this section, we will further explore the
mathematical expression of VI , VE , and VQ .

The inspired indicator gas volume VI can be expressed as

VI =
∫ teI

tbI

V̇(t)FIA,n(t) (15)

where tbI is the time at the beginning of inspiration, teI is the time
at the end of inspiration, V̇(t) is the measured respiratory flow rate
at time t, and FIA,n(t) is the inspired concentration of the indicator
gas that enters the alveolar compartment during breath n.

The gas inspired into the alveolar compartment is in two parts:
the first comes from the dead space compartment, and the second
is fresh inspired gas. FIA,n(t) also therefore consists of two parts: the
first part has a value of FA,n−1 since this was the alveolar concentra-
tion of indicator gas from the previous breath which now resides
in the dead space; the second part has a value of FI,n(t), the concen-
tration of the indicator gas measured by the concentration sensor
at the mouth during inspiration of breath n. Here we have made
the distinction between indicator gas concentration in the lung and
that at the mouth,  and therefore FIA,n(t) can be expressed as

FIA,n(t) =
{

FA,n−1 if tbI ≤ t < tbI + TDI

FI,n(t) if tbI + TDI ≤ t < teI,
(16)

where TDI is the time taken for the indicator gas to travel through
the dead space during inspiration of breath n.

Substituting (16) into (15), we  have

VI =
∫ tbI+TDI

tbI

V̇(t)FA,n−1dt +
∫ teI−TDI

tbI

V̇(t)FI,n(t)dt

= VDFA,n−1 +
∫ teI−TDI

tbI

V̇(t)FI,n(t)dt

(17)

Here we  have arrived at an expression for VI . Now we seek to
find an expression for VE and VQ , to complete the conservation of

mass equation (14).

In the above analysis of the first part of FIA,n(t) in (16), we have
assumed that FA,n (the indicator gas concentration in the lung dur-
ing breath n) is constant during any breath n; this means that FA,n is
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ig. 2. Concentration of indicator gas O2 in the airway flow of a healthy male volunte
ow  signal changes its direction, indicating the end of inspiration and expiration, res
he  sinusoids show that the concentration of the indicator gas varies sinusoidally, a

qual to FE′,n (the measured indicator gas concentration at the end
f expiration in breath n). That is,

A,n = FE′,n (18)

The reason for using FE′,n here is that it is more readily measured
han FA,n. FE′ (the function of FE′,n over all breaths) is a sine wave
xpressed in Eqs. (25) and (26), using our indicator gas injection
ethod in Section 3.2. Eq. (18) implies that FA (the function of the

ndicator gas concentration in the lung from all breaths) is also a
ine wave.

The expired indicator gas volume VE can be expressed as

E = VT,nFA,n, (19)

here VT,n is the tidal volume (the volume of gas inhaled and
xhaled) during breath n.

Substituting (18) into (19) gives the final expression for VE

E = VT,nFE′,n. (20)

The uptake of the indicator gas VQ is

Q = Q̇P�b(FA,n − F
V,n

)Tn, (21)

here Q̇P is the pulmonary blood flow, �b is blood solubility coeffi-
ient of the indicator gas, and Tn is the duration of breath n. F

V,n
s the average indicator gas concentration returned to the lung
hrough venous recirculation in breath n.

Some of the inspired indicator gas is taken up by the pulmonary
apillary blood in the lung, and eventually returns to the lung via
enous recirculation. Previous research has shown that at carefully
hosen forcing frequencies, the venous recirculation effects can be
gnored (Hahn et al., 1993; Gavaghan and Hahn, 1995) because
he oscillatory component of the venous concentration signal is
egligible at these forcing frequencies, leaving

V,n
= MA, (22)

here MA is the mean of the alveolar sinusoid FA. We  have stated
n (18) that MA is equal to the mean of the measured sinusoid FE′ .

Substituting (22) and (18) into (21), we have an expression for

Q

Q = Q̇P�b(FE′,n − MA)Tn. (23)

ere we have reached expressions for VI , VE , and VQ in Eqs. (17),
20) and (23), respectively. Substituting them into the right-hand-
ide of (14), and substituting (18) into the left-hand-side of(14),
e forcing sinusoidal period T = 2 min. The green and red circles are placed where the
ely. The green and red sinusoids are fitted to the green and red circles, respectively.

chosen value of T.

we have

VA

(
FE′,n−1 − FE′,n

)
+ Q̇P�b

(
MA − FE′,n

)
Tn

= VT,nFE′,n −
[

VDFE′,n−1 +
∫ teI−TDI

tbI

V̇(t)FI,n(t)dt

]
. (24)

This is the conservation of mass equation for the lung variables that
we aim to estimate, expressed in terms of volume change of the
indicator gas in a breath-by-breath manner. Our goal is to deter-
mine the values of VA and Q̇P in (24). The measured variables are
FE′,n−1, FE′,n, FI,n(t), VT,n, and MA; the blood solubility coefficient �b is
a known constant for the chosen indicator gas. We  have previously
used the Bohr equation to calculate VD (Clifton et al., 2009); here VD

is calculated using the method proposed in Section 4 where both
CO2 and the indicator gas were used to achieve a robust estimate
of VD. Using (24), every two  successive breaths produce an equa-
tion; therefore a total of N breaths results in N − 1 equations of two
unknown values, VA and Q̇P . For this set of N − 1 linear equations,
we used the least-squares technique to determine the values of VA
and Q̇P .

3.2. “On the fly” indicator gas delivery

Early ventilators such as the Servo 900 (Siemens) were capa-
ble of being driven by an auxiliary low pressure gas supply, and so
could be fed by a gas mixer generating sinusoidal indicator con-
centrations. However, modern ICU ventilators cannot be adapted
easily to allow premixed gases to be delivered. Consequently, the
indicator gas must be injected into the inspiratory limb of the venti-
lator “on the fly”. We adapted a novel on-line indicator gas delivery
method (Farmery, 2008), where the indicator gas is injected into the
patient’s inspiratory breathing flow and mixed in real time imme-
diately before entering the mouth. Two types of indicator gases, O2
and N2O, are injected simultaneously into the patient’s airway flow
during inspiration. Two  mass flow controllers (MFC, Alicat Scien-
tific, Inc., USA) were used to deliver the two indicator gases at rates
proportional to the subject’s inspiratory flow rate at any instant
such that the indicator concentration remained constant within the
breath, but could be forced to vary between breaths according to

FN2O(t) = MN2O + �FN2O sin(2�ft) (25)
FO2 (t) = MO2 + �FO2 sin(2�ft), (26)

where FN2O(t) is the concentration of the injected N2O flow; MN2O
and �FN2O are the mean and amplitude of the forcing N2O sinusoid,
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espectively; FO2 (t), MO2 , and �FO2 are similar denotations for O2.
ig. 2 shows the resulting concentration of the indicator gas O2.

A D-liteTM flow sensor (GE Healthcare, Finland) and a differen-
ial pressure transducer (Validyne Engineering, USA) were used to

easure breathing flow rates. The indicator gas concentration was
easured by an IRMATM multi-gas analyser (PHASEIN AB, Sweden)

hat measures O2, N2O, CO2, and other anaesthetic gases simulta-
eously. Detailed measuring principles and sensor calibration data
an be found in Farmery (2008) and Van der Hoeven (2007). Both
he flow sensor and the concentration sensor can be mounted on
he breathing tube connected to the patient. Compared with the
pparatus for previous continuous (Hahn et al., 1993; Williams
t al., 1994) and tidal models (Williams et al., 1998), the proposed
etup is portable, simple to use, and is suitable for the ICU because
f its non-invasive approach.

It is essential to enhance the “response time”’ (the time taken
or the signal to rise to 90% of its value after a step response) of
he concentration signals in the proposed breath-by-breath tidal
entilation model (Farmery and Hahn, 2000) in order to avoid errors
n estimation of the mass flux of gases. A first-order exponential

odel (Clifton et al., 2009) has been applied to reduce the response
ime to around 100 ms.

.3. Venous recirculation

Both the continuous model (Zwart et al., 1976, 1978) and the
idal model (Gavaghan and Hahn, 1996; Williams et al., 1998;

hiteley et al., 2000, 2003) have regarded the oscillatory compo-
ent of the venous recirculation signals as being sufficiently small
o be neglected. Gavaghan et al. constructed a mathematical model
ncluding recirculation times (Gavaghan and Hahn, 1995) and con-
luded that the recirculation effects are negligible in the forcing
eriod range of 0.5 min  ≤ T ≤ 4 min  for the soluble gases halothane,
cetylene, and N2O (Gavaghan and Hahn, 1995), and become more
ronounced at long forcing periods T > 4 min. Williams et al. rec-
mmended forcing sine periods of 2 min  ≤ T ≤ 3 min  for solving
irway dead space VD and lung volume VA (Williams et al., 1994,
998). In Section 5 we show that 2 min  ≤ T ≤ 4 min  is a potentially
ppropriate range for forcing sinusoidal periods T.

. Dead space calculation

.1. Original Bohr equation

Various methods for calculating the volume of airway dead
pace VD are discussed in Farmery (2008), among which two clas-
ical methods are Fowler’s method (Fowler, 1948; Fletcher et al.,
981) and the Bohr equation (Hlastala and Berger, 1996). The latter

s used in the proposed method as follows:

D = VT
FA − F

E

FA − FI′
, (27)

here F
E

is the mixed expired indicator gas concentration, and FI′
s the indicator gas concentration at the end of inspiration.

We  have assumed that FA,n is constant during breath n, and is
qual to FE′,n in (18). Substituting (18) into (27) gives

D = VT
FE′ − F

E

FE′ − FI′
, (28)

here FE′ is the indicator gas concentration at the end of expiration.
n the tidal ventilation model, each breath n produces data which

llows a separate solution of the Bohr equation using (28).

However, one potential problem when (28) is used to produce
n estimate of the value of VD at each breath is that at breaths where
he values of the numerator or the denominator in (28) are close to
Neurobiology 189 (2013) 174– 182

zero, the estimates of VD become sensitive to small measurement
errors, and so the solution becomes unstable.

Another problem is the choice of gases when using (28): both
CO2 and the indicator gas produce a set of Bohr equations. The
estimated values of VD obtained using different gases are usually
different from one another, and it is difficult to know which gas
produces the more reliable results. A simple average of all the var-
ious estimates for each indicator gas may  not be sufficiently stable,
if some estimates are erroneous.

4.2. Improved Bohr equation

To overcome the problems described above, we propose a
regression approach to improve the stability of the original Bohr
equation. We  re-write (28) as

(FE′ − F
E
) = VD

VT
(FE′ − FI′ ). (29)

Each breath produces a set of values for x and y, corresponding
to a point on a straight line

y = ax, (30)

where y = (FE′ − F
E
), x = (FE′ − FI′ ), and a is the slope of the line,

a = VD/VT. The optimal value of VD can be determined by finding the
value of a that best describes the straight line using linear regres-
sion.

Values (x, y) of both CO2 and the indicator gas from all breaths are
used in the linear regression, in order to achieve a robust estimate
that incorporates results obtained using both gases. The proposed
method uses all breaths without suffering from the instabilities
induced by near-zero values in the original Bohr equation.

The results shown in Section 5.2 indicate that using both gases
achieves a more robust estimate than using a single gas, and that
the proposed linear regression approach is more stable than using a
simple average of estimates obtained using the original Bohr equa-
tion.

5. Results and comparisons

Twenty data sessions from healthy human volunteers were
studied, with results obtained from one volunteer studied in detail
in this paper, for illustration of the prototype system. Results
obtained from all volunteers are then summarised in Fig. 4 and
Table 3. Both N2O and O2 are injected as indicator gases.

For each of T = 2, 3, 4, and 5 min, data were collected for 10 min
duration. For the tidal ventilation model, the data were divided
into 20 data windows (i.e., each window contained 30 s of data);
each of these windows of data was used to estimate VD, VA, and Q̇P .
The mean and standard deviation of these estimates are shown in
Fig. 3(a)–(c). The continuous ventilation model requires measure-
ments of �FA and �FI, and hence the total duration of data was used
to produce a single set of estimates for this method, against which
our breath-by-breath tidal ventilation model will be compared.

5.1. Comparison of the continuous ventilation model with the
tidal ventilation model

As described in Section 2, for the continuous ventilation model, a
set of VA and Q̇P estimates can be produced at any sinusoidal period
T, using (11) and (13), where both O2 and N2O estimates contribute
to the overall estimates.

For the tidal ventilation model, the results obtained using N2O

are presented. The results obtained using O2 are similar to those
obtained using N2O, and are not shown here. In (25), we have
chosen indicator gas parameters MN2O = 0.06 v/v, AN2O = 0.03 v/v,
which is a non-toxic concentration level for N2O.



L. Clifton et al. / Respiratory Physiology & Neurobiology 189 (2013) 174– 182 179

1 2 3 4 5 6
0.24

0.245

0.25

0.255

0.26

0.265

0.27

(a)  T (min)

V D
(L
)

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

(b)  T (min)

V A
(L
)

1 2 3 4 5 6
0

1

2

3

4

5

(c)  T (min)

Q̇
P
(L
/m
in
)

−0.04 −0.02 0 0.02 0.04 0.06

−0.01

0

0.01

0.02

0.03

(d)  x, in %

y,
 in

 %

 

 

Fig. 3. (a)–(c) Comparison of results for the continuous ventilation model with those of the tidal ventilation model, at forcing sinusoidal periods T = 2, 3, 4, 5 min for one
individual. Results for the continuous and the tidal ventilation model are shown by dashed and solid lines, respectively. Note that results obtained using the continuous
ventilation model do not have the error bars, because it uses all of the data to perform a single estimation. (d) Dead space results obtained using a healthy male volunteer.
(x,  y) pairs obtained using CO2 and N2O are shown using (· , +), respectively. Regression lines obtained using only N2O and using both CO2 and N2O are shown by solid and
dashed lines, respectively. The regression line obtained using N2O is approximately the same as the regression line obtained using both CO2 and N2O.
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5.2. Results of estimating VD
ig. 4. Comparison of results obtained using the continuous ventilation model with
nd Q̇P are shown in (a) and (b), respectively, as Bland–Altman plots. The mean and
n  the x- and y-axis, respectively. Mean difference and the limit of agreement (mea
orizontal dashed lines.

Table 1 compares the continuous ventilation model with the
idal ventilation model, using data obtained from a healthy male
olunteer. The results in Table 1 are also plotted in Fig. 3(a)–(c),
here standard deviations of the results obtained using the pro-

osed tidal ventilation model are shown as error bars. Fig. 3(a)–(c)
ompares the estimate obtained using the continuous ventilation
odel with the average values of the estimates produced by the

able 1
omparison of the continuous ventilation (CV) model with the tidal ventilation (TV)
odel at different forcing frequencies. Results are obtained from the same healthy
ale volunteer in Table 2 (age 63 years, height 173 cm,  weight 68 kg). VD results are

aken from VDreg using both CO2 and NO2.

T (min) VD (L) VA (L) Q̇P (L/min)

CV TV CV TV CV TV

2 0.26 0.26 1.77 1.56 2.78 2.11
3  0.26 0.26 1.72 1.66 3.22 3.25
4  0.25 0.25 1.67 1.84 3.54 2.90
5  0.26 0.26 2.55 2.37 2.66 2.29
 of the tidal ventilation model, at forcing sinusoidal periods T = 3 min. Results of VA

rences (continuous – tidal) of estimates obtained using the two models are shown
rence ±1.96	, where 	 is the standard deviation of the differences) are plotted as

tidal ventilation model at different forcing frequencies in one indi-
vidual.
Estimated values of VD using the mean and linear regres-
sion approaches are shown in Table 2. Three types of results are

Table 2
Comparison of VD estimates obtained using the original Bohr equation with those
obtained using our improved Bohr equation. Data were acquired from a healthy male
volunteer, age 63 years, height 173 cm, weight 68 kg. Results at different forcing
sinusoidal periods T are presented. VDavg is obtained using the averaging approach,
and VDreg is obtained using the proposed linear regression approach.

T (min) CO2 only N2O only CO2 + N2O

VDavg VDreg VDavg VDreg VDavg VDreg

2 0.27 0.75 0.40 0.26 0.33 0.26
3  0.27 0.65 0.19 0.23 0.23 0.26
4  0.27 0.73 0.26 0.24 0.27 0.25
5  0.27 0.85 0.35 0.24 0.31 0.26
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Table  3
Comparison of the continuous ventilation (CV) model with the tidal ventilation (TV)
model. Results are obtained from healthy volunteers; the first 13 data sessions are
from male volunteers of age 20–60 years, and the remaining 3 data sessions are from
female volunteers of age 20–40 years. The standard deviation on the estimates of the
TV  model are shown as “estimate ±standard deviation”. Both NO2 and O2 are used
as  indicator gases, and results obtained using NO2 are shown here. Results obtained
using O2 are similar to those obtained using NO2, and hence are not shown here.
The forcing sinusoidal period T = 3 min; VD estimates are equal to VDreg using both
CO2 and NO2.

Session VD (L) VA (L) Q̇P (L/min)

CV TV CV TV CV TV

1 0.26 0.26 ± 0.002 1.72 1.66 ± 0.32 3.22 3.25 ± 0.85
2  0.28 0.28 ± 0.001 2.92 2.98 ± 0.59 3.56 3.46 ± 0.67
3  0.26 0.26 ± 0.002 2.69 2.47 ± 0.43 4.91 4.68 ± 0.64
4  0.37 0.37 ± 0.001 1.34 1.57 ± 0.52 2.38 2.69 ± 0.62
5  0.33 0.33 ± 0.001 1.70 2.27 ± 0.49 3.00 3.29 ± 0.65
6  0.28 0.28 ± 0.001 2.99 2.53 ± 0.31 2.70 2.16 ± 0.93
7  0.30 0.30 ± 0.002 1.90 2.26 ± 0.52 4.09 3.68 ± 0.69
8  0.32 0.32 ± 0.002 2.13 2.25 ± 0.42 4.19 3.43 ± 0.79
9  0.24 0.24 ± 0.001 2.35 2.45 ± 0.38 3.60 2.96 ± 0.44

10 0.29 0.29 ± 0.001 2.17 2.18 ± 0.54 3.91 3.25 ± 0.72
11 0.23 0.23 ± 0.001 2.61 2.38 ± 0.75 3.77 2.85 ± 0.81
12 0.21 0.21 ± 0.003 2.24 2.41 ± 0.36 3.40 3.74 ± 0.64
13 0.35 0.35 ± 0.001 2.06 1.69 ± 0.53 3.19 2.57 ± 0.42
14 0.25 0.25 ± 0.002 1.99 2.02 ± 0.60 3.01 2.84 ± 0.72
15 0.23 0.23 ± 0.001 1.72 1.39 ± 0.47 2.81 2.47 ± 0.82
16 0.29 0.29 ± 0.001 2.20 1.98 ± 0.34 2.44 2.62 ± 0.52
17 0.27 0.27 ± 0.002 1.86 1.53 ± 0.46 2.71 2.07 ± 0.71
18 0.23 0.23 ± 0.001 1.20 1.35 ± 0.51 3.35 2.27 ± 0.73
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19 0.22 0.22 ± 0.003 1.79 2.12 ± 0.61 3.61 2.89 ± 0.59
20 0.27 0.27 ± 0.001 1.71 1.75 ± 0.34 3.59 2.88 ± 0.75

resented: results obtained using CO2, results obtained using N2O,
nd results obtained using both CO2 and N2O. Results obtained
sing indicator gas O2 are similar to those using N2O, and are not
hown here.

.3. Results from all human volunteers

Fig. 4 shows VA and Q̇P results from all human volunteers. Table 3
ompares the results derived from the continuous model with the
idal ventilation model. Results of VD, shown in Table 3, obtained
sing the continuous model are, with experimental error, the same
s those obtained using the tidal model. Hence, they are not plotted
n Fig. 4.

. Discussion

It is acknowledged that the two models described in this work
ave only a single alveolar compartment and a single dead space
ompartment. The great advantage of these models is that they can
e “inverted” when real physiological data is inserted in them to
eveal estimates of physiological variables which have meaning to
he clinician or physiologist. Due to their simplicity, they can only
e used to describe relatively healthy lungs. However, as Whiteley
t al. (Whiteley et al., 2000) demonstrated, the use of mathematical
odels with more than one lung compartment can lead to great

ifficulty in reaching an inverse solution for the respiratory vari-
bles of dead space, alveolar volume, and pulmonary blood flow
hen the subject’s lung is inhomogeneous. Also, such models do
ot lend themselves readily to physiological interpretation. This is
hy simple one-alveolar lung compartment models have survived

he succeeding decades after they were first proposed (Hahn and
armery, 2003). Our techniques are likely to be valid in exercise

esting in subjects or patients without overt lung disease, and could
e applied to the field of human exercise physiology, as pioneered
y Luijendijk et al. (Luijendijk et al., 1981) for the forced inspired
ine wave technique.
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We  have not yet evaluated the techniques for patients with
severe lung disease. However, we note that for our single com-
partment model, the solutions for VA, VD, and Q̇P should be the
same regardless of the period of the sinusoid. Our preliminary
modelling and experimental work reveals that where ventila-
tory inhomogeneity exists, the determined variables appear to be
dependent on the period. The degree of period dependency is likely
to provide a robust index of ventilatory heterogeneity, and this will
be developed in future work.

Oxygen is used as an indicator gas in these studies. It is assumed
that oxygen behaves much like an insoluble inert gas with respect
to the diminution of the amplitude of its sinusoidal inspired con-
centration within the alveolar compartment. This is because in this
analysis it is only the oscillatory components of the indicator con-
centration signal which is required for the analysis. The static or
“DC” component of the signal can then be neglected. This was
described in detail by Hahn (1996). The effect is independent of
arterial oxyhaemoglobin saturation and concentration and there is
no recirculation of the oscillatory signal in the venous blood.

6.1. Comparison of the continuous ventilation model with the
tidal ventilation model

Fig. 3(a)–(c) shows the estimates for VA, Q̇P , and VD obtained
using the continuous ventilation and the tidal ventilation model at
different forcing periods. It can be seen that the estimates of Q̇P

obtained using both the continuous ventilation model and the tidal
ventilation model are similar for all forcing sinusoidal periods T = 2,
3, 4, 5 min. Similar behaviour can be observed in the estimates of VA
at T = 2, 3, 4 min  where the estimates of VA are close to the expected
value, but VA estimates differ from expected values when T = 5 min.
This may  be due either to potential artifact from “venous recircu-
lation”, or to the fact that the recovered values become frequency
dependent if real data from inhomogeneously ventilated lungs are
analysed in a single compartment model. The consistency of the
results using both the continuous ventilation model and the tidal
ventilation model for 2 ≤ T ≤ 4 suggests that this range is suitable
for the forcing sinusoid. For both the continuous ventilation model
and the tidal ventilation model, VD is calculated by the proposed
regression method using both CO2 and NO2 as described in Sec-
tion 4. The results of VD estimation are the same for both models,
and are close to the expected value (0.25 L), indicating that the pro-
posed improved Bohr equation method produces stable estimation
of VD.

However, we note that the estimated values of Q̇P appear smaller
that the expected value of Q̇P of the volunteer (4.5 L/min). One pos-
sible reason is that the effect of “venous recirculation” of the N2O
still exists to some degree, whereas both the continuous ventilation
model and the tidal ventilation model assume that it is negligi-
ble. Another possible reason is that the equilibrium between the
arterial and venous blood had not yet been established during the
data collection, although nitrous oxide has low blood and tissue
solubility. In this early stage of the pilot study on human volun-
teers, we did not use a comparator for Q̇P , but our results have
shown that the proposed tidal ventilation model is able to produce
consistent and repeatable results. In the next stage of the study,
we will incorporate a comparator algorithm, further investigate
“venous recirculation” and ventilatory inhomogeneity, and ensure
that the complete equilibrium of nitrous oxide is established for
data collection.

6.2. Results of VD
Estimated values of VD using the mean and linear regression
approaches are shown in Table 2. Using only CO2, the mean
approach produces more consistent estimates of VD than regression
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t all forcing sinusoidal periods T. By contrast, when using only
2O, estimates of VD using regression are more stable than those
btained using the mean. The reason for such behaviour is demon-
trated in Fig. 3(d), where the (x, y) pairs in (30) for CO2 form a
ense cluster, while the (x, y) pairs for N2O resemble a straight line.

.3. Results from all human volunteers

Fig. 4(a) shows that the differences in VA estimates obtained
rom the tidal and continuous ventilation models have a mean dif-
erence of approximately zero, and differences about this mean are
ot correlated with the mean of the estimates.

While differences in the estimates of Q̇P obtained from both
odels are similarly uncorrelated to the means of the esti-
ates, Fig. 4(b) shows that the mean difference is approximately
0.35 L/min; i.e., the estimate obtained from the continuous model

s an average of 0.35 L/min lower than that obtained from the tidal
odel.
Table 3 shows the results of using each model for estimating VD,

A and Q̇P . As described earlier, the tidal ventilation model takes an
pproach whereby the data acquired in a session are divided into a
et of 20 windows, with an estimate of lung variables provided for
ach window. The table reports the mean and standard deviation
f this set of 20 estimates for the tidal ventilation model, for each
ession. The continuous ventilation model, however, uses all of the
ata from a session to produce a single estimate of each lung vari-
ble; therefore, the table reports only these single estimates (i.e.,
ithout standard deviation) for the continuous ventilation model.

. Conclusion

The continuous ventilation model uses only the amplitude of
ndicator gas concentration, without incorporating other variables,
ence the underlying physiological information may  not be suf-
ciently characterised. In comparison, a tidal ventilation model
llows the examination of the effect of VD, VA, respiratory rates, etc.
Hahn and Farmery, 2003); therefore variations in variables can be

ore accurately investigated.
The proposed tidal ventilation model is able in theory, with

oise-free data, to estimate lung variables using two successive
reaths. In practice, it is desirable to use a few more than two
reaths for robust estimation for on-line patient monitoring. This
rocedure is much faster than using the traditional continuous ven-
ilation model, which requires a relatively long data collection time
at least two forcing periods). On the other hand, the tidal venti-
ation model is marginally more sensitive to measurement error.
owever, the output of the continuous ventilation model produces

 stable single set of estimates for a certain duration, and this could
e used as a check against the output of the tidal ventilation model.

The proposed improved Bohr equation method produces sta-
le estimates of VD. Results using both the continuous ventilation
odel and the tidal ventilation model have shown that 2 ≤ T ≤ 4

s a potentially suitable range for the forcing sinusoid, in order to
chieve reliable variable determination and to avoid recirculation
ffects. The proposed experimental gas delivery technique is suit-
ble for use in assessing lung function in patients with healthy lungs
n the clinical setting, and in exercise physiology, but further testing
s needed to further validate the algorithm that we have used.
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Appendix A. List of abbreviations

The abbreviations used in this paper are summarised as follows:

VA lung volume at the end of expiration
VD airway dead space volume
VI volume of the indicator gas delivered into the lung during

a breath
VE expired volume of the indicator gas during a breath
VQ uptake of the indicator gas during a breath
V̇(t) respiratory flow rate at time t
FIA,n(t) inspired indicator gas concentration in the lung during

breath n
FA,n indicator gas concentration in the lung during breath n
FI,n(t) indicator gas concentration during inspiration of breath n
FE′,n indicator gas concentration at the end of expiration in

breath n
VT,n tidal volume of breath n
�b tissue-gas partition coefficient of a gas
Q̇P pulmonary blood flow through the lung
FA indicator gas concentration in the lung
F

E
average measured indicator gas concentration during
expiration

FI′ indicator gas concentration at the end of inspiration
FE′ indicator gas concentration at the end of expiration
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