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ABSTRACT

Stable RNAs are modular and hierarchical 3D archi-
tectures taking advantage of recurrent structural
motifs to form extensive non-covalent tertiary inter-
actions. Sequence and atomic structure analysis
has revealed a novel submotif involving a minimal
set of five nucleotides, termed the UA_handle
motif (5'’XU/AN,X3’). It consists of a U:A Watson-
Crick: Hoogsteen trans base pair stacked over a
classic Watson-Crick base pair, and a bulge of
one or more nucleotides that can act as a handle
for making different types of long-range interac-
tions. This motif is one of the most versatile building
blocks identified in stable RNAs. It enters into the
composition of numerous recurrent motifs of
greater structural complexity such as the T-loop,
the 11-nt receptor, the UAA/GAN and the G-ribo
motifs. Several structural principles pertaining to
RNA motifs are derived from our analysis. A limited
set of basic submotifs can account for the formation
of most structural motifs uncovered in ribosomal
and stable RNAs. Structural motifs can act as struc-
tural scaffoldings and be functionally and topologi-
cally equivalent despite sequence and structural
differences. The sequence network resulting from
the structural relationships shared by these RNA
motifs can be used as a proto-language for assist-
ing prediction and rational design of RNA tertiary
structures.

INTRODUCTION

Natural RNA molecules can have a high structural com-
plexity, but even the most complicated RNA machines
rely on basic modular architectural principles (1,2).
The hierarchical nature of RNA is encoded within its

sequence. Due to their higher thermodynamic stability,
RNA helices defining RNA secondary structure usually
form rapidly prior to tertiary interactions (3). In presence
of metal ions, these secondary structure elements collapse
first into compact intermediate conformers that undergo
further rearrangements through a tertiary conformational
search that leads to the final tertiary native structure [e.g.
(4,5)]. This last step is essentially dependent on the local
folding of recurrent and specific sets of nucleotides that
specify for the ‘signature’ of modular and recurrent ter-
tiary structure motifs. So far, numerous RNA structural
motifs have been identified by comparative sequence and
structural analysis of natural RNA molecules studied by
NMR and/or X-ray crystallography (6,7). The simplest
examples include A-form helices, apical RNA tetraloops,
small internal loops and bulges (1,6,7). More complex
sequence signatures control the alignment of RNA
multi-helix junctions (8), pseudoknots (9) and the packing
of helices in larger structures (10-13). While these motifs
exemplify the high modularity and hierarchical structure
adopted by stable RNAs, they also suggest that a clear
relationship can presently be established between an RNA
sequence and its tertiary structure in order to solve the
folding problem of naked RNA in a reasonably near
future (3).

A-form RNA helices consist of classic Watson—Crick
base pairs that involve the Watson—Crick edge of each
base in a cis orientation. However, nucleotides have
three potential hydrogen bonding faces: the Watson—
Crick (WC), Hoogsteen (HG) and Shallow Groove (SG)
edges, as well as two possible orientations of the nucleo-
tides with respect of one another: cis and trans (14).
Overall these arrangements essentially allow for 12
major types of base-pairing interactions (14). In complex
RNA structures such as the ribosome, some of these non--
canonical base pairs occur much more frequently than
others (15). For example, the U:A (WC:HG) trans, the
G:A (HG:SG) trans and the A:G (SG:SQG) trans bps are
among the most abundant non canonical bps found in
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natural RNA structures (16,17) (Jaeger, unpublished
results). Canonical and non-canonical bps are often com-
bined with one another to create small recurrent tertiary
submotifs with characteristic conformations such as
the A-minor (10,18,19), GA sheared (20) or bulged-G
submotifs (21).

Herein, we present the result of an extensive sequence
and structure analysis of high-resolution NMR and crys-
tallographic 3D structures of RNA that led to the identi-
fication of a highly recurrent and versatile submotif that
we call the UA_handle motif. This submotif enters in the
composition of several other motifs of greater structural
complexity by combining with other small submotifs such
as the G/AR submotif (20) and the well-known A-minor
(18,19) and U-turn (1,22,23) submotifs. The ‘sequence net-
work’ that results from the sequence and structural rela-
tionships existing between most tertiary motifs identified
to date highlights the syntax of emerging folding and
assembly principles and rules that direct the stacking,
orientation and positioning of RNA helices with respect
to one another. As such, this network can be seen as an
emerging RNA 3D structure proto-language that can
facilitate the prediction of the tertiary structure of natural
RNA molecules and the rational design of novel RNA
architectures (7,24,25). We present the refined prediction
of the architecture for the aptamer core of two ribo-
switches as examples. Additionally, the structural motif
network has possible implications for the evolution of
natural RNAs.

MATERIAL AND METHODS

NMR and crystallographic atomic structures of RNA
molecules from the Protein Data Bank (PDB; http://
www.pdb.org) were visually examined using Swiss
PDBviewer (expasy.org/spdbv) to identify non-canonical
bps according to the Leontis and Westhof nomenclature
(14). These non-canonical bps were mapped with symbolic
characters on secondary structure diagrams [e.g. (20)].
This led to the fast visual identification of recurrent base
pairs patterns that correspond to various classes of ter-
tiary structure motifs of RNAs. To determine the under-
lying structural characteristic of the different categories of
UA_handle motifs presented in this study, their atomic
structures were extracted from the original PDB files,
visualized with PyMOL (pymol.sourceforge.net) and
superimposed using LSQMAN (xray.bmc.uu.se/usf/) to
calculate their Root-Mean-Square Deviation (RMSD).
Only conserved atomic positions in X(1), U(2), A(3) and
X(5) were used for RMSD calculation. Within the set of
atomic structures analyzed in this study (Table S2), no
additional UA_h motif was identified by automatic
search using the program FR3D (27). UA_handle motifs
were found to enter into the composition of a large subset
of recurrent structure motifs of greater structural com-
plexity, totaling almost 20% of the recurrent motifs iden-
tified in the ribosome. The conserved, semi-conserved and
variable nucleotide set specifying for the sequence signa-
ture of each of these motifs was determined by sequence

comparative analysis of subset of rRNA sequences for
which 2D structure diagrams were available (17,28,29).

RESULTS
Definition of the UA_handle submotif

The UA_handle submotif is more widespread than the
majority of previously identified RNA motifs (1,6,7).
As illustrated in Figure 1, the UA_handle submotif is
specified by a minimum of five nucleotides (labeled 1-5).
The sequence signature of the UA_handle encodes a struc-
turally conserved ‘core’ consisting of a (WC:HG) trans bp,
typically a U(2):A(3), stacked on a classic (WC:WC) cis
bp, labeled X(1):X(5) (Figure 1A). A bulge region bridges
these two base pairs at position N(4.n), in 3’ of position
A(3). It can involve a variable number () of nucleotides
from one to several hundreds and can adopt very different
conformations (Figure 1C). However, structural trends
can be identified (Figure 1D and E). For instance, the
phosphate backbone in 3’ of A(3) often changes direction,
leading to a local parallel orientation of the bulging strand
in relation to the opposite strand. In stable RNAs, this
motif is essentially involved in the formation of long-range
tertiary contacts with the rest of the molecule by acting as
a ‘handle’ for tertiary contacts. Because the most distinc-
tive structural feature leading to these versatile interacting
properties is the U:A (WC:HG) trans bp, the whole motif
is named UA_handle (UA_h). As exemplified below, the
objective criteria specifying for UA_h signatures can be
refined further by comparative sequence and structural
analysis (Figure 1).

Comparative sequence and structural analysis
of the UA_handle

The atomic structures and sequences of UA_handle motifs
identified in different locations within the high resolution
atomic structures (Table S1) were classified according to
the number of bulging nucleotides for deriving their cor-
responding sequence consensus (Figure 1). Among the
motifs studied, 35% have one nucleotide in bulge, 35%
have three or more bulging nucleotides and 30% present
two nucleotides in bulge. The (WC:HG) trans bp is most
commonly a U:A (92%), but other base pairs such as C:A
(4%), A:A (1%), G:A (1%), C:C (1%) and G:G (1%) can
be found at positions 2 and 4 as well. As noticed by
Krasilnikov and Mondragon for the T-loop motif (30),
this variability indicates that the UA_handle is flexible
enough to accommodate less conventional (WC:HG)
trans bps, which do not have to be perfectly isosteric to
the U:A (WC:HG) trans bp.

There is a strong correlation observed between the
number of bulging nucleotides in the UA_handle and the
sequence of the X(1):X(5) (WC:WC) cis bp (Figure 1B).
In UA_handles with one, three or more nucleotides in
bulge, the WC is most often a C:G bp (70%), with X(5)
being usually a purine (90%). It is only in a few particular
structural contexts that other bps are exceptionally
observed (Figure 1B). In contrast, UA_handles with two
bulging nucleotides mostly display a G:C bp (83%).
This correlation is rooted in the formation of sequence
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Figure 1. Type I and type II UA_handle signatures and conformers. (A) The UA_handle is typically formed of a U(2):A(3) (WC:HG) trans bp
(in blue) stacked on a classic WC bp, X(1):X(5) [purine in green, pyrimidine in yellow), with one or more bulging nucleotides located 3’ of A(3),
(N(4.n) in pink]. For bp annotations, see legend of Figure 2. (B) Sequence variation of X(1):X(5) in function of N(4.n). The table is based on the
sequence analysis of 99 atomic structures of UA_h with canonical U(2):A(3) (WC:HG) frans bp. The occurrence of each bp is indicated between
brackets. (+) These three G(1):G(5) bps are all from one of the UA_hs of the double T-loop motif. Despite a 2nt bulge, this non-canonical UA_h is
of type 1. (C) Superposition of canonical UA_handle motifs identified in X-ray structures and listed Table S1. The color code corresponds to the
one in (A). The conserved atomic positions in X(1):X(5) and U(2):A(3) were used for the superposition. (D) Sequence signature of type I UA_h: an
H-bond can be formed between N7-G(5) and 2’OH-A(3) when the sugar pucker of A(3) is in C2" endo. (E) Sequence signature of type II UA_h: an
H-bond can form between N4-C(5) and the Ol or O2 of P(O)4-N(4.2). As seen in the stereographic image, an additional H-bond can potentially
form between 2’OH-A(3) and O2P-N(4.2). For more examples of type I UA_h, see also Figure SI from Supplementary Data.

specific H-bond contacts that specifically involve
the nucleotide at position X(5). Two different structural
types of UA_handles can therefore be distinguished
(Figure 1D and E).

In UA_handles of type I (~70% of identified UA_h),
a hydrogen bond can form between atom N7 (and some-
times atom O6) of R(5) and the 2’0OH of A(3) (Figure 1D).
This interaction is particularly favorable in type I motifs
with C2’endo sugar pucker at A(3): the average distance
between 2’OH-A(3) and N7-R(5) is 3.22 A (Table SI).
However, in one third of type I UA_handles, the sugar
pucker of A(3) is in C3’ endo which prevents this H-bond
contact. A possible interpretation is that this H-bond
contact might only form transiently due to alternative
competing tertiary contacts that may involve the bulging
nucleotides. On the other hand, this specific contact might
have been overlooked as the resolution of RNA X-ray
structures are often not high enough to unambiguously
distinguish between C2’ and C3’ endo sugar puckers. In
summary, the structural conservation of the H-bond con-
tact 22OH-A(3):N7-R(5), while rationalizing the sequence
conservation of the C(1):G(5) bp, directs the ribose phos-
phate backbone of the bulge region to point outward.

The high conformational flexibility of the bulge region
allow orientation of the bulging bases in many different
directions proper for long range tertiary interactions, espe-
cially when the number of nucleotides in bulge is three or
more.

For UA_handles of type II (~30% of identified UA_h),
the cytosine at position X(5) can screen the negative charge
of the phosphate from the bulging nucleotide at position
N(4.2) (Figure 1E). An H-bond can possibly form between
atom N4 of C(5) and one of the phosphate oxygens (Ol or
02) of N(4.2): the average distance between N4-C(5) and
POI1-N(4.2) is close to 3.47 A (Table S1). The sugar pucker
of A(3) is usually in C2’ endo, which often allows the
formation of one additional H-bond between 2’OH-A(3)
and the phosphate of N(4.2). The conserved G(1):C(5) bp
favors the two bulging nucleotides to be in a typical A-form
conformation: The phosphate of N(4.2) is oriented inwards
toward the deep groove of the UA-handle and the bulging
bases N(4.1-4.2) are oriented outwards in a conformation
particularly suitable for long-range Watson-Crick base
pairings (Figure 1E). UA_handles of type II are therefore
often found to be involved in the formation of pseudoknots
(Figure 2, bottom).
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Figure 2. Hierarchical organizational network of RNA structure motifs built from the UA_h submotif. Motifs are organized from the left to the
right according to their increase in structural complexity. Submotifs are minimally sized recurrent set of nucleotides with conserved conformation
(circled in bold lines). They are not expected to be stable by themselves as they are almost always associated to other submotifs or nts to create full-
fledge stable motifs (circled in blue or gray for secondary and tertiary motifs, respectively.) The most significant structural characteristics of UA_h
motifs are indicated on their respective sequence signatures according to the annotation of Leontis and Westhof (74). Visual of the 3D structures of
some of these motifs can be found in the figures indicated in blue below the motif name. For bps symbols, see the legend in inset: WC, Watson—Crick
edge (circle); HG, Hoogsteen edge (square); SG, shallow groove edge (triangle). For example, the WC:HG frans bp is symbolized by an open circle
associated to an open square. The WC:HG cis bp is represented by a plain circle combined to a plain square. Capital letters indicate that the
nucleotide is conserved in more than 95% of the cases: small letters indicate that the nucleotide position is conserved in more than 85% of the cases.
X, any nucleotide (A, U, C or G) paired to another one through classic WC cis bp; N, any nucleotide (A, U, C or G); R or r, purine; Y or vy,
pyrimidine; N, a sequence of n nucleotides; U or G-clamp, WC edge of a U or G in interaction with a phosphate; syn or S, indicates that a single or
paired nucleotide is in syn; HL and Hs stand for the long and short stems of a pseudo-knot, respectively. 5" and the arrow symbol indicate 5" and 3’
ends, respectively. See also Figure S3 (Supplementary Data).



When phylogenetically conserved, type I and type 11
sequence signatures are the objective criteria for identi-
fying without ambiguity UA_handle conformers within
related RNA sequences (Discussion). However, other
criteria could be useful to assess the presence of UA_h
conformers within an RNA structure in absence of phylo-
genetic information. In order to identify some of them,
the secondary structures of known crystallized 23S ribo-
somal RNAs were searched for type I and type II sequence
signatures, irrespective of their phylogenetic conservation
(Figure S2). Only 35% of these signatures are truly folded
as typical UA_handle conformers. This suggests that addi-
tional sequence and structural constraints at the level of
the UA_handle signatures themselves or within their sur-
rounding nucleotides prevent or favor the folding of these
signatures into UA_handle motifs. For instance, properly
folded UA_handles cannot have a regular helix immedi-
ately connecting the 3’ end of U(2) to the 5 end of A(3).
Furthermore, most properly folded UA_handles disfavor
a guanine immediately 5 of X(5) (Figure S2). The pre-
sence of a guanine at this position has apparently been
counter-selected during evolution as it contributes to the
formation of an alternative U:G wobble bp, another pre-
valent structural feature often found at the extremities
of RNA helices (12). While both bulging adenine and
guanine could potentially pair with U(2) and compete
with the formation of the U(2):A(3) (WC:HQG) trans bp,
the estimated free energy of formation of a U(2):A WC bp
at the end of a helix is not as favorable as the one of
a U(2):G wobble bp (31). Additionally, bulging adenines
are often stabilized by tertiary interactions (18). This can
therefore explain why adenines have been evolutionarily
preferred versus guanines for the bulge position immedi-
ately 5 of X(5) in properly folded UA_handle signatures
(Figure S2).

Like the U-turn motif, the UA_handle motif is unlikely
to be very stable by itself (32). Additional surrounding
sequence elements are usually present for condition-
ing the proper folding of the UA_handle signature into a
UA_handle conformer (Figure 2). As such, the UA_handle
can be seen as a minimally sized submotif that acts as a
building block for the buildup of larger RNA motifs.
Understanding how the UA_h combines with additional
sets of nucleotides to generate more complex motif sig-
natures is therefore essential for the assessment of any
putative UA_h motif identified within an RNA sequence
(see below).

The UA_handle as a modular building block for motifs
of greater structural complexity

The UA_handle, along with the U-turn, the A-minor
and the G/AR submotifs, are the most abundant sub-
motifs identified to date. Among the UA_handles that
we have identified so far in NMR and X-ray structures,
52 are submotifs found at distinct locations within ribo-
somal RNAs, ribozymes, aptamers and riboswitches
(Table S2). Among these, ~90% correspond to
UA_handles that enter into the composition of motifs of
larger structural complexity (Table S2), some of which
have been described in the literature to date. For instance,
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the UA_handle is present in the ‘11nt receptor’ motif
(19,33), the ‘UAA/GAN’ motif (34), the ‘T-loop’ motif
(30,32,35) and ‘G-ribose’ related motifs (9,36). Addition-
ally, it is also part of multi-helix junctions and pseudo-
knotted domains from the ribosome (8,9) and various
ligands and substrates binding sites of natural and selected
aptamers (37-39) and ribozymes (40).

As shown in Figure 2, the UA_handle combines with
other minimally sized recurrent submotifs such as the
dinucleotide platform submotif (19,41,42), the G/AR
and G/AN submotifs (20) and the U-turn (1,22,23) to
form terminal, internal loops or junctions motifs. These
motifs can then interact further through A-minor submo-
tifs (18,19), G-ribose motifs (9,36), WC bps and/or nucleo-
tide intercalating interactions (Figure S3) to form even
more complex motifs that specify for local helical turn
regions, multi-helix stacking arrangements, pseudo-knots
and other long-range tertiary interactions. Therefore, the
knowledge of the sequence space associated to each struc-
tural motif can aid in deciphering whether a sequence is
likely to adopt a particular conformation at a 3D level.

To distinguish whether or not a UA_handle signature is
likely to fold as a UA_handle conformer the sequence
signatures of larger structural motifs incorporating the
UA_handle should be taken into account, as these define
the syntax in which the UA_handle signature can be used
within higher order motifs. Remarkably, a minimal
change of syntax at the level of a motif sequence can
have a dramatic effect on its outcome at a tertiary struc-
ture level (Figure 2). For example, a single nucleotide
insertion at the sequence level of an internal loop motif
can determine whether this sequence folds as a UAA/
GAN motif or 11 nt motif (e.g. ccUAAg/uGAagg versus
CCUAaG/U_AaGG, highly conserved nt positions are in
capitals). In addition, conserved G:C bps in the surround-
ing of a UA_handle signature can indicate the presence of
G-ribose or typel/Il A-minor submotifs (9,18,19,36) that
could allow identification of ‘UA_handle turns’ (UA_h
turn) or GAAA/11 nt receptor interactions, respectively
(Figures 2). The UA_h turn motif, in particular, can con-
strain its immediate surrounding helical elements in such a
way that additional long-range base pairings can form,
leading to the formation of recurrent pseudo-knotted
topological domains of 50-65nt (Figure 2). In the case
of the ‘alpha-PK domain’, the length of the helical stems
H2, H3 and H4 are conserved and the nucleotides at the
junction of H1 and H2 corresponds to the sequence sig-
nature of a conserved ‘A-minor triple helix’ motif that
forces H1 to stack in continuity of H2. In the case of
the ‘doughnut-PK domain’, the topological domain is
constrained by the sequence signature of two UA_h
turns that favor the formation of a kinked long-range
base pairing (Figure 2). Therefore, a careful examination
of the set of nucleotides adjacent to UA_handle signatures
within the 2D structure of an RNA can lead to the pre-
diction of particular structure motifs with minimal
ambiguity.

While the T-loop motif was recently re-defined as a
pentaloop (30), it is now apparent that most T-loops
identified so far in crystallographic structures should be
seen as the full-fledged combination of a UA_handle
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and the U-turn of UNR or GNR sequences (32,35)
(Figure 2). The sequence signature of the UA_handle is
not absolutely required to be contiguous. For example, the
‘nested double T-loop” motif that is formed of two inter-
acting classic T-loops, has its 5 and 3’ ends localized
between positions X(1) and U(2) (Figures 2, 3E and S4).
In this specific case, the UA_handle submotif results from
long-range interactions. Typically, apical T-loop motifs
are characterized by one, two or three bulging nucleotides
and follow the type I and type II UA_handle rules
(Table S2). T-loops are always found involved in either
long-range interactions or as the recognition site of small
ligands (Figure 3). In fact, SHAPE chemical probing of
the tRNA (43) as well as NMR data of the AMP/ATP
aptamer in absence of AMP (37) indicate that T-loop
motifs are not particularly stable in absence of RNA or
ligand partners. These observations are consistent with
molecular dynamic characterizations of the T-loop motif
in isolation, with the UA_handle portion being signifi-
cantly more stable than the U-turn (32). The T-loop
motif can sometimes be part of more elaborate structure
motifs when one or two helical elements are present in the
bulge. For instance, the prevalent ‘A-minor junction’
motif (Geary and Jaeger, unpublished data) which is
based on the A-minor triple motif and often involve lone-
pair triloop motifs (44), can sometimes take advantage of
the GNR submotif from a T-loop to form the A-minor
interaction, resulting to the ‘UA_h A-minor junction’
motif (Figure 2). One of the TPP-binding sites of the
TPP riboswitch is structurally equivalent to the UA_h
A-minor junction. In this natural aptamer, the classic
type-I A-minor interaction is substituted by an almost
isosteric G:G (SG:SG) trans bp (Figures 2 and 3)
(38,39). Another example of a T-loop-like motif is the
AMP/ATP aptamer mentioned above (Figures 2 and 31),
which presents a helix in its bulge region (37). In this
in vitro selected aptamer, the U:A (WC:HG) trans bp
is substituted by a structurally similar G:G (WC:HG)
trans bp.

UA_handle motifs of type II, with two nucleotide
bulges, are frequently involved in the formation of a pseu-
doknot motif that we called the ‘UA_h PK’ (Figures 2
and SE). This motif is not only observed multiple times
in the ribosome, but also appears in the artificially evolved
Diels-Alderase ribozyme (40) (see Table S2 and Figures 2
and 3G). The length of its various helical components are
constrained such that its helix H;, which holds the type II
UA_h motif, is three to four bp long with either one or no
unpaired nucleotide connecting H; to a helix stacked in
continuity of Hg, respectively. In three instances in the 23S
ribosomal RNA, this pseudoknot is found directing the
formation of a larger domain, called the ‘T-loop PK
domain’ (Figure 2, Table S2). This domain is a combina-
tion of UA_h PK, T-loop and A-minor triple motifs. The
T-loop is localized at the end of a 5 bp stem that is stacked
and positioned in continuity of Hs through formation of
an A-minor triple motif with Hs. The T-loop is typically in
interaction with the nucleotides localized 5 of position
A(3) from the UA_handle PK. In the 23S rRNA, two of
the T-loop PK domains form an intercalating nucleotide
interaction (Figure S3) while the third one presents an

A-minor interaction, structurally different from the
previous ones but functionally equivalent in term of stabi-
lizing potency (see also Discussion section).

The UA_handle as a versatile module for long-range
tertiary interactions

Alongside A-minor and GU packing motifs (12,13), the
UA_handle can be considered one of the most prevalent
motifs promoting formation of long-range tertiary inter-
actions in stable RNAs. UA_handles are mostly found
involved in the formation of a great variety of tertiary
interactions that can involve the X(1):X(5) WC bp, the
U(2):A(3) (WC/HG) trans bp or/and the nucleotides in
bulge N(4.n) (Figure 3A and Table S2). The structural
nature of UA_handle tertiary interactions can be depen-
dent on the local context of adjacent nucleotides that
define motifs of greater structural complexity (Figure 2).
On the other hand, UA_handles can also be involved in
the formation of less predictable, long-range contacts with
nucleotides that are part of distant structural contexts.
Despite the remarkable versatility of these tertiary inter-
actions, several interesting structural rules can character-
ize particular type of UA_handle-based motifs.

Interactions involving the X(1):X(5) bp and|or the
U(2):A(3) WC;HG trans bp. The UA_handle can be
directly involved in the formation of A-minor interactions.
For instance, the UA_handle of the 11nt receptor motif is
involved in the formation of a conserved pattern of nine
H-bonds with its cognate GAAA tetraloop (Figures 2 and
4A). U(2) and C(1):G(5) bp are involved in the formation
of a type-I/IIT A-minor interaction, also called ‘A-minor
tilted” interaction, with the second (s.2) and third (s.3)
adenines of the GAAA loop (19). The first adenine (s.1)
forms a WC trans bp with A(3) (Figures 3B and 4B)
(19,45).

The UAA/GAN motif (34) is a GNRA-like internal
loop. Its UA_handle might contribute to the structural
stabilization of a G/AA submotif that is involved in A-
minor tilted interactions with RNA helices to form the
‘UAA/GAN’ A-minor interaction (Figure 2). This versa-
tile motif can form additional interactions. Its constituent
nucleotides, bulging nucleotides included, can be involved
in tertiary contacts with surrounding elements in multiple
directions spanning more than 280° (Figures 3C, 4B
and 5F). Remarkably, the UA-handle components from
UAA/GAN and ‘UA_h_3WJ’ motifs can act as receptors
for the recognition of three to four consecutive adenines in
a way that is very similar to the GAAA/11 nt interaction
(Figures 2, 3C and 4B). The resulting type-II/IIST pattern,
also called the ‘UA_h A-minor twist’ interaction, is essen-
tially a super-tilted version of the 11nt/GAAA pattern
(Figure 4B). Out of eight conserved H-bonds, four of
them are in common with the 11nt/GAAA pattern
(Figure 4A). Through the pivotal interaction between
A(s.2) and U(2), the consecutive adenines are oriented
almost perpendicular to the UA_handle bp plateaus,
allowing A(s.2) and A(s.1) to interact each with the
U(2):A(3) and C(1):G(5) bps. For instance, the WC edge
of A(s.1) can make a highly tilted A:A WC trans bp with
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Figure 3. The UA_handle motif is involved in various modes of tertiary interactions. (A) 2D diagram summarizing the interactions that the different
nt positions of the UA_handle can form. For the legend, see Figures 2 and S3. Interactions are colored according to the nucleotide position involved
in the UA_h. (B-K) Examples of various interactions involving the U(2):A(3) bp. Bps and tertiary interactions are indicated according to the color
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Figure 4 and text); (C) UAA:GAN motif (23S; Ec U1578), A(s.1) and A(s.2) are in violet; (D) UA_handle turn (23S; Tt U1621), A(s.1) is in
violet; (E) Nested double T-loop (23S; Hm U481); (F‘z UAh_PK motif (23S; Hm U2069); (G) UA_h_PK motif bound to DielsAlder reaction product
(Diels-Alderase ribozyme); (H) T-loop motif (tRNAF™), notice the U-clamp instead of G-clamp (Figure S3); (I) T-loop like motif bound to AMP
(AMP/ATP aptamer); (J) T-loop motif (23S; Hm U1388); (K) T-loop motif bound to TPP (TPP riboswitch). Motifs boxed in blue share a WC:WC
trans bp involving A(3). Motifs boxed in orange share a G-clamp or U-clamp. On the right side of the red dotted line are motifs from
riboswitches and ribozyme recognizing ligands. Notice the similar modality of nt (or ligand) recognition between the tRNAF™ T-loop and ATP
aptamer T-loop-like and between the TPP riboswitch T-loop and the 23S RNA T-loop.
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Figure 4. Examples of tertiary interactions involving the X(1):X(5) WC bp. (A) the A-minor tilted interaction (type-I/IIT A-minor) from the GAAA/
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contacts, respectively (Hm 23S; U_1457). Typical H-bonds pattern for type-I/IIT is indicated. (B) UA_h A-minor twist interaction (type-1I/IIST
A-minor): this pattern of H-bonds presents the interacting nucleotides in a super-tilted configuration. Notice the cis ribose zipper that involves the
second and third adenines, in type-II and type-IIST A-minor contacts, respectively (Bs RNase P; U147). The second adenine in type-I1IST allows
formation of H-bond, N3(A2): N2(GS), instead type-IIT H-bond, N6(A2):2’OH(G5). Typical H-bond pattern for type-II/IIST is indicated. (C-D)
G-ribose (G-ribo) interactions (36): example of ‘closed”” and ‘open’ G-ribose interacting motif from UA_h turns. (C) In the ‘closed” conformation
(Hm 23S: U2330), the ‘G ribose’ G:C bp makes three H-bond contacts with the UA_h motif: note the 2’0OH-N3(A3) H-bond. (C) In the ‘open’

conformation (Ec 23S: U1019), only two contacts are formed with X(5).

the WC edge of (A3) through one H-bond while also
interacting with the SG edge of G(5) (Figures 4B
and S3). The UA_h A-minor twist motif is a variant of
the A-minor twist motif that occur between stacked ade-
nines and regular helices in the SAM-II riboswitch and
glmS ribozyme (46).

Another prevalent pattern of H-bonds is found in the
UA_h turn motif (9,36) (Figures 2, 3D, 4C and 4D). Like
the ‘kink turn’ (K-turn; Figure 6) (47), this motif allows
formation of sharp bends between two adjacent helical
elements on their shallow groove side (Figure 4C
and D). One helix is capped by a UA handle while the
other is capped by a semi-conserved adenine (A.sl) loca-
lized 5’ of a conserved G(s.2):C WC bp (Figure 4C and D).
Like for the 11nt/GAAA interaction, A(3) is involved in a
WC trans bp with position A(s.1) (Figures 3D and 4C).

While this base pair seem to be a conserved feature of the
UA_h turn, position A(s.1) can seldom be another nucleo-
tide (Figure 4D). The U(2):A(3):A(s.1) triple bp might
however adopt an alternative isosteric bp pattern in few
motif instances (Figure S5). In all UA_h turns, X(5) is
involved in a G-ribose packing interaction with G(s.2)
(Figure 4C and D). A conserved bulging adenine, usually
immediately in 5 of X(5), also contributes to the motif
stabilization by formation of a type-I A-minor interaction
with the bp just below the G(s.2):C bp (Figures 2 and 5B).

In addition to the 11nt, UAA/GAN, UA_h_3WJ and
UA_h turn motifs, the A:A WC trans bp mediated by A(3)
is also found in the nested double T-loop motif from the
23S rRNA (Figures 3E and S4). This motif results from
the docking of two T-loops through formation of a net-
work of at least 27 H-bond interactions. This intricate



array of H-bonds is almost perfectly symmetrical and
forms a series of stacked tetraplex bps characterized
by a pseudo-symmetry of order 2 (Figure S4A). The
two UA_handles interact with one another to form two
stacked A:A WC trans bps, involving the two positions
A(3) and A(4), respectively. The two GNR components
interact with one another to form a bifurcated A:A
(HG:HG) trans bp. Additionally, the interface between
the U-turn and UA_handle motifs leads to the formation
of two A:G (HG:SQG) trans bps (Figure S4).

Another prevalent long-range tertiary interaction
found in UA_handles is the ‘intercalating nt’ interaction
(Figure S3), in which a good example is found in the
double nested T-loop (Figure 3E). This type of interaction
is always mediated by UA_handle motifs that combine
the UA_handle and a ‘G-clamp’ module (more rarely a
‘U-clamp’) (Figure 3E-K). G/U-clamps are particular fea-
tures of U-turn motifs but are also found in other
structural contexts. G-clamps promote an H-bond contact
between the WC edge of a G (or U) from one strand and
a phosphate group from an opposite strand (Figure S3).
Consequently, the two opposite anti-parallel strands are
closer from one another than the strands in regular
WC bps. Motifs containing G-clamps include T-loops,
the T-loop-like AMP aptamer, some UA_hPK motifs,
the UA_h A-minor junction from the TPP riboswitch
and the UAA/gAN motif (Figures 3E-K and 5G).
Typically, all of them mediate the recognition of one
long-range nucleotide position (or ligand). This nt is
stacked over A(3) that acts as a platform and makes spe-
cific H-bond contacts with the G from the G-clamp in 3’ of
U(2). The resulting long-range base pair can greatly vary
depending the structural context [e.g. (35)]. Therefore,
the ‘intercalating nt’ interaction was named after its
most common feature, namely its ability to bind distant
nucleotides by intercalation (Figure S3).

One of the remarkable features of motifs mediating
intercalating nt interactions is that they can be part
of the recognition or active site of aptamers, ribozymes
or riboswitches. As exemplified by the diels-alderase ribo-
zyme, the AMP aptamer and TPP riboswitch (Figure 3G,
I and K), these functional RNA molecules bind their
respective substrates or ligands according to structural
modalities that are similar to the one observed in
UA_handle motifs that promote the folding and stabiliza-
tion of stable RNAs (Figure 3F, H and J). For instance,
it is noteworthy that both tRNA T-loop and AMP apta-
mer recognize their respective nt target by making a
(WC:HG) trans bp allowing the last nt position of the
U-turn component to specifically recognize the 2'OH
of the nt target. The T-loops from the 23S rRNA (posi-
tion 1388) and from the TPP riboswitch both recognize
their nt or ligand target by forming a (WC:HG) cis bp.
These examples demonstrate that, albeit similar, the spe-
cific modalities of nt intercalation by UA_handle motif are
highly contextual and difficult to predict de novo.

Interactions involving the bulging nucleotides N(4.n). Of
the positions in the UA_handle involved in long-range
tertiary interactions, the bulging nt positions are the
most versatile. Despite limitations on the length of the
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bulge due to type I and type II UA_h structural con-
straints, the conformation of the nucleotides in bulge is
extremely variable (Figure 5A). The bulge can interact
with its surrounding nucleotides in many different ways
that are essentially dependent on the larger structural con-
text of the RNA (see examples Figure 5B and SF—H). The
bulge can also be a point of insertion for additional RNA
helical elements leading to the structure of various helical
junctions such as the UA_h A-minor junction (Figure 5C),
the UA_h 3WJ (Figure 5D) or the AMP aptamer
(Figure 3I). Considering the remarkable sequence varia-
bility at the level of the bulge, the de novo prediction of its
tertiary structure and mode of interaction from its second-
ary structure is particularly challenging. This is clearly the
case for the UAA/GAN motif (Figure 5F) and for most
other UA_handle motifs with 1, 3 or more bulging nts.

Several conserved structural trends can nevertheless be
identified at the level of the bulge of some UA_handle
motifs. For instance, the UA_handle turn has a conserved
bulging adenine usually positioned 5 of X(5) bulge that
stabilizes the kink turn by type-I A-minor interaction
(Figure 5B). Any other additional bulging nucleotides at
the level of the turn essentially contribute to long-range
contacts with the surrounding architecture context
through specific base-pairings or intercalating interactions
(Figure 5B). Their conformations are therefore difficult
to anticipate. Note that the phylogenetically conserved
UA_h turn motif from the domain three of 23S rRNA
of Archaeca relies more extensively on long range interac-
tions than the one from bacteria (Figure 5B, middle and
bottom).

UA_h A-minor junctions are typically characterized by
the insertion of two stacked helical elements at the level
of the UA_handle bulge. The base of the helix immedi-
ately 5’ of X(5) has at least one conserved G:C base pair
that is involved in a classic A-minor interaction with the
GNR component of the T-loop (Figure 5C). This tertiary
contact therefore dramatically constrains the positioning
of the bulging helical elements with respect of the
UA_handle. Note that while the helix in 5 of X(5) is
conserved, the one in 3’ of A(3) can be substituted by
few unpaired nucleotide like in the TPP riboswitch
(Figure 5C). Some UA_h 3WIJ motifs have a bulging
nucleotide with its base in syn, immediately 3’ of A(3),
that is involved in a WC c¢is bp with the conserved
(HG:SG) trans bp component (Figure 5D). This feature
is however not observed among all UA_h-3WJ motifs.
Another trend not trivial to predict, is that some motifs
with UA_h/G-clamp components, like the UAA/gAN and
nested double T-loop motifs, make the intercalating nt
interaction with one of their bulging nucleotides rather
than a distant nucleotide position (Figure SGH).

In contrast to most previous motifs, type II
UA_handles with two bulging nucleotides, usually adopt
a classic A-form helical conformation with the bulging
strand running locally parallel to the opposite strand.
This conformation is particularly suitable for forming
classic WC bps (Figure 5E) although this is not always
the case (see for example Figure 5I). When paired in a
classic WC fashion, this conformation leads to the forma-
tion of the UA_h-PK, a pseudoknotted configuration that
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Figure 5. Examples of typical UA_handle interactions involving the bulging nucleotides N(4.n). (A) Schematic highlighting the various bulge
mediated tertiary interactions in UA_handle motifs. (B) UA_h_turn motifs: (top) Hm 23S rRNA UI116 (PDB_ID:1]J2), (middle) Tt 23S rRNA
Ul1621 (PDB_ID:2J01), (bottom) Hm 23S rRNA U1696 (PDB_ID:1JJ2). (C) UA_h A-minor junction motifs: (top) Tt 23S rRNA U2562
(PDB_ID:2J01), (bottom) from TPP riboswitch (PDB_ID:2GDI). (D) UA_h 3WIJ motifs: (top) Ec 16S rRNA U652 (PDB_ID:2AW7), (bottom)
Ec 23S rRNA U1991 (PDB_ID:2AWB). (E) UA_h_PK motifs: (top) Hm 23S rRNA UI1676 (PDB_ID:1JJ2), (bottom) from Diels-alderase
(PDB_ID:1YKYV). (F) UAA/GAN motif: Hm 23S rRNA U457 (PDB_ID:1JJ2). (G) UGA/gAN motif; Tt 23S rRNA U1621 (PDB_ID:2J01).
(H) Nested double T-loop: Tt 23S rRNA U475 (PDB_ID:2J01). (I) T-loop motif: Hm 23S rRNA U1388 (PDB_ID:1JJ2). For each examples
displayed, the type of interactions involved is indicated in the upper left corner. Conserved and semi-conserved interactions are circled with
continuous or dashed lines, respectively. For annotations, see Figures 2 and S3.



enters into the composition of larger topological folds (see
above and Figures 2 and 5E). Interestingly the pseudo-
knotted base pairs (Hs) contribute to substrate recognition
by creating a stacking platform for one of the diels-alder-
ase substrates (Figure SE, bottom). In the ribosome, the
UA_h-PK usually contributes to the stacking and posi-
tioning of an adjacent T-loop hairpin to form the T-loop
PK domain (Figures 2 and 7). The two UA_h bulging
nucleotides typically make a double-base paired pseudo-
knot helix [called Hs (Figure 2)] with two complementary
nucleotides localized 3’ of this hairpin. A conserved ade-
nine immediately 5 of the T-loop hairpin can then form a
stabilizing A-minor triple interaction with a conserved
G:C bp of helix Hs (Figures 2 and 5E, top).

DISCUSSION
RNA tertiary structure as a proto-language

The fact that a limited number of RNA submotifs such as
the UA_h, G/RA (20), A-minor (18,19) and U-turn
(1,22,23) combine in multiple arrangements to create
larger motifs exemplifies the remarkable modularity and
hierarchy of natural RNA architectures (6,24,48). The
‘structural motif signature’ network (Figure 2) that results
from the sequence and structural relationships existing
between UA_h-based motifs identified to date defines
the syntax of emerging folding and assembly principles
that direct the stacking, orientation and positioning of
RNA helices with respect of one another. As such, it
is tempting to draw an analogy to the syntax of human
languages that takes advantage of syllables (submotifs)
that can be combined in various orders, the order of
which specifies different words (motifs) that can them-
selves be joined in numerous ways to produce small sen-
tences or parts of sentences (higher order motifs or RNA
domains).

Principles of structural and functional/topological
equivalence

The high modularity of RNA results from the fact that
its basic building blocks are often interchangeable and
therefore equivalent. According to the level of molecular
complexity considered, it is possible to distinguish between
isosteric equivalence, structural equivalence and func-
tional/topological equivalence. When structural elements
can be of different nucleotide compositions but perfectly
super-imposable, they are called isosteric (14,49). This is
the case of the C:G and A:U WC cis bps from A-form
RNA helices. However, perfect isostericity is not abso-
lutely required for structural equivalence. For example,
all T-loop motifs can be considered structurally equivalent
albeit they might have different bulge conformations or
different WC:HG trans bps. Therefore, the sequence sig-
nature of a particular structural conformer defines a class
of structural equivalence. The principle of functional/
topological equivalence is the most interesting one
(Figure 6) (50). Once RNA molecules grow in size, the
local structural constraints relax for stabilizing RNA
domains of great size and higher complexity. This allows
for increased versatility at the level of smaller constituent
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Figure 6. Principle of functional/topological equivalence. The kink turn
[Right: in H5-7 domain (PDB_ID: 1JJ2)] and UA_h turn [Left: in H82—
87 domain (PDB_ID:2J01)] can both be components of the doughnut-
PK domain identified in the 23S rRNA. Albeit of different sequence
signatures and local structures, they are topologically equivalent as they
both contribute to the folding of the same topological domain. The
doughnut-PK domain can act as scaffolding for structural expansion
by accommodating sequence insertions in the UA_h turn (left). For
annotations see Figures 2 and S3.

motifs. For example, the kink turn and UA_h turn are two
distinct structural motifs characterized by different
sequence signatures that can form similar sharp turns
between adjacent helices and contribute similarly to the
fold of the doughnut-PK domain (Figure 6). Therefore,
constituent structural motifs characterized by distinct
sequence signatures coding for very different local struc-
tures can be considered functionally/topologically equiva-
lent as long as they contribute to the very same functional
or topological task within a larger structural context. A-
minor interacting motifs are another class of functional/
topological equivalence. For instance, GNRA tetraloops,
lone-pair motifs, sarcin loops and T-loops are all structu-
rally distinct motifs that promote functional assembly
through A-minor interactions (Figure 2). Similarly,
the T-loop-PK domain can be stabilized by structurally
different but functionally equivalent tertiary interactions
(A-minor or intercalating nt) that involve T-loop
motifs (Figures 2 and 7). More striking examples of
functional equivalence are observed in group I introns
(51,52) or RNase P RNAs (53), where PK interactions
can sometimes substitute for functionally equivalent
A-minor interacting motifs to stabilize the same
catalytic core.
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Figure 7. The T-loop PK domain as a prevalent structural scaffold in natural RNA molecules. (A) Summary of the sequence insertions within the 3D
structure of the T-loop PK domain. The constituent sub-motifs are in blue (UA_h), yellow (U-turn) and magenta (A-minor triple). The T-loop PK
domain shown is from the 23S rRNA (Hm:301-350; Ec:296-342). (B) Detailed secondary structure diagram of the consensual structural core of the
bacterial and Archaea 23S rRNAs deduced from crystallographic structures. Note that the T-loop PK domain (boxed in blue) brings together the
various structural domains (I, II, III, IV, V, VI and VII) of the ribosome. (C) Prediction of the architecture of the core of the natural AdoCbl
aptamer (62). (D) Prediction of the structural core of the FMN aptamer (62). Positioning of elements P1-P2, P4 and P6 are not well defined
compared to P3—P5. The T-loop in P2 should form an intercalating nt interaction with a distant nt that is most likely one of the conserved purines in
L6. The GA shared motif in P6 as well as the base pairs in P2 might be involved in one of the riboswitch structural states. (B,C,D) The tertiary
interaction (T.i) of the T-loop PK domain (boxed in blue) corresponds to a class of topological equivalence. The conserved T-loop can either
recognize another terminal loop (B, D), an UGA/gAN motif (C) or a helix (Figure 2), leading to structurally different but functionally equivalent
interactions. Red stars indicate new tertiary interaction predictions [in comparison to (62)]. Thin lines are for zero nt length connectors. Thick lines
are for variable length sequence insertions. For annotations, see Figures 2 and S3.

Principle of structural scaffolding

Another important principle resulting from RNA modu-
larity is the principle of motifs as structural scaffoldings.
Several UA_h motifs are particularly suited for allowing
increase of structural complexity by insertion of RNA
appendices within their sequence with minimal structural
disruption (Figure 7A). The points of insertion of nt and
RNA helices are however not random, but constrained
by the necessity of retaining the key structural tertiary
interactions that characterize the motif. For example,

the UA_h submotif offers great scaffolding for inserting
sequences at the level of its bulge, leading to motif of
greater complexity such as the UA_h 3WJ and UA_h
A-minor junctions (Figure 2). The UA_h turn allows inser-
tions of additional helical elements at the level of the kink
leading to 3W1J or 4WJ (Figure 2 and 6). Perhaps one of the
most striking motif scaffoldings is the T-loop-PK domain
that is found at the central core of the 23S rRNA and to
which all the constituent domains of the 23S rRNA are
connected (Figure 7AB). At least six points of sequence
insertions have been identified to allow significant



structural expansion of this domain that is also part of the
core of several riboswitches (Figure 7CD).

Evolutionary implications

The ‘structural motif network’ also suggests that some
RNA structural motifs might have particular evolutionary
advantage versus others in the architectural make up of
complex functional RNAs. The high occurrence of most
UA_h motifs at the end of regular helices is most likely
resulting from convergent evolution. As a matter of fact,
the motif has been found not only at multiple locations
within natural RNA but also in artificial RNA aptamers
and ribozymes obtain by SELEX (37,40). Small local
RNA motifs might be more prevalent than others within
stable RNAs because of their optimal stereo-chemical or
biophysical properties (16,17). However, by contrast to
other motifs such as terminal UNCG or GNRA tetra-
loops, the UA_h submotif is not thermostable by itself.
UA_h based motifs have most likely been seclected by
nature for their ability to generate long-range tertiary
interactions (Results). For instance, they are particularly
prone for folding by induced-fit [see e.g. (54,55)] in pre-
sence of interacting partner or ligand. For example, the
1 1nt receptor (56), the T-loop (32), the UA_h 3WJ (57,58),
the ATP-aptamer (37) and the UA_h minor junction of
the TPP riboswitch (59,60) have all been observed to be
rather flexible and meta-stable in absence of interacting
partner while they can form stable tertiary interactions
in their presence. This phenomenon is particularly striking
for the GAAA/1Int interaction that is one of the most
stable natural long-range tertiary interactions of RNA
(19). Additionally, UA_h based motifs might also have
been evolutionarily selected for their ability to minimize
alternative kinetic or thermodynamic traps during RNA
folding [see discussion in (19)]. The prevalence of larger
domains within ribosomal RNAs and riboswitches, such
as the T-loop-PK, alpha-PK and doughnut-PK domains
that involve between 45 to 65 nts, is more intriguing.
Rather than resulting from convergent evolution, they
might be the contingent byproducts of historical events
that lead to the increase of structural complexity of nat-
ural functional molecules through local duplication of
sequence and recombination mechanisms (Zhuang,
Geary and Jaeger, in preparation).

RNA structure proto-language and tertiary structure
prediction

The ‘UA_h motif network’ is only a portion of a larger
RNA proto-language network that should facilitate the
development of bioinformatic tools for the prediction of
the tertiary structure of natural RNA molecules (7,24,25).
Principles of  structural equivalence and functional
equivalence and structural scaffolding are fundamental
for understanding RNA structure evolution and therefore,
of prime importance for RNA structure prediction by
comparative sequence analysis [e.g. (61)]. For instance,
the knowledge of the sequence space of structural motifs
can readily be used as algorithmic rules for identifying
them within RNA 2D structures. Their specific conforma-
tions can constrain significantly the overall positioning of
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helical elements with respect of one another so that the
prediction of the overall 3D architectures of some RNA
molecules could become possible.

Based on the set of syntax rules that we unraveled,
we have been able to predict the overall 3D architecture
of the core AdoCbl (Coenzyme B12) riboswitch aptamer
as well as part of the FMN riboswitch aptamer (62)
(Figure 7C and D). The AdoCbl aptamer, one of the
most abundant riboswitches found in nature (63), is essen-
tially built from the association of a T-loop-PK domain
with an A-minor motif domain (Figure 7C). These two
domains constrain the positioning of the AdoCbl core
helices through formation of key tertiary interactions
that involve highly conserved nt positions and bps for
which no previous explanations were available. Based on
the principle of functional/topological equivalence defined
above, it is possible to predict that the T-loop in P4 and
the UGA/gAN motif in P7 are likely to interact through
an intercalating nt interaction, albeit a precise atomic
model can not yet be proposed as the nucleotide target
within the UGA/gAN motif cannot be identified without
ambiguity. Based on the overall organization of the pro-
posed AdoCbl aptamer and ‘in-line’ probing experiments
performed in presence and absence of coenzyme BI12
(64,65), ligand binding likely contribute by induce fit to
the rigidifying of the P3-P4 junction at the interface of the
T-loop-PK and A minor domains (Figure 7C). The two
core domains are however likely to be stable by themselves
as their structures are unchanged upon ligand binding
(64,65). The 3’ end of Pl can then be positioned at a
proper distance from L5 to induce formation of the reg-
ulatory long-range PK interaction. The conserved GC
base pairs in P3 and P5 might play a role in this rigidifying
process by possibly interacting with a G/RA submotif at
the extremity of P3. Consistent with in-line probing
(64,65), the P3-P4 hinge region is likely meta-stable in
absence of coenzyme B12, preventing formation of the
long-range PK. The FMN riboswitch is another interest-
ing example as it exemplifies well the limit of the predictive
power of our rules. According to them, the two T-loops
identified in the FMN aptamer core (62) should necessa-
rily be part of tertiary interacting motifs. The T-loop in P5
can be predicted to be involved in a T-loop-PK domain
where it forms an intercalating nt interaction with the loop
of P3. The distant intercalating nt partner of the T-loop in
P2 is however much more difficult to predict because of
the highly contextual nature of T-loop mediated interac-
tions (see above). A possible candidate might be one of the
conserved purines within L6.

As demonstrated by these two examples, sequence sig-
natures for structural motifs can be extremely useful for
predicting the native 3D architecture of stable RNAs,
especially when comparative sequence analysis data are
readily available. Nevertheless, even in the remote case
where only one sequence is known for a particular RNA
molecule, one can possibly use the UA_h motif network to
identify putative candidates for UA_h conformers and
other related motifs in order to reduce the number of
possible secondary structures associated to this sequence.
Additionally, the sequence constraints and rules can
be working hypotheses for identifying putative UA_h
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motifs that can be used for modeling, prior to refinement
and interpretation, after refinement, of X-ray crystal
structures.

Approximately 65% of the UA_h sequence signatures
that have been identified in the 2D structures of the 23S
rRNA from Escherichia coli and Thermus thermophilus
do not correspond to UA_h conformers in the final
native state of the ribosomal RNA (Figure S2). This is
not surprising when considering that most unfolded
UA_h signatures are not phylogenetically conserved.
However, in some molecular instances, sequence signa-
tures might also code for transient conformational states
that can facilitate the kinetic folding process or dynamics
of RNAs [(66); Zhuang, Shea and Jaeger, unpublished
results]. In the future, it might therefore be interesting to
look more carefully at phylogenetically conserved motif
sequence signatures that do not correspond to
the expected conformers in the native X-ray structure of
an RNA.

RNA structure proto-language and rational design

The structural syntax defined herein can readily be applied
to the rational design of self-assembling RNA and scaf-
foldings with potential applications in synthetic biology
and nano-medicine (24,25,67,68). The sequence signatures
of particular tertiary motifs corresponding to well-defined
conformers can be implemented within artificial RNA
sequences to control both 3D shape and self-assembling
interfaces. RNA architectonics, the methodology behind
this concept, has already demonstrated that self-assem-
bling nano-particles (19,69,70) (Severcan, Geary, Jaeger,
manuscript in preparation), nano-fibers (71,72) and 2D
arrays (73) can be generated from a very limited number
of well-characterized structural motifs (24). In the future,
it is anticipated that the increased number of rules and
RNA motifs derived from the present analysis will contri-
bute to the design of more complex RNA architectures of
arbitrary 3D shapes that could ultimately reach the struc-
tural (and functional) complexity of the ribosome. This
task will however require more extensive experimental
characterizations of the chemical and biophysical proper-
ties of RNA structural building blocks.
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