
MethodsX 9 (2022) 101782

Contents lists available at ScienceDirect

MethodsX

j o u r n a l h o m e p a g e: w w w . e l s e v i e r . c o m / l o c a t e / m e x

Method Article

Comprehensive HRV estimation pipeline in

Python using Neurokit2: Application to sleep

physiology

Martin G. Frasch

University of Washington, Seattle, WA, United States of America

a b s t r a c t

NeuroKit2 is a Python Toolbox for Neurophysiological Signal Processing. The presented method is an adaptation of

NeuroKit2 to simplify and automate computation of the various mathematical estimates of heart rate variability

(HRV) or similar time series. By default, the present approach accepts as input electrocardiogram’s R-R intervals

(RRIs) or peak times, i.e., timestamp of each consecutive R peak, but the RRIs or peak times can also stem from

other biosensors such as photoplethysmography (PPGs) or represent more general kinds of biological or non-

biological time series oscillations. The data may be derived from a single or several sources such as conventional

univariate heart rate time series or intermittently weakly coupled fetal and maternal heart rate data. The method

describes preprocessing and computation of an output of 124 HRV measures including measures with a dynamic,

time-series-specific optimal time delay-based complexity estimation with a user-definable time window length.

I also provide an additional layer of HRV estimation looking at the temporal fluctuations of the HRV estimates

themselves, an approach not yet widely used in the field, yet showing promise (doi: 10.3389/fphys.2017.01112).

To demonstrate the application of the methodology, I present an approach to studying the dynamic relationships

between sleep state architecture and multi-dimensional HRV metrics in 31 subjects. NeuroKit2 ′ s documentation

is extensive. Here, I attempted to simplify things summarizing all you need to produce the most extensive HRV

estimation output available to date as open source and all in one place. The presented Jupyter notebooks allow

the user to run HRV analyses quickly and at scale on univariate or multivariate time-series data. I gratefully

acknowledge the excellent support from the NeuroKit team.

• Univariate or multivariate time series input; ingestion, preprocessing, and computation of 124 HRV metrics.
• Estimation of intra- and inter-individual higher order temporal fluctuations of HRV metrics.
• Application to a sleep dataset recorded using Apple Watch and expert sleep labeling.

© 2022 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

DOI of original article: 10.1016/j.jbi.2022.104061

E-mail address: mfrasch@uw.edu

https://doi.org/10.1016/j.mex.2022.101782

2215-0161/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.mex.2022.101782
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2022.101782&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jbi.2022.104061
mailto:mfrasch@uw.edu
https://doi.org/10.1016/j.mex.2022.101782
http://creativecommons.org/licenses/by/4.0/

2 M.G. Frasch / MethodsX 9 (2022) 101782

a r t i c l e i n f o

Method name: > Comprehensive HRV estimation in Python

Keywords: Heart rate variability, Biological oscillations, Higher order time series property estimation, Reproducible, tunable HRV

computation

Article history: Received 4 April 2022; Accepted 5 July 2022; Available online 14 July 2022

Specifications table

Subject Area Bioinformatics

More specific subject area Heart Rate Variability (HRV)

Biological oscillations

Physiology

Time series oscillations

Method name Comprehensive HRV estimation in Python

Name and reference of original method The original NeuroKit2 software was described by Makowski et al. in

10.3758/s13428-020-01516-y .

The sleep study data are available at 10.13026/hmhs-py35

Resource availability The software code for the method presented here is published at

10.5281/zenodo.5736571.

The Jupyter notebook can also be accessed directly at https://github.com/

martinfrasch/NeuroKit/blob/master/batch _ mode _ v3.1 _ GitHub%20 _ FINAL.ipynb ;

the datasets and updated notebook and Docker container can also be found at

10.6084/m9.figshare.20076464.v2 and

https://hub.docker.com/r/mfrasch/hrv-pipeline

The GitHub repository for the underlying NeuroKit2 package is available at

https://github.com/neuropsychology/NeuroKit or at 10.5281/zenodo.3597886

Method details

The methods section is structured as follows. First, following a brief rationale for the method I

outline the HRV metrics computed. Second, I describe the implementation in Python. This section

contains several elements defining the functions for executing the data loading, preprocessing and

feature computation steps followed by data saving; as last step, I provide the code to tie everything

together for a single step execution. At last, I present an application of the code to an open-source

dataset and conclude with remarks for the broader usage.

Introduction

Heart rate variability (HRV) as a search term on PubMed rendered ∼55,0 0 0 publications as of June

16, 2022. While first studies appeared in 1925, there has been a notable rise in scientific publishing

around 1975 with some 400 papers appearing annually as of 2021. This is likely attributable to the

steady increase in computational capacity and its access to it along with growing recognition of

the HRV physiology and pathophysiology. For example, HRV has been recognized as a biomarker of

health and stress in adult and developing organisms reflecting heart-brain interactions and resulting,

among other observations, in the phenomenon of heart beat-evoked potentials, a direct reflection of

bidirectional brain-heart communication [1–5] .

The number of HRV estimates, sometimes also referred to as metrics or biomarkers, has grown

as well, now exceeding 100, albeit it is understood that some of these estimates are collinear [6–8] .

Still, they tend to offer unique advantages depending on the computational bottlenecks, length and

noisiness of data and the desire for interpretability.

With the advent of Digital Health and increased utilization of wearable or ambient sensors to

capture heart rate and other biological oscillations, the awareness of caveats in HRV analysis in

contrast to the traditional electrocardiogram (ECG)-based approach also needs to rise [9] . I discuss

some of the sensor-driven limitations of HRV analyses due to sampling rate in the accompanying

article [10] .

https://github.com/martinfrasch/NeuroKit/blob/master/batch_mode_v3.1_GitHub%20_FINAL.ipynb
https://hub.docker.com/r/mfrasch/hrv-pipeline
https://github.com/neuropsychology/NeuroKit

M.G. Frasch / MethodsX 9 (2022) 101782 3

a

t

s

i

a

r

i

o

a

e

p

s

u

m

a

H

f

a

d

t

p

u

N

t

a

f

P

a

h

Several toolboxes have been built to collate the existing methodologies in a more accessible format

nd foster the discovery of new biomarkers of health outcomes based on HRV and other physiological

ime series [11–13] . Despite great advances in unification of the many features into a single software

ystem, a major limitation has remained the reliance on commercially available environments to run

t.

In parallel, the ecosystem of Python-based open-source packages for time series processing has

lso been maturing. One such package stands out in terms of methodological scope, functional depth,

ich API and constant updates through a large international community of researchers: NeuroKit2. It

s a Python Toolbox for Neurophysiological Signal Processing [14–16] .

The presented method is an adaptation of NeuroKit2 to simplify and automate computation

f the various mathematical estimates of HRV or similar time series [17] . By default, the present

pproach accepts as input electrocardiogram’s R-R intervals (RRIs) or peak times, i.e., timestamp of

ach consecutive R peak, but the RRIs or peak times can also stem from other biosensors such as

hotoplethysmography (PPGs) or represent more general kinds of biological or non-biological time

eries oscillations. The data may be derived from a single or several sources such as conventional

nivariate heart rate time series or intermittently weakly coupled fetal and maternal heart rate data.

The method describes preprocessing and computation of an output of 124 HRV measures including

easures with a dynamic, time-series-specific optimal time delay-based complexity estimation with

 user-definable time window length (Table 1).

I also provide an additional layer of HRV estimation looking at the temporal fluctuations of the

RV estimates themselves, an approach not yet widely used in the field, yet showing promise.

Finally, I present an application of the proposed HRV estimation pipeline to an open-source dataset

rom PhysioNet acquired in 31 subjects during sleep using Apple Watch and enriched with expert

nnotation of sleep states [13 , 18 , 19].

How does this methodology add to the existing set of techniques and tools? NeuroKit2 ′ s
ocumentation is extensive. Here, I attempted to simplify things summarizing all the researcher needs

o produce the most extensive HRV estimation output available to date as open source and all in one

lace. The presented Jupyter notebooks allow the user to run HRV analyses quickly and at scale on

nivariate or multivariate time-series data. I gratefully acknowledge the excellent support from the

euroKit team.

The key features of the presented methodology are:

(1) Univariate or multivariate time series input; ingestion, preprocessing and computation of 62

HRV metrics.

(2) Standardization of RRI window lengths and RRI duration-specific computation of complexity

estimates.

(3) Estimation of intra- and inter-individual higher order temporal fluctuations of HRV metrics.

(4) Application to a sleep dataset recorded using Apple Watch and expert sleep labeling.

The step-by-step approach is as follows.

1. Create a dedicated virtual environment

You may use conda or another environment manager such as pip or Docker. The choice boils down

o your preferences and constraints: for example, certain Python packages can only be installed in pip

nd not in conda. For the proposed approach, I am not aware of any constraints that prevent the user

rom using conda. Ultimately, using a virtual environment will help you down the road to ensure your

ython analytical pipeline keeps on working and does not get broken by unintended package updates

nd disrupted interdependencies. As an alternative to this conda step, I provide a Docker container

ere [42] .

call conda datanalysis environment
!conda init bash
!conda activate datanalysis #or use your own preferred venv
2. Load the required and recommended packages.

import neurokit2 as nk
import pandas as pd
import matplotlib.pyplot as plt

4 M.G. Frasch / MethodsX 9 (2022) 101782

Table 1

Heart rate variability (HRV) metrics computed in the present adaptation of the NeuroKit2 Python toolbox [14 , 15].

Time domain [8] RMSSD The square root of the mean of the sum of successive differences between

adjacent RR intervals. It is equivalent (although on another scale) to SD1,

and therefore it is redundant to report correlations with both [20] .

MeanNN The mean of the RR intervals.

SDNN The standard deviation of the RR intervals.

SDSD The standard deviation of the successive differences between RR intervals.

CVNN The standard deviation of the RR intervals (SDNN) divided by the mean of

the RR intervals (MeanNN).

CVSD The root mean square of the sum of successive differences (RMSSD)

divided by the mean of the RR intervals (MeanNN).

MedianNN The median of the absolute values of the successive differences between

RR intervals.

MadNN The median absolute deviation of the RR intervals.

MCVNN The median absolute deviation of the RR intervals (MadNN) divided by

the median of the absolute differences of their successive differences

(MedianNN).

IQRNN The interquartile range (IQR) of the RR intervals.

pNN50 The proportion of RR intervals greater than 50ms, out of the total number

of RR intervals.

pNN20 The proportion of RR intervals greater than 20ms, out of the total number

of RR intervals.

TINN A geometrical parameter of the HRV, or more specifically, the baseline

width of the RR intervals distribution obtained by triangular interpolation,

where the error of least squares determines the triangle. It is an

approximation of the RR interval distribution.

HTI The HRV triangular index, measuring the total number of RR intervals

divided by the height of the RR intervals histogram.

SDANN1 The standard deviation of average RR intervals extracted from n-minute

segments of time series data (1, 2 and 5 by default).

SDANN2

SDNNI2 The mean of the standard deviations of RR intervals extracted from

n-minute segments of time series data (1, 2 and 5 by default).

SDANN5

SDNNI5

MCVNN MadNN/MedianNN (normalized).

Prc20NN

Prc80NN

MinNN

MaxNN

Frequency domain [8] ULF Ultra-low frequency band spectral power

VLF Very-low frequency band spectral power

LF Low frequency band spectral power

HF High frequency band spectral power

VHF Very high frequency band spectral power

LFHF LF/HF ratio

LFn LF normalized

HFn HF normalized

LnHF Natural logarithm transformed HF

Recurrence

quantification [21]

RecurrenceRate Recurrence rate (RR): Proportion of points that are labelled as

recurrences. Depends on the radius r.

Determinism Determinism (DET): Proportion of recurrence points which form diagonal

lines. Indicates autocorrelation.

DeteRec Ratio Determinism / Recurrence rate

L Average diagonal line length (L): Average duration that a system is staying

in the same state.

Divergence Divergence (DIV).

LEn Entropy diagonal lines.

Laminarity Laminarity (LAM): Proportion of recurrence points which form vertical

lines. Indicates the number of laminar phases (intermittency)

TrappingTime Trapping Time (TT) - Ratio Determinism / Recurrence rate (DET_RR)

VMax Longest vertical line length

VEn Entropy vertical lines

W Average white vertical line length.

WMax Longest white vertical line length.

WEn Entropy white vertical lines.

(continued on next page)

M.G. Frasch / MethodsX 9 (2022) 101782 5

Table 1 (continued)

Characteristics of the

Poincaré Plot Geometry

SD1 This is a measure of the spread of RR intervals on the Poincaré plot

perpendicular to the line of identity. It is an index of short-term RR

interval fluctuations, i.e., beat-to-beat variability. It is equivalent (although

on another scale) to RMSSD, and therefore it is redundant to report

correlations with both [20] .

SD2 SD2 is a measure of the spread of RR intervals on the Poincaré plot along

the line of identity. It is an index of long-term RR interval fluctuations.

SD1SD2 the ratio between short and long term fluctuations of the RR intervals

(SD1 divided by SD2).

S Area of ellipse described by SD1 and SD2 (pi ∗ SD1 ∗ SD2). It is

proportional to SD1SD2.

CSI The Cardiac Sympathetic Index, calculated by dividing the longitudinal

variability of the Poincaré plot (4 ∗SD2) by its transverse variability

(4 ∗SD1) [22] .

CVI The Cardiac Vagal Index, equal to the logarithm of the product of

longitudinal (4 ∗SD2) and transverse variability (4 ∗SD1) [22] .

CSI_Modified The modified CSI obtained by dividing the square of the longitudinal

variability by its transverse variability [23] .

Indices of Heart Rate

Fragmentation [24]

PIP Percentage of inflection points of the RR intervals series.

IALS Inverse of the average length of the acceleration/deceleration segments.

PSS Percentage of short segments.

PAS Percentage of NN intervals in alternation segments.

Indices of Heart Rate

Asymmetry (HRA), i.e.,

asymmetry of the

Poincaré plot [25]

GI Guzik’s Index, defined as the distance of points above line of identity (LI)

to LI divided by the distance of all points in Poincaré plot to LI except

those that are located on LI.

SI Slope Index, defined as the phase angle of points above LI divided by the

phase angle of all points in Poincaré plot except those that are located on

LI.

AI Area Index, defined as the cumulative area of the sectors corresponding to

the points that are located above LI divided by the cumulative area of

sectors corresponding to all points in the Poincaré plot except those that

are located on LI.

PI Porta’s Index, defined as the number of points below LI divided by the

total number of points in Poincaré plot except those that are located on

LI.

C1d The contributions of heart rate decelerations and accelerations to

short-term HRV, respectively [26] .

C1a

SD1d Short-term variance of contributions of decelerations (prolongations of RR

intervals) and accelerations (shortenings of RR intervals), respectively [26] .

SD1a

C2d The contributions of heart rate decelerations and accelerations to

long-term HRV, respectively [26] .

C2a

SD2d SD2d and SD2a: long-term variance of contributions of decelerations

(prolongations of RR intervals) and accelerations (shortenings of RR

intervals), respectively [26] .

SD2a

Cd The total contributions of heart rate decelerations and accelerations to

HRV.

Ca

SDNNd Total variance of contributions of decelerations (prolongations of RR

intervals) and accelerations (shortenings of RR intervals), respectively [26] .

SDNNa

Indices of

Complexity [8]

ApEn The approximate entropy measure of HRV.

SampEn The sample entropy measure of HRV.

MSE The multiscale entropy measure of HR.

CMSE The composite multiscale entropy measure of HRV.

RCMSE The refined composite multiscale entropy measure of HRV.

DFA The detrended fluctuation analysis of the HR signal.

CorrDim The correlation dimension of the HR signal.

optimal time delay This metric, in seconds, provides time delay for optimal reconstruction of

the underlying dynamic process [27] .

FuzzEn Fuzzy Entropy [28] .

FuzzEnMSE FuzzEn version of the multiscale entropy (MSE).

FuzzEnRCMSE FuzzEn version of the refined composite multiscale entropy (RCMSE).

cApEn Corrected version of ApEn [29] .

(continued on next page)

6 M.G. Frasch / MethodsX 9 (2022) 101782

Table 1 (continued)

CREn Cumulative residual entropy is an alternative to the Shannon differential

entropy with several advantageous properties, such as non-negativity.

DiffEn Differential entropy, also referred to as continuous entropy) started as a

(failed) attempt by Shannon to extend Shannon entropy. However,

differential entropy presents some issues too, such as that it can be

negative even for simple distributions (such as the uniform distribution).

FI Fisher information.

The Fisher information was introduced by R. A. Fisher in 1925, as a

measure of “intrinsic accuracy” in statistical estimation theory. As the

Shannon entropy, it can be employed as a quality of an efficient

measurement procedure, used to estimate a system’s disorder [30] .

Hjorth Hjorth Parameters are indicators of statistical properties used in signal

processing in the time domain introduced by Hjorth (1970) [31] . The

parameters are activity, mobility, and complexity. NeuroKit returns

complexity directly in the output tuple, but the other parameters can be

found in the dictionary.

Hurst The hurst exponent is a measure of the "long-term memory" of a time

series. It can be used to determine whether the time series is more, less,

or equally likely to increase if it has increased in previous steps [32] .

KFD The Katz’s Fractal Dimension is based on euclidean distances between

successive points in the signal which are summed and averaged, and the

maximum distance between the starting and any other point in the

sample [33] .

Here, fractal dimensions range from 1.0 for straight lines, through

approximately 1.15 for random-walk waveforms, to approaching 1.5 for

the most convoluted waveforms.

LZC The Lempel-Ziv complexity quantifies the regularity of the signal by

scanning symbolic sequences for new patterns, increasing the complexity

count every time a new sequence is detected. Regular signals have a

lower number of distinct patterns and thus have low LZC whereas

irregular signals are characterized by a high LZC. While often being

interpreted as a complexity measure, LZC was originally proposed to

reflect randomness [34] .

MSPEn Multiscale permutation entropy.

Permutation Entropy (PE) is a robust measure of the complexity of a

dynamic system by capturing the order relations between values of a

time series and extracting a probability distribution of the ordinal

patterns. Using ordinal descriptors is helpful as it adds immunity to large

artifacts occurring with low frequencies. PE is applicable for regular,

chaotic, noisy, or real-world time series and has been employed in the

context of EEG, ECG, and stock market time series.

NLD Fractal dimension (FD) of signal epochs via Normalized Length Density.

NLD measures signal complexity on very short epochs durations (< 30

samples), for when continuous signal FD changes (or ‘running’ FD) are of

interest.

For methods such as Higuchi’s FD, the standard deviation of the window

FD increases sharply when the epoch becomes shorter. This NLD method

results in lower standard deviation especially for shorter epochs, though

at the expense of lower accuracy in average window FD.

PEn Permutation entropy.

PFD Petrosian fractal dimension: a fast method to estimate the fractal

dimension of a finite sequence, which converts the data to binary

sequence before estimating the fractal dimension from time series.

Several variations of the algorithm exist (e.g., ‘A’, ‘B’, ‘C’ or ‘D’), primarily

differing in the way the binary sequence is created.

PLZC Permutation Lempel-Ziv Complexity (PLZC) combines permutation and

LZC. A finite sequence of symbols is first generated (numbers of types of

symbols = dimension!) and LZC is computed over the symbol series.

PSDslope Fractal dimension via Power Spectral Density (PSD) slope [35] .

Fractal exponent can be computed from Power Spectral Density slope

(PSDslope) analysis in signals characterized by a frequency power-law

dependence.

(continued on next page)

M.G. Frasch / MethodsX 9 (2022) 101782 7

Table 1 (continued)

It first transforms the time series into the frequency domain and breaks

down the signal into sine and cosine waves of a particular amplitude that

together “add-up” to represent the original signal. If there is a systematic

relationship between the frequencies in the signal and the power of those

frequencies, this will reveal itself in log-log coordinates as a linear

relationship. The slope of the best fitting line is taken as an estimate of

the fractal scaling exponent and can be converted to an estimate of the

fractal dimension. A slope of 0 is consistent with white noise, and a slope

of less than 0 but greater than –1, is consistent with pink noise, i.e., 1/f

noise. Spectral slopes as steep as −2 indicate fractional Brownian motion,

the epitome of random walk processes.

RR Relative Roughness is a ratio of local variance (autocovariance at lag-1) to

global variance (autocovariance at lag-0) that can be used to classify

different ’noises’ [36 , 37].

SDA Standardized Dispersion Analysis [38] .

SDA is part of a family of dispersion techniques used to compute fractal

dimension. The standardized time series is divided in bins of different

sizes and their standard deviation (SD) is calculated. The relationship

between the SD and the bin size can be an indication of the presence of

power-laws. For instance, if the SD systematically increases or decreases

with larger bin sizes, this means the fluctuations depend on the size of

the bins. The dispersion measurements are in units of the standard error

of the mean. An FD of 1.5 indicates random data series, while values

approaching 1.20 indicate 1/f scaling.

SFD Sevcik fractal dimension [39] .

Method to calculate the fractal dimension of waveforms. Quickly

measures the complexity and randomness of a signal.

SVDEn Singular Value Decomposition (SVD) Entropy.

SVD entropy (SVDEn) can be intuitively seen as an indicator of how many

eigenvectors are needed for an adequate explanation of the dataset. In

other words, it measures feature-richness: the higher the SVD entropy, the

more orthogonal vectors are required to adequately explain the dataset.

SpEn Spectral entropy treats the signal’s normalized power distribution in the

frequency domain as a probability distribution and calculates the Shannon

entropy of it.

A signal with a single frequency component (i.e., pure sinusoid) produces

the smallest entropy. On the other hand, a signal with all frequency

components of equal power value (white noise) produces the greatest

entropy.

WPEn Weighted PE.

The main shortcoming of traditional PE is that no information besides the

order structure is retained when extracting the ordinal patterns, which

leads to several possible issues [40] . The Weighted PE was developed to

address these limitations by incorporating significant information from

the time series when retrieving the ordinal patterns.

ShanEn Entropy is a measure of unpredictability of the state, or equivalently, of its

average information content. Shannon entropy is one of the first and most

basic measure of entropy and a foundational concept of information

theory. Shannon’s entropy quantifies the amount of information in a

variable.

HFD The Higuchi’s Fractal

Dimension of the

HR signal

Detrended Fluctuation

Analysis (DFA) and

Multifractal DFA [41]

DFA_alpha1 The monofractal detrended fluctuation analysis of the HR signal

corresponding to short-term correlations

MFDFA_alpha1_Width The multifractal detrended fluctuation analysis of the HR signal

corresponding to short-term correlations; the range of singularity

exponents, corresponding to the width of the singularity spectrum.

MFDFA_alpha1_Peak

MFDFA_alpha1_Mean Multifractal DFA; the mean of singularity exponents.

MFDFA_alpha1_Max

MFDFA_alpha1_Delta

MFDFA_alpha1_Asymmetry

MFDFA_alpha1_Fluctuation

MFDFA_alpha1_Increment

(continued on next page)

8 M.G. Frasch / MethodsX 9 (2022) 101782

Table 1 (continued)

DFA_alpha2 The monofractal detrended fluctuation analysis of the HR signal

corresponding to long-term correlations

MFDFA_alpha2_Width The multifractal detrended fluctuation analysis of the HR signal

corresponding to long-term correlations the range of singularity

exponents, corresponding to the width of the singularity spectrum.

MFDFA_alpha2_Peak

MFDFA_alpha2_Mean Multifractal DFA; the mean of singularity exponents

MFDFA_alpha2_Max

MFDFA_alpha2_Delta

MFDFA_alpha2_Asymmetry

MFDFA_alpha2_Fluctuation

MFDFA_alpha2_Increment

Quality control segment duration, s Logs the length of RRI period used for HRV each computation.

import numpy as np
import os
import scipy.io
from pathlib import Path
from scipy.stats import variation
from hmmlearn import hmm
load Matlab data files
from scipy.io import loadmat
3. Import raw peaks.

The source may be Matlab files or whatever input data format you may need. In the present

example, we load a duo of files: corresponding maternal and fetal peak data. Your use case may differ.

For example, you may load just one set of peak data, three or more sets of peak data derived from

different ECG channels, an ECG-derived peak times channel and a PPG-derived peak times channel,

etc. Simply amend the code accordingly by editing and adding the additional lines for each step as

required.

In this work, because the focus is on peak times or heart rate (or, conversely, the RRI) time

series, an important step is skipped deliberately: the derivation of the peak data from the raw signal.

This can be ECG, PPG or otherwise recorded blood pressure fluctuations (pulse). The HRV Task Force

recommends checking for the presence of ectopic heartbeats, e.g., premature ventricular contractions

(PVCs) [6 , 43]. NeuroKit provides an API for detecting R peaks and for artifact correction. I refer the

interested reader to their documentation.

Import raw peaks from the mat files; adjust to fit your input data
format

f_filepath_peaks = Path.cwd()/"raw_peaks/f" #fetal raw peaks mat files;
m_filepath_peaks = Path.cwd()/"raw_peaks/m" #maternal raw peaks mat

files;
4. Get ready for batch file processing. a. Create a list of relevant files in directory

f_peaks_files = [f for f in sorted(f_filepath_peaks.iterdir()) #create
a list of relevant files in directory

if f.suffix == ’.mat’]
m_peaks_files = [f for f in sorted(m_filepath_peaks.iterdir()) #create

a list of relevant files in directory
if f.suffix == ’.mat’] b. Read one file at a time using the above list, trim, clean, convert

to RRI c. The present syntax is for a specific ECG format; adopt to your use case d. Iterate over i files

in the f_ or m_ peaks_files lists and extract the correct peaks channel as numpy array

def read_mat_file(f_peaks_file, m_peaks_file):
Import 5th row of the mat file’s peak data which has 1000 Hz

sampling rate; you may need to adopt this step as per your data structure
f_file_PEAK_raw = loadmat(f_peaks_file)
m_file_PEAK_raw = loadmat(m_peaks_file)

M.G. Frasch / MethodsX 9 (2022) 101782 9

E

i
m

i
m

d

i

i

f

s

t

o

∗

s

h

n

f

n

h

f_peaks = f_file_PEAK_raw[’fetal_Rpeaks’][4] #this is my 5th row
CG-SAVER-extracted peaks channel
m_peaks = m_file_PEAK_raw[’mother_Rpeaks’][4] #this is my 5th row
Trim trailing zeros
f_peaks_trimmed = np.trim_zeros(f_peaks,trim = ’b’)
m_peaks_trimmed = np.trim_zeros(m_peaks,trim = ’b’)
Artifact removal [see next section for details]
f_clean_peaks = nk.signal_fixpeaks(f_peaks_trimmed, sampling_rate = 1000,

terative = False, show = False,interval_min = 0.33,interval_max = 0.75,
ethod = "kubios") #allow 80--180 bpm
m_clean_peaks = nk.signal_fixpeaks(m_peaks_trimmed, sampling_rate = 1000,

terative = False, show = False,interval_min = 0.4,interval_max = 1.5,
ethod = "kubios") #allow 40--150 bpm
Document artifacts from each run as clean_peaks_rri[0]: build a

ataframe for each file over all segments
Convert to RRI
f_rri = peaks_to_rri(f_clean_peaks[1], sampling_rate = 1000,

nterpolate = False)
m_rri = peaks_to_rri(m_clean_peaks[1], sampling_rate = 1000,

nterpolate = False)
return f_clean_peaks[1], m_clean_peaks[1], f_rri, m_rri,

_clean_peaks[0], m_clean_peaks[0] e. Proceed with the steps below: HRV compute,

ave. Cf. final section (10).

5. Convert peaks to RRIs

Using NeuroKit2’s functions to take the cleaned peaks as input: peaks_to_rri

Some NK functions [clean peaks function, complexity HRV metrics]
ake RRIs
So use these UDFs borrowed from the NK package: convert peaks to RRI

n the cleaned peaks output
def peaks_to_rri(peaks = None, sampling_rate = 1000, interpolate = False,

∗kwargs):
rri = np.diff(peaks) / sampling_rate ∗ 1000
if interpolate is False:
return rri
else:
Minimum sampling rate for interpolation
if sampling_rate < 10:
sampling_rate = 10
Compute length of interpolated heart period signal at requested

ampling rate.
desired_length = int(np.rint(peaks[-1]))
rri = signal_interpolate(
peaks[1:], # Skip first peak since it has no corresponding element in

eart_period
rri,
x_new = np.arange(desired_length),
∗∗kwargs
)
return rri, sampling_rate
6. Artifact correction. a. This is a key step that will influence everything downstream. It is often

ot reported clearly in the studies. b. Adjust the sampling rate and threshold settings as appropriate

or your data. c. Note that we save the logs of artifact correction for audit purposes. Sometimes, you

eed to know why a certain dataset behaved in the way it did and this documentation can come in

andy.

10 M.G. Frasch / MethodsX 9 (2022) 101782

Artifact correction
Integrated into the above UDF red_mat_file, but you may find this

useful to adopt elsewhere in your code
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.

signal.signal_fixpeaks
Artifact removal on peaks using Kubios: write into UDF taking

trimmed_peaks input
caution: nk.signal_fixpeaks takes peaks, not RRI!
nk.signal_fixpeaks saves the corrected peak locations to the [1]

index of the output data sturcture
accessible like so: clean_peaks[1]
Review the settings for fetal versus maternal RRI inputs! Adjust to

match your RRI physiology
interval_min -- minimum interval btw peaks | interval_max -- maximum

interval btw peaks.
f_clean_peaks = nk.signal_fixpeaks(f_peaks_trimmed, sampling_rate = 1000,

iterative = False, show = False,interval_min = 0.1,interval_max = 0.25,
method = "kubios")

m_clean_peaks = nk.signal_fixpeaks(m_peaks_trimmed, sampling_rate = 1000,
iterative = False, show = False,interval_min = 0.1,interval_max = 0.25,
method = "kubios")

Convert trimmed and cleaned peaks to RRI (using _trimmmed_ raw peaks
as input!)

rri_clean = peaks_to_rri(clean_peaks_peaks[1], sampling_rate = 1000,
interpolate = False)

7. Compute all HRV metrics segment-wise a. Rather than computing on the entire time series

at once and trading the reproducibility as a result (HRV metrics have variable dependence on the

duration of time series on which they are computed, among other things), we i. set the segment

duration explicitly a priori and ii. Take advantage of the segment-wise estimate of HRV (or variability

in general, as your case may be) to investigate the higher-order structure of the HRV metrics

themselves. b. For complexity estimates, note that we use segment duration-specific estimation of

optimal time delay rather than using default settings. This allows us to compute FuzzEn, FuzzEnMSE,

FuzzEnRCMSE, cApEn specifically for the optimal time delay. Why select these complexity estimates?

It is heuristic. I have found Fuzzy Entropy estimates to be understudied and robust, especially

with RRI time series. This is hence worthy of additional attention in future studies deploying

complexity estimates. Other time-delay-dependent complexity estimates can be plugged in here, all

made available via NeuroKit2 API.

UDF compute_HRV
This UDF computes all [regular and extra non-linear] HRV metrics

segment-wise for a file
def compute_HRV(peaks,rri,SubjectID):
Regular HRV matrix (from peaks)
duration_peaks = peaks[len(peaks)-1] #gives me the duration in samples
divider = duration_peaks/1000/60/5 #sampling_rate, 5 min window segments
segment = np.array_split(peaks,divider) #divide in segments of 5 min;

the last segment may be shorter; discard during statistical analysis on
HRV metrics

segment_df = pd.DataFrame()
for i in range(len(segment)):
segment = nk.hrv(segment[i],sampling_rate = 1000, show = False)
segment_df = pd.concat([segment_df,segment],ignore_index = True)

Additional nonlinear HRV metrics from RRIs

M.G. Frasch / MethodsX 9 (2022) 101782 11

m
o

t

,

d

d

f

(

d

-
n

s
s
S

c

a

t

s

i

f

d

d

h

n

segment = np.array_split(rri,divider) #divide _RRI_ in segments of 5
in; the last segment may be shorter; discard during statistical analysis
n HRV metrics
#create my dataframe structure to which to append the list as a row in

he following
extra_columns = [’optimal time delay’,’FuzzEn’,’FuzzEnMSE’,’FuzzEnRCMSE’

’cApEn’,’segment duration, s’,’SubjectID’]
extra_complexity_df = pd.DataFrame(columns = extra_columns)
df_length = len(extra_complexity_df)
extra_complexity_df_total = pd.DataFrame(columns = extra_columns)
for i in range(len(segment)):
optimal_complexity_parameters = nk.complexity_delay(segment[i],

elay_max = 100, method = ’fraser1986 ′ , show = False)
extra_complexity_segment_fuzen = nk.entropy_fuzzy(segment[i],

elay = optimal_complexity_parameters)
extra_complexity_segment_fuzen_mse = nk.complexity_fuzzymse(segment[i],

uzzy = True)
extra_complexity_segment_fuzen_rcmse = nk.complexity_fuzzyrcmse

segment[i], fuzzy = True, composite = True, refined = True)
extra_complexity_segment_capen = nk.entropy_approximate(segment[i],

elay = optimal_complexity_parameters, corrected = True)
segment_duration = np.sum(segment[i])/1000 #segment duration in seconds
#join all individual output floats including values of segment[i]

 i.e., for each segment - and its duration in seconds as
umpy.sum(segment[1])/1000
extra_complexity = [optimal_complexity_parameters, extra_complexity_

egment_fuzen,extra_complexity_segment_fuzen_mse,extra_complexity_
egment_fuzen_rcmse,extra_complexity_segment_capen,segment_duration,
ubjectID]
extra_complexity_df.loc[df_length] = extra_complexity
extra_complexity_df_total = pd.concat([extra_complexity_df_total,extra_

omplexity_df],ignore_index = True)
simply concatenate both df’s horizontally; this scales allowing

ddition of other df’s from bivariate computations
final_df = pd.concat([segment_df, extra_complexity_df_total],axis = 1)
return final_df #this is per subject with SubjectID output along on

he right side
8. Compute higher order HRV metrics.

Here I made explicit and expanded upon what we attempted first in [44] a. First, basic variability

tatistics are defined. b. Next, a hidden markov model (HMM) is implemented. c. Finally, everything

s put together and saved. d. Note that I left here a number of commented lines of code for

uture development. I welcome improvements on those! For example, HMM code requires a certain

uration of HRV metrics time series to compute. Since in the original dataset where this method was

eveloped, the number of datapoints was limited to 6–8, I commented it out and made it available

ere for future reference and use on larger datasets.

def compute_basic_stats(ts_data, SubjectID):
compute mean and variation
assuming "ts_data" is where my HRV metric values list is per subject
mean = np.mean(ts_data.values.tolist())
coeff_variation = variation(ts_data.values.tolist())
this function works similar to variation() but works purely with

umpy
cv = lambda x: np.std(x) / np.mean(x)
First quartile (Q1)

12 M.G. Frasch / MethodsX 9 (2022) 101782

Q1 = np.percentile(ts_data, 25, interpolation = ’midpoint’)
Third quartile (Q3)
Q3 = np.percentile(ts_data, 75, interpolation = ’midpoint’)
Interquaritle range (IQR)
IQR = Q3 - Q1
midhinge = (Q3 + Q1)/2
quartile_coefficient_dispersion = (IQR/2)/midhinge
adding entropy estimate; this is experimental!
ts_entropy = nk.entropy_sample(ts_data)
yielding error "could not broadcast input array from shape (7,1)

into shape (7)" | the following syntax fixes that and is more elegant
in that it estimates optimal delay

optimal_complexity_parameters = nk.complexity_delay(ts_data.to_numpy,
delay_max = 6, method = ’fraser1986 ′ , show = False)

ts_entropy = nk.entropy_fuzzy(ts_data.to_numpy, delay = optimal_
complexity_parameters)

still yielding len error
ts_entropy = nk.entropy_shannon(ts_data)
basic_stats = [SubjectID, mean, coeff_variation[0], quartile_

coefficient_dispersion, ts_entropy]
return basic_stats
#HMM Model
def do_hmm(ts_data):
#ts_data = numpy.array(data)
gm = hmm.GaussianHMM(n_components = 2)
gm.fit(ts_data.reshape(-1, 1))
hmm_states = gm.predict(ts_data.reshape(-1, 1))
#hmm_states = [states.tolist()]
print(hmm_states)
return hmm_states # next, add _states_ iteratively for all subjects to

states_Uber list to spot patterns
deal with last column which is string and needs to be skipped
def skip_last_column(lst):
unpack the list of lists
def Extract(lst):
return [item[0] for item in lst]
check for string in the first sublist (all I need to decide to skip

it for numpy operations)
element_to_check = Extract(lst)[0]
return isinstance(element_to_check, str) #return Boolean for presence

of string in the sublist
def compute_higher_HRV(final_df, SubjectID):
assuming "final_df" is the dataframe where the HRV metric values are

listed segment-wise per subject
compute basic stats
higher_order_basic_stats = []
for i in range(final_df.shape[1]): #last column is the SubjectID

string, so skipping it below
metric = final_df.iloc[:,[i]].values
#String skip logic to skip over SubjectID column
if skip_last_column(final_df.iloc[:,[i]].values) == False:
results_temp1 = compute_basic_stats(final_df.iloc[:,[i]].astype

(np.float64),SubjectID)
higher_order_basic_stats.append(results_temp1)

M.G. Frasch / MethodsX 9 (2022) 101782 13

c
d

c

i
H

v

s

s

a

t

c
d

f

t

else:
i += 1
basic_stats = pd.DataFrame(higher_order_basic_stats,

olumns = [’SubjectID’,’mean’, ’coeff_variation’, ’quartile_coefficient_
ispersion’,’HRV metrics entropy’])
columns = final_df.columns[0:63] #make sure I don’t select the last

olumn which has SubjectID
basic_stats.index = [columns]
basic_stats_final = basic_stats.T #transpose
compute HMM stats: computing on just 7 data points leads to errors

n some instances, so omit for now and revisit later when used on longer
RV metrics time series, say, several hours
Estimate HMM probabilities output for a given segmented HRV metric
Then compute basic_stats on this estimate;
Hypothesis: stable tracings will have tight distributions of HMM

alues and resemble entropy estimates;
This will apply statistically significantly for physiologically

tressed (tighter distributions) versus control subjects
#higher_order_basic_stats_on_HMM = []
#for i in range(final_df.shape[1]): #last column is the SubjectID

tring, so removing it
metric = final_df.iloc[:,[i]].values
print("metric has the type", type(metric))
some HRV metrics have NaNs and the "do_hmm" script crashes on those;
Adding logic to skip if NaN is present
a = any(pd.isna(metric)) #checking if _any_ values in HRV metrics list

re NaN
b = skip_last_column(metric)
skip_reasons = {a:’True’, b:’True’}
#NaN or string skip logic
if any(skip_reasons):
i += 1
else:
results_hmm_temp2 = do_hmm(metric)
print(results_hmm_temp2)
print(type(results_hmm_temp2))
results_stats_hmm_temp = compute_basic_stats(results_hmm_temp2.

olist(),SubjectID) #j being the file number; ! = SubjectID
higher_order_basic_stats_on_HMM.append(results_stats_hmm_temp)
#basic_stats_on_HMM = pd.DataFrame(higher_order_basic_stats_on_HMM,

olumns = [’HMM_mean’, ’HMM_coeff_variation’, ’HMM_quartile_coefficient_
ispersion’,’HMM_HRV metrics entropy’])
#basic_stats_on_HMM.index = [columns]
#basic_stats_on_HMM_final = basic_stats_on_HMM.T #transpose
#higher_final_df = pd.concat([basic_stats_final, basic_stats_on_HMM_

inal],axis = 1)
higher_final_df = basic_stats_final #leaving the syntax above for when

he data allow HMM analysis
return higher_final_df #this includes SubjectID
9. Save everything.

Gather all data from the separate data frames into spreadsheets for further analyses.

Execute the entire analysis
For each file (fetal and maternal):
- call read_mat_file

14 M.G. Frasch / MethodsX 9 (2022) 101782
- call compute_HRV
- save results to Excel
10. Execute the entire pipeline calling the above defined functions

Initialize data structures
f_artifacts_log = []
m_artifacts_log = []
Uber_fHRV = []
Uber_mHRV = []
Uber_higher_fHRV = []
Uber_higher_mHRV = []
i = 0
Compute & save into lists
while i < = len(f_peaks_files)-1: #careful - this assumes equal number

of fetal and maternal raw files
read the peaks file, trim trailing zeros, artifact correct it,

convert to RRIs and return the results
f_clean_peaks, m_clean_peaks, f_rri, m_rri, f_clean_peaks_artifacts,

m_clean_peaks_artifacts = read_mat_file(f_peaks_files[i],m_peaks_files[i])
fSubjectID = format(f_peaks_files[i].stem)
mSubjectID = format(m_peaks_files[i].stem)
f_artifacts_log_i = [fSubjectID,f_clean_peaks_artifacts]
m_artifacts_log_i = [mSubjectID,m_clean_peaks_artifacts]
#save artifact processing log from each file starting with its real

SubjectID
f_artifacts_log.append(f_artifacts_log_i)
m_artifacts_log.append(m_artifacts_log_i)
compute all HRV metrics
ffinal = compute_HRV(f_clean_peaks,f_rri,fSubjectID)
mfinal = compute_HRV(m_clean_peaks,m_rri,mSubjectID)
update the UBER df
Uber_fHRV.append(ffinal)
Uber_mHRV.append(mfinal)
compute higher_order HRV metrics
fhigher_final = compute_higher_HRV(ffinal,fSubjectID)
mhigher_final = compute_higher_HRV(mfinal,mSubjectID)
update the UBER_higher_df
Uber_higher_fHRV.append(fhigher_final)
Uber_higher_mHRV.append(mhigher_final)
i += 1
if i > len(f_peaks_files):
break
print(’Computation completed.’)
save artifacts logs
df_Uber_f_artifacts = pd.DataFrame.from_records(f_artifacts_log) #edit

the name as needed
df_Uber_m_artifacts = pd.DataFrame.from_records(m_artifacts_log) #edit

the name as needed
df_Uber_f_artifacts.to_excel(’analysis/fUBER_artifacts_log.xlsx’,

index = False)
df_Uber_m_artifacts.to_excel(’analysis/mUBER_artifacts_log.xlsx’,

index = False)
save HRV results
Uber_fdf = pd.concat(Uber_fHRV)
Uber_fdf.to_excel("analysis/fmetrics.xlsx")

M.G. Frasch / MethodsX 9 (2022) 101782 15

r

t

w

f

t

N

w

g

F

[

Uber_mdf = pd.concat(Uber_mHRV)
Uber_mdf.to_excel("analysis/mmetrics.xlsx")
Uber_higher_fdf = pd.concat(Uber_higher_fHRV)
Uber_higher_fdf.to_excel("analysis/higher_fmetrics.xlsx")
Uber_higher_mdf = pd.concat(Uber_higher_mHRV)
Uber_higher_mdf.to_excel("analysis/higher_mmetrics.xlsx")
11. Method validation: Demonstrating the performance of the proposed HRV pipeline in a

etrospective analysis of a polysomnography dataset recorded with Apple Watch.

As validation dataset, the data by Walch et al. was used which is available from PhysioNet. The

eam acquired heart rate data in 31 subjects during sleep using Apple Watch and enriched the data

ith expert annotation of sleep states [13 , 18 , 19]. The labeled sleep state architecture was recorded

rom polysomnography and saved in the format ’[subject-id-number]_labeled_sleep.txt’. Each line in

his file has the format: date (in seconds since polysomnography start) stage (0-5, wake = 0, N1 = 1,

2 = 2, N3 = 3, REM = 5).

This dataset is appealing for several reasons for the intended objective of HRV pipeline validation:

(1) The heart rate data, extracted from the Apple watch, is publicly available.

The data were recorded from 31 subjects during sleep, averages 7.3 h, and comes expertly

annotated with sleep state labels.

(2) The authors provided a script on GitHub for how to enable such data extraction in the future.

This should make such a demonstration particularly relevant for future studies [45] .

(3) This dataset ties in well with the accompanying publication in the Journal of Biomedical

Informatics [10] where I discuss the impact of sampling rate on HRV estimation. The Apple

Watch data are a good example of the potential of wearables to provide physiological insights

which are fundamentally limited by low sampling rates of the underlying signal used to derive

HRV (PPG in this case).

Interestingly, the presented HRV pipeline yields insights into sleep state dynamics reflected in HRV

hich I discuss below. The underlying code, based on the presented HRV estimation pipeline, and all

enerated data can be found on FigShare and DockerHub [46] .
ig. 1. Example of the temporal relationship between Sample Entropy of HRV and sleep states computed from Apple Watch

46] .

16 M.G. Frasch / MethodsX 9 (2022) 101782

Fig. 2. Spearman correlations between the durations of N3 stage of NREM sleep and HRV complexity metric SampEn as well

as the linear time domain metric RMSSD. As a representative metric of higher-order variability, the temporal variability, gauged

as coefficient of variation (CV), of these two HRV metrics is also considered [44 , 47].

•

•

•

To analyze this dataset, I expanded the presented HRV pipeline further and deployed it in several

ways that can be used as a basis for future studies as follows.

The number of HRV metrics was increased from 63 (as per above Jupyter notebook) to 124 HRV

metrics, computed on this entire PhysioNet dataset (cf. Table 1).

Since this is intended as an example only, for ease of computing, I used the entire dataset to

compute HRV (i.e., divider = 1 rather than performing the sliding window computations); I also

set optimization for complexity parameters to default settings for the same reasons. The code is

available for those who wish to dive deeper and have the resources to do so.

Sample Entropy (SampEn) is reported as an example complexity metric of HRV over time as it

changes during sleep along with the traditional linear time-domain metric RMSSD; these are plotted

along with the heart rate and sleep state architecture (using the supplied labels). This approach can

contribute to studying these relationships systematically and develop open source algorithms to

reliably detect sleep states from PPG-derived HRV data.

◦ The code is presented to determine the total duration of each sleep state per recording using the

labeled files [46] .

◦ The saved continuous and averaged SampEn and RMSSD data are provided for the entire cohort,

for future analyses [46] .

M.G. Frasch / MethodsX 9 (2022) 101782 17

Fig. 3. The variability of RMSSD correlates with N3 NREM duration.

c
◦ The code and the visualizations of each subject’s time course are provided for heart rate, SampEn,

and sleep state architecture [46] . These data reveal a certain covariance between the HRV

complexity and sleep state dynamics (Fig. 1).

◦ Next, as an exploratory step, Spearman correlations were computed across all subjects between

HRV metrics SampEn and RMSSD on one hand and the NREM sleep state N3 (the deepest sleep

state). The findings show again, this time quantitatively across the cohort, a degree of correlation

between HRV complexity fluctuations and duration of deep sleep (Fig. 2). Note the correlation

between N3 NREM duration and CV SampEn (R = 0.39, p = 0.03) or CV RMSSD (R = 0.55 and

p = 0.001), respectively (Fig. 3).

◦ Next, I expanded the scope by assessing and showing the correlations systematically for all

subjects, all 124 HRV metrics, and all sleep states (all code and results provided) (Fig. 4) [46] .

I suggest the following implications for future work. First, the dataset and the presented findings

an be studied further using machine learning tools to derive an optimal HRV metric-based predictor

18 M.G. Frasch / MethodsX 9 (2022) 101782

Fig. 4. Correlations between sleep state durations and HRV metrics. TOP: all metrics and sleep states are shown for which

Spearman R values were found where p < 0.05. BOTTOM: A selective zoom on the strong correlations. See Table 1 for HRV

metrics legend. The resulting dynamic visualization of correlations between HRV metrics and sleep states with Plotly can be

viewed here: https://plotly.com/ ∼mfrasch/5/import- pandas- as- pd- import- plotlyexpres/ .

•

•

of the NREM states or REM states’ duration. Second, the richness of the temporal fluctuations can

be further harnessed for classification and prediction using the code for hidden Markov mechanisms

(HMM). I consider this to be out of scope for the present manuscript but provide the necessary code.

12. Data availability

All data produced during this analysis has been deposited in FigShare at

10.6084/m9.figshare.20076 46 4 [46] . The resulting Docker container is published on

https://hub.docker.com/r/mfrasch/hrv-pipeline . The notebook is deposited on GitHub pages

(https://martinfrasch.github.io): for viewing online here (https://martinfrasch.github.io/MethodsX%

20R1%20HRV%20pipeline%20v4.1.html)

and as downloadable Jupyter notebook here (https://martinfrasch.github.io/MethodsX%20R1%

20HRV%20pipeline%20v4.1%20FINAL.ipynb)

https://plotly.com/~mfrasch/5/import-pandas-as-pd-import-plotlyexpres/
https://hub.docker.com/r/mfrasch/hrv-pipeline
https://martinfrasch.github.io
https://martinfrasch.github.io/MethodsX%20R1%20HRV%20pipeline%20v4.1.html
https://martinfrasch.github.io/MethodsX%20R1%20HRV%20pipeline%20v4.1%20FINAL.ipynb

M.G. Frasch / MethodsX 9 (2022) 101782 19

•

b

m

t

u

a

s

n

h

c

D

c

c

D

A

c

M

R

The resulting dynamic visualization of correlations between HRV metrics and sleep states with

Plotly can be viewed here: https://chart-studio.plotly.com/ ∼mfrasch/5

The underlying data (Spearman R values for p < 0.05) can be found here (https://chart-

studio.plotly.com/ ∼mfrasch/6)

Final remarks

The presented HRV computation pipeline in Python using the API of NeuroKit2 package is shown

ased on the use of the maternal-fetal trans-abdominally derived non-invasive ECG signal followed by

aternal and fetal ECG extraction using SAVER algorithm [48] . Therefore, two RRI inputs are coded

hroughout the pipeline. However, the number of inputs can vary depending on your use case from

nivariate RRI time series to multivariate RRI time series. As such, this approach is easily scalable to

 given scenario. As an example, the approach to a univariate heart rate analysis in relation to sleep

tate architecture is also presented.

Recent advances in the in silico modeling of physiological systems open avenues for discovery of

ovel and deeper understanding of the existing HRV metrics [54–56] .

The literature indicates a high potential of HRV biomarkers to serve as predictors of important

ealth outcomes such as cardiac or mental health as well as in critical care and disorders of

onsciousness [1 , 2 , 6 , 49–53].

eclaration of Competing Interest

The author declares the following financial interests/personal relationships which may be

onsidered as potential competing interests:

MGF holds patents on EEG and ECG processing. MGF is founder of and consults for Digital Health

ompanies commercializing predictive potential of physiological time series for human health.

ata Availability

Comprehensive heart rate variability estimation in relation to sleep state architecture:

a retrospective observational cohort study on Apple Watch heart rate data (Original data)

(Figshare).

cknowledgements

I gratefully acknowledge the helpful, prompt, and generous comments from NeuroKit2 developer

ommunity in aiding the development of the presented methodology. Special thanks go to Dominique

akowski and Zen J. Lau.

eferences

[1] J.F. Thayer, F. Ahs, M. Fredrikson, J.J. Sollers, T.D. Wager, A meta-analysis of heart rate variability and neuroimaging studies:

implications for heart rate variability as a marker of stress and health, Neurosci. Biobehav. Rev. 36 (2012) 747–756, doi: 10.

1016/j.neubiorev.2011.11.009 .
[2] D. Candia-Rivera, V. Catrambone, G. Valenza, The role of electroencephalography electrical reference in the assessment of

functional brain-heart interplay: from methodology to user guidelines, J. Neurosci. Methods 360 (2021) 109269, doi: 10.
1016/j.jneumeth.2021.109269 .

[3] M.G. Frasch, S.M. Lobmaier, T. Stampalija, P. Desplats, M.E. Pallarés, V. Pastor, M.A. Brocco, H.T. Wu, J. Schulkin, C.L. Herry,
A .J.E. Seely, G.A .S. Metz, Y. Louzoun, M.C. Antonelli, Non-invasive biomarkers of fetal brain development reflecting prenatal

stress: an integrative multi-scale multi-species perspective on data collection and analysis, Neurosci. Biobehav. Rev. 117

(2020) 165–183, doi: 10.1016/j.neubiorev.2018.05.026 .
[4] S.M. Lobmaier, A. Müller, C. Zelgert, C. Shen, P.C. Su, G. Schmidt, B. Haller, G. Berg, B. Fabre, J. Weyrich, H.T. Wu,

M.G. Frasch, M.C. Antonelli, Fetal heart rate variability responsiveness to maternal stress, non-invasively detected from
maternal transabdominal ECG, Arch. Gynecol. Obstet. (2019), doi: 10.10 07/s0 0404- 019- 05390- 8 .

[5] H.-D. Park, O. Blanke, Heartbeat-evoked cortical responses: underlying mechanisms, functional roles, and methodological
considerations, Neuroimage 197 (2019) 502–511, doi: 10.1016/j.neuroimage.2019.04.081 .

[6] R. Sassi, S. Cerutti, F. Lombardi, M. Malik, H.V. Huikuri, C.-K. Peng, G. Schmidt, Y. Yamamoto, Advances in heart rate

variability signal analysis: joint position statement by the e-cardiology ESC working group and the european heart rhythm
association co-endorsed by the Asia pacific heart rhythm society, Europace 17 (2015) 1341–1353, doi: 10.1093/europace/

euv015 .

https://doi.org/10.6084/m9.figshare.20076464.v3
https://doi.org/10.1016/j.neubiorev.2011.11.009
https://doi.org/10.1016/j.jneumeth.2021.109269
https://doi.org/10.1016/j.neubiorev.2018.05.026
https://doi.org/10.1007/s00404-019-05390-8
https://doi.org/10.1016/j.neuroimage.2019.04.081
https://doi.org/10.1093/europace/euv015

20 M.G. Frasch / MethodsX 9 (2022) 101782

[7] U. Rajendra Acharya, K. Paul Joseph, N. Kannathal, C.M. Lim, J.S. Suri, Heart rate variability: a review, Med. Biol. Eng.

Comput. 44 (2006) 1031–1051, doi: 10.1007/s11517- 006- 0119- 0 .
[8] A . Bravi, A . Longtin, A .J.E. Seely, Review and classification of variability analysis techniques with clinical applications,

Biomed. Eng. Online 10 (2011) 90, doi: 10.1186/1475-925X-10-90 .
[9] M.G. Frasch, Letter to the editor: mind the gap: epistemology of heart rate variability, Am. J. Physiol. Regul. Integr. Comp.

Physiol. 319 (2020) R343–R344, doi: 10.1152/ajpregu.00183.2020 .
[10] M.G. Frasch, Sampling rate and heart rate variability: on metrics and health outcomes, J. Biomed. Inform. (2022) 104061,

doi: 10.1016/j.jbi.2022.104061 .

[11] A.N. Vest, G. Da Poian, Q. Li, C. Liu, S. Nemati, A.J. Shah, G.D. Clifford, An open source benchmarked toolbox for
cardiovascular waveform and interval analysis, Physiol. Meas. 39 (2018) 105004, doi: 10.1088/1361-6579/aae021 .

[12] M.P. Tarvainen, J.-P. Niskanen, J.A. Lipponen, P.O. Ranta-Aho, P.A. Karjalainen, Kubios HRV–heart rate variability analysis
software, Comput. Methods Progr. Biomed. 113 (2014) 210–220, doi: 10.1016/j.cmpb.2013.07.024 .

[13] A .L. Goldberger, L.A . Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley,
PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals,

Circulation 101 (20 0 0) E215–E220 https://www.ncbi.nlm.nih.gov/pubmed/10851218 .

[14] D. Makowski, T. Pham, Z.J. Lau, J.C. Brammer, F. Lespinasse, H. Pham, C. Schölzel, S.H.A. Chen, NeuroKit2: a Python toolbox
for neurophysiological signal processing, Behav. Res. Methods 53 (2021) 1689–1696, doi: 10.3758/s13428- 020- 01516- y .

[15] D. Makowski, T. Pham, Z.J. Lau, J.C. Brammer, F. Lespinasse, H. Pham, C. Schölzel, C.A. Sh, NeuroKit2: a Python toolbox for
neurophysiological signal processing, 2020, URL Https://Github.Com/Neuropsychology/NeuroKit . (n.d.).

[16] T. Pham, Z.J. Lau, S.H.A. Chen, D. Makowski, Heart rate variability in psychology: a review of HRV indices and an analysis
tutorial, Sensors 21 (2021), doi: 10.3390/s21123998 .

[17] M.G. Frasch, Comprehensive HRV estimation pipeline using Neurokit2, 2021. doi: 10.5281/zenodo.5736572 . CERN.

[18] O. Walch, Motion and heart rate from a wrist-worn wearable and labeled sleep from polysomnography, PhysioNet (2019),
doi: 10.13026/hmhs-py35 .

[19] O. Walch, Y. Huang, D. Forger, C. Goldstein, Sleep stage prediction with raw acceleration and photoplethysmography heart
rate data derived from a consumer wearable device, Sleep 42 (2019), doi: 10.1093/sleep/zsz180 .

[20] A .B. Ciccone, J.A . Siedlik, J.M. Wecht, J.A . Deckert, N.D. Nguyen, J.P. Weir, Reminder: RMSSD and SD1 are identical heart
rate variability metrics, Muscle Nerve 56 (2017) 674–678, doi: 10.1002/mus.25573 .

[21] T. Rawald, M. Sips, N. Marwan, D. Dransch, Fast computation of recurrences in long time series, in: Springer Proceedings
in Mathematics & Statistics, Springer International Publishing, Cham, 2014, pp. 17–29, doi: 10.1007/978- 3- 319- 09531- 8 _ 2 .

[22] M. Toichi, T. Sugiura, T. Murai, A. Sengoku, A new method of assessing cardiac autonomic function and its comparison

with spectral analysis and coefficient of variation of R-R interval, J. Auton. Nerv. Syst. 62 (1997) 79–84 https://www.ncbi.
nlm.nih.gov/pubmed/9021653 .

[23] J. Jeppesen, S. Beniczky, P. Johansen, P. Sidenius, A. Fuglsang-Frederiksen, Using Lorenz plot and cardiac sympathetic index
of heart rate variability for detecting seizures for patients with epilepsy, Conf. Proc. IEEE Eng. Med. Biol. Soc. (2014) (2014)

4563–4566, doi: 10.1109/EMBC.2014.6944639 .
[24] M.D. Costa, R.B. Davis, A.L. Goldberger, Heart rate fragmentation: a new approach to the analysis of cardiac interbeat

interval dynamics, Front. Physiol. 8 (2017), doi: 10.3389/fphys.2017.00255 .

[25] C. Yan, P. Li, L. Ji, L. Yao, C. Karmakar, C. Liu, Area asymmetry of heart rate variability signal, Biomed. Eng. Online 16 (2017)
112, doi: 10.1186/s12938- 017- 0402- 3 .

[26] J. Piskorski, P. Guzik, The structure of heart rate asymmetry: deceleration and acceleration runs, Physiol. Meas. 32 (2011)
1011–1023, doi: 10.1088/0967-3334/32/8/002 .

[27] Complexity analysis of physiological signals — NeuroKit 0.1.5 documentation, (n.d.). https://neuropsychology.github.
io/NeuroKit/functions/complexity.html?highlight=optimal%20complexity#neurokit2.complexity.complexity _ delay (accessed

July 17, 2022).

[28] C. Liu, K. Li, L. Zhao, F. Liu, D. Zheng, C. Liu, S. Liu, Analysis of heart rate variability using fuzzy measure entropy, Comput.
Biol. Med. 43 (2013) 100–108, doi: 10.1016/j.compbiomed.2012.11.005 .

[29] A. Porta, T. Gnecchi-Ruscone, E. Tobaldini, S. Guzzetti, R. Furlan, N. Montano, Progressive decrease of heart period
variability entropy-based complexity during graded head-up tilt, J. Appl. Physiol. 103 (2007) 1143–1149, doi: 10.1152/

japplphysiol.0 0293.20 07 .
[30] R.A. Fisher, E.J. Russell, On the mathematical foundations of theoretical statistics, Philos. Trans. R. Soc. Lond. Ser. A 222

(1922) 309–368 Containing Papers of a Mathematical or Physical Character, doi: 10.1098/rsta.1922.0 0 09 .

[31] B. Hjorth, EEG analysis based on time domain properties, Electroencephalogr. Clin. Neurophysiol. 29 (1970) 306–310,
doi: 10.1016/0013-4694(70)90143-4 .

[32] C. Schölzel, nolds: nonlinear measures for dynamical systems (based on one-dimensional time series), Github, n.d. https:
//github.com/CSchoel/nolds (accessed June 15, 2022).

[33] M.J. Katz, Fractals and the analysis of waveforms, Comput. Biol. Med. 18 (1988) 145–156, doi: 10.1016/0010-4825(88)
90041-8 .

[34] E. Estevez-Rams, R. Lora Serrano, B. Aragón Fernández, I. Brito Reyes, On the non-randomness of maximum Lempel Ziv

complexity sequences of finite size, Chaos 23 (2013) 023118, doi: 10.1063/1.4808251 .
[35] R.F. Voss, M.F. Barnsley, R.L. Devaney, B.B. Mandelbrot, H.O. Peitgen, D Saupe, R.F. Voss, H.O Peitgen, D. Saupe, Fractals in

nature: From characterization to simulation, in: The Science of Fractal Images, Springer New York, New York, NY, 1988,
pp. 21–70, doi: 10.1007/978- 1- 4612- 3784- 6 _ 1 .

[36] V. Marmelat, K. Torre, D. Delignières, Relative roughness: an index for testing the suitability of the monofractal model,
Front. Physiol. 3 (2012) 208, doi: 10.3389/fphys.2012.00208 .

[37] F. Hasselman, 5.1 Relative Roughness, (2022). https://complexity-methods.github.io/book/relative-roughness.html (accessed

June 15, 2022).
[38] F. Hasselman, When the blind curve is finite: dimension estimation and model inference based on empirical waveforms,

Front. Physiol. 4 (2013) 75, doi: 10.3389/fphys.2013.0 0 075 .
[39] C. Sevcik, A procedure to estimate the fractal dimension of waveforms, ArXiv [Nlin.CD]. http://arxiv.org/abs/1003.5266 .

https://doi.org/10.1007/s11517-006-0119-0
https://doi.org/10.1186/1475-925X-10-90
https://doi.org/10.1152/ajpregu.00183.2020
https://doi.org/10.1016/j.jbi.2022.104061
https://doi.org/10.1088/1361-6579/aae021
https://doi.org/10.1016/j.cmpb.2013.07.024
https://www.ncbi.nlm.nih.gov/pubmed/10851218
https://doi.org/10.3758/s13428-020-01516-y
https://Github.Com/Neuropsychology/NeuroKit
https://doi.org/10.3390/s21123998
https://www.dx.doi.org/10.5281/zenodo.5736572
https://doi.org/10.13026/hmhs-py35
https://doi.org/10.1093/sleep/zsz180
https://doi.org/10.1002/mus.25573
https://doi.org/10.1007/978-3-319-09531-8_2
https://www.ncbi.nlm.nih.gov/pubmed/9021653
https://doi.org/10.1109/EMBC.2014.6944639
https://doi.org/10.3389/fphys.2017.00255
https://doi.org/10.1186/s12938-017-0402-3
https://doi.org/10.1088/0967-3334/32/8/002
https://neuropsychology.github.io/NeuroKit/functions/complexity.html?highlight=optimal%20complexity#neurokit2.complexity.complexity_delay
https://doi.org/10.1016/j.compbiomed.2012.11.005
https://doi.org/10.1152/japplphysiol.00293.2007
https://doi.org/10.1098/rsta.1922.0009
https://doi.org/10.1016/0013-4694(70)90143-4
https://github.com/CSchoel/nolds
https://doi.org/10.1016/0010-4825(88)90041-8
https://doi.org/10.1063/1.4808251
https://doi.org/10.1007/978-1-4612-3784-6_1
https://doi.org/10.3389/fphys.2012.00208
https://complexity-methods.github.io/book/relative-roughness.html
https://doi.org/10.3389/fphys.2013.00075
http://arxiv.org/abs/1003.5266

M.G. Frasch / MethodsX 9 (2022) 101782 21

[

[

[

[

[

[

[

[
[

[

[

[

[

[

40] B. Deng, L. Cai, S. Li, R. Wang, H. Yu, Y. Chen, J. Wang, Multivariate multi-scale weighted permutation entropy analysis of

EEG complexity for Alzheimer’s disease, Cogn. Neurodyn. 11 (2017) 217–231, doi: 10.1007/s11571- 016- 9418- 9 .
[41] Rydin, MFDFA: multifractal detrended fluctuation analysis in Python, Github, n.d. https://github.com/LRydin/MFDFA

(accessed June 15, 2022).
42] M. G. Frasch. mfrasch/hrv-pipeline https://hub.docker.com/r/mfrasch/hrv-pipeline (accessed June 17, 2022). Docker Hub.

43] L. Citi, E.N. Brown, R. Barbieri, A real-time automated point-process method for the detection and correction of erroneous
and ectopic heartbeats, IEEE Trans. Biomed. Eng. 59 (2012) 2828–2837, doi: 10.1109/TBME.2012.2211356 .

44] N. Gold, M.G. Frasch, C.L. Herry, B.S. Richardson, X. Wang, A doubly stochastic change point detection algorithm for noisy

biological signals, Front. Physiol. 8 (2017) 1112, doi: 10.3389/fphys.2017.01112 .
45] O. Walch, sleep_accel, Github, n.d. https://github.com/ojwalch/sleep _ accel (accessed June 16, 2022).

46] M. Frasch, Comprehensive heart rate variability estimation in relation to sleep state architecture: a retrospective
observational cohort study on Apple Watch heart rate data, (2022). doi: 10.6084/m9.figshare.20076464.v1 .

[47] N. Gold, C.L. Herry, X. Wang, M.G. Frasch, Fetal cardiovascular decompensation during labor predicted from the individual
heart rate tracing: a machine learning approach in near-term fetal sheep model, Front. Pediatr. 9 (2021) 593889, doi: 10.

3389/fped.2021.593889 .

48] R. Li, M.G. Frasch, H.-T. Wu, Efficient fetal-maternal ECG signal separation from two channel maternal abdominal ECG via
diffusion-based channel selection, Front. Physiol. 8 (2017) 277, doi: 10.3389/fphys.2017.00277 .

49] M.A. Samuels, The brain-heart connection, Circulation 116 (2007) 77–84, doi: 10.1161/CIRCULATIONAHA.106.678995 .
50] T.P. Beauchaine, J.F. Thayer, Heart rate variability as a transdiagnostic biomarker of psychopathology, Int. J. Psychophysiol.

98 (2015) 338–350, doi: 10.1016/j.ijpsycho.2015.08.004 .
[51] M.G. Frasch, C. Shen, H.-T. Wu, A. Mueller, E. Neuhaus, R.A. Bernier, D. Kamara, T.P. Beauchaine, Brief report: can a

composite heart rate variability biomarker shed new insights about autism spectrum disorder in school-aged children?

J. Autism Dev. Disord. (2020), doi: 10.1007/s10803- 020- 04467- 7 .
52] S.G. Roux, N.B. Garnier, P. Abry, N. Gold, M.G. Frasch, Distance to healthy metabolic and cardiovascular dynamics from

fetal heart rate scale-dependent features in pregnant sheep model of human labor predicts the evolution of acidemia and
cardiovascular decompensation, Front. Pediatr. 9 (2021) 660476, doi: 10.3389/fped.2021.660476 .

53] N. Gold, C. Herry, X. Wang, M. Frasch, Fetal cardiovascular decompensation during labor predicted from the individual
heart rate tracing: a machine learning approach in a near-term fetal sheep model, Front. Pediatr. 9 (2021) 355, doi: 10.

3389/fped.2021.593889 .
54] Q. Wang, N. Gold, M.G. Frasch, H. Huang, M. Thiriet, X. Wang, Mathematical model of cardiovascular and

metabolic responses to umbilical cord occlusions in fetal sheep, Bull. Math. Biol. 77 (2015) 2264–2293, doi: 10.1007/

s11538-015-0122-4 .
55] M. Brennan, M. Palaniswami, P. Kamen, Poincaré plot interpretation using a physiological model of HRV based on a

network of oscillators, Am. J. Physiol. Heart Circ. Physiol. 283 (2002) H1873–H1886, doi: 10.1152/ajpheart.00405.2000 .
56] D. Candia-Rivera, V. Catrambone, R. Barbieri, G. Valenza, Integral pulse frequency modulation model driven by

sympathovagal dynamics: synthetic vs. real heart rate variability, Biomed. Signal Process. Control. 68 (2021) 102736,
doi: 10.1016/j.bspc.2021.102736 .

https://doi.org/10.1007/s11571-016-9418-9
https://github.com/LRydin/MFDFA
https://hub.docker.com/r/mfrasch/hrv-pipeline
https://doi.org/10.1109/TBME.2012.2211356
https://doi.org/10.3389/fphys.2017.01112
https://github.com/ojwalch/sleep_accel
https://www.dx.doi.org/10.6084/m9.figshare.20076464.v1
https://doi.org/10.3389/fped.2021.593889
https://doi.org/10.3389/fphys.2017.00277
https://doi.org/10.1161/CIRCULATIONAHA.106.678995
https://doi.org/10.1016/j.ijpsycho.2015.08.004
https://doi.org/10.1007/s10803-020-04467-7
https://doi.org/10.3389/fped.2021.660476
https://doi.org/10.3389/fped.2021.593889
https://doi.org/10.1007/s11538-015-0122-4
https://doi.org/10.1152/ajpheart.00405.2000
https://doi.org/10.1016/j.bspc.2021.102736

	Comprehensive HRV estimation pipeline in Python using Neurokit2: Application to sleep physiology
	Method details
	Introduction
	Declaration of Competing Interest
	Acknowledgements
	References

