
Protecting health care workers: a pandemic simulation
based on Allegheny County

Philip Cooley,a Bruce Y. Lee,b Shawn Brown,c James Cajka,a Bernadette Chasteen,a Laxminarayana

Ganapathi,a James H. Stark,b William D. Wheaton,a Diane K. Wagener,a Donald S. Burkeb

aRTI International, Research Triangle Park, NC, USA. bDivision of General Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
cPittsburgh Supercomputing Center, Pittsburgh, PA, USA.

Correspondence: Phil Cooley, RTI International, 3040 Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709, USA.

E-mail: pcc@rti.org

Accepted 6 December 2009. Published Online 10 February 2010.

Background and Objectives The Advisory Committee on

Immunization Practices has identified health care workers

(HCWs) as a priority group to receive influenza vaccine.

Although the importance of HCW to the health care

system is well understood, the potential role of HCW in

transmission during an epidemic has not been clearly

established.

Methods Using a standard SIR (Susceptible–Infected–Recovered)

framework similar to previously developed pandemic models, we

developed an agent-based model (ABM) of Allegheny County, PA,

that incorporates the key health care system features to simulate

the spread of an influenza epidemic and its effect on hospital-

based HCWs.

Findings Our simulation runs found the secondary attack rate

among unprotected HCWs to be approximately 60% higher

(54Æ3%) as that of all adults (34Æ1%), which would result in

substantial absenteeism and additional risk to HCW families.

Understanding how a pandemic may affect HCWs, who must be

available to treat infected patients as well as patients with other

medical conditions, is crucial to policy makers’ and hospital

administrators’ preparedness planning.

Keywords Computer simulation, infectious disease transmission,

human influenza, professional to patient, agent-based model,

pandemic.
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Our agent-based simulation model of Allegheny County,

PA, finds that protecting hospital-based health care workers

(HCWs) before or early in a pandemic will reduce absen-

teeism and have positive effects on the community as a

whole.

Introduction

An important part of planning for an influenza pandemic

is to understand how the pandemic may affect health care

workers (HCWs). Most preparedness plans are contingent

upon keeping the health care workforce available to treat

infected patients as well as those with other medical condi-

tions. However, as infected patients visit health care facili-

ties (HCFs), they will interact closely with HCWs, who in

turn will interact with other uninfected patients, colleagues,

and their own family members. If infected, HCWs will not

be able to perform their duties and could infect others.

Therefore, policy makers, hospital administrators, and

other decision makers may need to forecast how many

HCWs may become infected, how many HCWs will be

available, how many patients each HCW should see, how

soon HCWs should be protected, and the potential effects

of varying HCW compliance with protective measures.

To help better understand the answers to these ques-

tions, we developed an agent-based computer simulation

model (ABM) of Allegheny County, PA, that incorporates

its health care system into a Susceptible–Infected–Recov-

ered (SIR) disease model framework and simulates the

interaction of hospital-based HCWs within the health care

system and with workplaces, schools, households, and com-

munity activities. Using this model, we examined the

potential impact of a severe influenza epidemic on HCWs

and the potential effects of different control measures,

including the positive effect of timely therapeutic protec-

tions combined with other measures.
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Materials and methods

Allegheny County study area
Allegheny County lends itself well to an epidemic simula-

tion study. It contains a large metropolitan area – Pitts-

burgh – with adjoining suburban and rural areas

geographically well circumscribed (limited daily influx and

efflux) than other large metropolitan areas such as New

York City or Washington, DC (Figure 1). The county’s

population is 97% urban,1 with workplace density centers

both in Pittsburgh and outside the city (Figures 2 and 3).

The county’s population is also the second oldest among

US counties, with 17Æ8% of its inhabitants 65 years or older

(April 2000 US Census), an age-group particularly suscepti-

ble to influenza and its complications.2,3 The total house-

hold population for Allegheny County in 2000 was

1 241 049.

The ArcGIS Business Analyst identified 48 595 businesses

with total employment of 601 022.* We selected synthe-

sized workplaces of similar size and location to the actual

hospitals and tagged them as hospitals, so the model could

track HCWs through the simulations. Figure 4 locates the

schools and hospitals.4

Synthetic census-based data
We developed a synthetic agent database to represent Alle-

gheny County’s human population. In an ABM, agents rep-

resent individual persons. Complex, large-scale social

systems are simulated by assigning behaviors and activities

to agents within the population, then allowing agents to

interact with each other and the environment.

We adapted and extended a method originally developed

by Beckman et al.5 that employs the US Census Bureau’s

Public Use Microdata files and Census aggregated data to

generate synthesized, geospatially explicit human agents

who represent actual populations when aggregated.6 Each

agent is assigned to a household with other agents. After

first generating a US population of 105 480 101 households

containing 273 624 650 people (2000 Census), we extracted

the synthesized households and persons for Allegheny

County.

Model description
Our SIR-based ABM model assumes that all people are ini-

tially in a susceptible disease state. On contact with infec-

tious people, susceptible people (S) may move into the

infectious state (I). After the infectious period, infectious

people move to the recovered state (R), in which they

remain immune to subsequent infections for the rest of the

simulation.

Our ABM also can track features similar to those defined

by Ferguson et al.7 and Germann et al.8 including age, sex,

occupation, household location, household membership,

school assignment of students and teachers, work location

assignment of employed adults, work status as employed or

unemployed, and disease status. Consistent with the results

of the Models of Infectious Disease Agent Study (MIDAS)

combined model study, only two-thirds of infected patients

exhibit symptoms.9

Agents were assigned households using the US 2000 Cen-

sus. Our model assigned 212 315 school-aged children to

484 school locations in a manner similar to Ferguson et al.7

Pennsylvania

Allegheny County

Figure 1. Allegheny County’s location in

Pennsylvania.

*ArcGIS Business Analyst’ is a commercial geospatial data product

containing the locations and sizes of over 14 000 000 businesses in the

USA.
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Each of Allegheny County’s 524 869 adults was assigned to

one of its 35 317 workplaces by using the Census 2000

Special Tabulation: Census Tract of Work by Census

Tract of Residence (STP 64) database. Adults mix at each

workplace.

A special segment of the 35 317 workplaces is the 35

HCFs imbedded in the ArcGIS Business Analyst that

employ an estimated 43 300 persons, of which 19 508 are

HCWs who see patients on a daily basis.10 The HCFs

include outpatient clinics, emergency rooms, and inpatient

facilities. HCWs that are part of the synthetic population

are assigned to work at one of the 35 HCFs.

Model parameters and social network structure
Our ABM transmission probabilities (Table 1) were

obtained from a study by Longini et al.,11 which is derived

from data on the 1957–1958 Asian influenza pandemic.

The contact probabilities in Table 1 depend on the age of

both the infectious and susceptible persons and represent

the likelihood of these two individuals having contact of

sufficient duration and closeness for possible influenza

transmission. The 1 242 755 individuals (2000 Allegheny

County household population) are the model’s circulating

agents. In communities, agents interact with other agents

in close proximity. An agent interacts daily with other fam-

ily members. Non-family members sharing a household

interact with each other less than daily but at least four

times a week. In schools and workplaces, each student or

worker contacts a fixed mean number of persons per day.12

Each student or worker has a random probability of inter-

acting with people in other classrooms or offices at his ⁄ her

school or workplace. Workers in small firms (i.e. single

offices) have repeated contacts with the same people daily.

Finally, all agents, including students, interact in the com-

munity every day including weekends.13 Each HCF

employee interacts daily and randomly with other HCF

employees in the same clinic ⁄ hospital. A subgroup of these

employees (HCWs) also interacts with patients, some of

whom may have influenza.

Model calibration
Our model was calibrated using the Ferguson et al.

approach from historical (1957–1958, 1968–1969) influenza

pandemics. Our calibration targets followed the 30–70 rule

developed by Ferguson et al. that 70% of all transmission

occurred outside the household (of which 33% occurred in

Figure 2. Pittsburgh in Allegheny County.
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the general community and 37% in schools and work-

places) with transmission rates in schools double that in

workplaces, which we interpreted as 24Æ5% and 12Æ5%,

respectively.7 Calibration involved targeting an epidemic

with a 34% attack rate (AR), consistent with the

1957–1958 pandemic,11 and estimating daily contact rates

by assumptions (Table 2) to satisfy the 30–70 rule. These

contact patterns reproduce an epidemic similar to the

1957–1958 epidemics with a basic reproductive rate (R0) of

1Æ4, where R0 is the expected number of secondary cases

that a typical infected individual will produce in the sus-

ceptible population. Table 2 lists the estimated number of

contacts per day per social network category. We generated

100 calibrated epidemics using 100 distinct random num-

ber sequences, each seeded with a single-infected adult. We

also tested the sensitivity of this calibration scheme against

an alternative calibration method also described by Fergu-

son et al.7 We also investigated an alternative calibration

rule that assumed equal transmission rates in schools and

workplaces, which produced a flatter infection curve but

left the principal study conclusions unchanged.

We assume a proportion (50%) of sick students and

workers stay at home and do not interact with anyone out-

side of the household. Also, our workplace absentee rate is

consistent with other models. However, we use a school

absentee rate that is generally lower than other models (Fer-

guson et al. use a 90% absentee rate). Additionally, we made

the following assumptions: 45% of the HCFs staff interact

with patients; each HCW sees a daily mean of 30 patients;

40% of patients with influenza symptoms visit a HCF;14–19

50% of sick students and workers stay home with no com-

munity contacts unless they see a HCW; 20% of working

adults work on weekends; and student ⁄ community and

adult ⁄ community contacts increase by 50% on weekends.

Results

Table 3 summarizes the first 10 realizations (of 100) runs,

each with an AR of 34%. We varied the seeding assump-

tion from 1 to 100 random seeds, introduced on day 0 of

the epidemic. If an epidemic was realized, the total AR was

not sensitive to the seeding assumption that generated it.

Figure 5 illustrates two epidemic curves: the first is an

R0 = 1Æ4 (AR = 34%) epidemic, and the second has

increased pathogen transmissibility with an R0 = 2Æ0 (AR =

44%), similar to the pandemic of 1918.7,20 We focused on

Figure 3. Allegheny County population

density.
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the R0 = 2Æ0 baseline epidemic, which is consistent with

those presented in Halloran et al.9 Both epidemics illus-

trated in Figure 5 use the contact assumptions shown in

Table 2. The continuous lines in Figure 5 represent trend

lines based on a 4-day moving average, which smoothes

out irregular patterns produced by the weekend effect (i.e.

Figure 4. Allegheny County schools and

hospitals.

Table 1. Probability of an infected individual

transmitting influenza to a susceptible

individual during an interaction between the

two

Contact group Infected individual Susceptible individual Transmission probability*

Household Adult Adult 0Æ4
Household Child Adult 0Æ3
Household Adult Child 0Æ3
Household Child Child 0Æ6
School Elementary student Elementary student 0Æ0435

School Middle student Middle student 0Æ0375

School High student High student 0Æ0315

Workplace Adult Adult 0Æ0575

Hospital HCW HCW 0Æ0575

Hospital HCW Patient 0Æ01

Hospital Patient HCW 0Æ01

Community All Child 0Æ00255

Community All Adult 0Æ00480

HCW, health care worker.

*Transmission probabilities are obtained from Ref. 11, table 3. Transmission calibration is based

on H2N2 pandemic of 1957–1958 as H1N1 transmission probabilities are not currently available.
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students and workers having different weekend contact

patterns).

The model simulates the operations of the HCF outpa-

tient clinics, emergency room, and inpatient clinics of Alle-

gheny County hospitals. Forty-five per cent of the

employees of the 35 HCFs are HCWs who see patients on

a daily basis.10 We were able to identify explicit HCF

locations and employee levels. Therefore, it was feasible to

link our synthetic workplaces to real HCFs and then assign

doctors in the synthetic data to those facilities. The total

number of HCWs is 19 508 persons. For comparison pur-

poses, we selected a sample of non HCW adults and then

ran the baseline (no intervention) R0 = 2Æ0 model and

recorded the impact on various sectors of the population,

including HCWs and their families. Tables 4–6 summarize

the results. Table 4 and Figure 6 illustrate the main popula-

tion categories tracked by our model including students,

adults, and the total population. The AR for all Allegheny

Table 2. Contacts per day for different individuals in the model

Location Individual

Mean number of

contacts per day Social network

Classroom Student 18 School

School outside of classroom Student 15 School

Outside of school Student 18 Community

Weekend activity Student 27 Community

Workplace (within office) Worker 6 Workplace

Workplace (outside office) Worker 3 Workplace

Community All 36 Community

Health care facility (with other co-workers within clinic,

emergency room, or ward)

HCW 3 Health care facility

Health care facility (with co-workers outside specific clinic,

emergency room, or ward)

HCW 6 Health care facility

Health care facility (with patients) HCW that sees patients 30 Health care facility

HCW, health care worker.

Table 3. Results of sample simulation runs

Simulation

run

number

Overall

serologic

attack rate (%)

Total number

of health care

workers infected

Peak total

population

infections

Distribution of where infections occurred

% of total

infections in

community

% of total

infections in

households

% of total

infections

in schools

% of total

infections in

workplaces

1 33Æ3 5196 16 425 33Æ2 29Æ9 24Æ4 12Æ5
2 34Æ0 5325 16 476 33Æ2 30Æ1 24Æ1 12Æ6
3 34Æ1 5323 17 079 33Æ2 29Æ9 24Æ3 12Æ6
4 NA NA NA NA NA NA NA

5 34Æ0 5304 16 625 33Æ4 30Æ1 24Æ1 12Æ5
6 34Æ2 5374 16 474 33Æ2 30Æ0 24Æ1 12Æ6
7 33Æ7 5210 16 400 33Æ3 29Æ9 24Æ4 12Æ4
8 33Æ9 5225 16 813 33Æ4 29Æ9 24Æ4 12Æ4
9 NA NA NA NA NA NA NA

10 34Æ2 5324 16 994 33Æ4 30Æ0 24Æ1 12Æ5
*Ave 33Æ9 5285 16 661 33Æ3 30Æ0 24Æ2 12Æ5

*Ave = the average of the eight runs that resulted in an epidemic. Two of the 10 runs did not result in an epidemic and, based on a larger sam-

ple, an estimated 82% of runs would be realized. The runs covered a period of 124–140 days. Each run peaks on one of two Fridays (day 48 or

55) and estimated attack rate exhibits a small variance.

Cooley et al.
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residents is 43Æ4%, which is consistent with the other

MIDAS models for an R0 = 2Æ0 epidemic. Age-specific

infection rates varied from school-aged persons (76Æ1%),

HCWs (54Æ3%) to non-HCW adults (34Æ1%). A matched

sample of adults to compare with HCWs recorded an AR

of 32Æ8%. The high AR for children is supported by a num-

ber of arguments, see for example, http://www.fluwi-

kie.com/pmwiki.php?n = Consequences.Schools.

Figure 6 displays the infection curve for adults, students,

and total populations and indicates that the epidemic curve

in school-aged children is larger than the adult epidemic

for the first 40 days. We tracked the disease status of family

members in HCW households. The HCW population of

19 508 has an additional 36 938 persons that live in HCW-

occupied households. The HCW household member risk

(57Æ8%) is slightly above HCW risk due to the higher AR

of children. We show these results in the third column (50

patients ⁄ day) of Table 5. The high AR and the earlier wave

of infections in children suggest that that they are a princi-

pal source of influenza transmission to the HCW house-

hold members and we estimate that 73Æ5% of HCW

household members were infected by persons outside of

the household and 7Æ1% were infected by students. Thus,

<20% of HCW family members were infected by the HCW

or the spouse of the HCW, which seems to confirm this

conjecture.

Table 5 also presents a sensitivity analysis of the HCW

contact rate. We varied the rate from 10 to 70 contacts per

day. The response measures presented in Table 5 indicate

that the AR of the major subpopulation categories vary lit-

tle in response to significant changes in the HCW contact

rate. A change of sevenfold in this rate (10–70) varies the

baseline AR from 43Æ0% to 45Æ4% or about 5Æ3%.

Table 6 illustrates the epidemic’s effect on morbidity.

A summary of the impacts indicates that a peak infection

period (with over 20 000 infections per day) persists for

11 days. Total influenza-related absenteeism exceeded

174 000 persons and 1 million days were lost to clinical

illness. Finally, more than 13 000 patient visits to HCWs

would not occur, requiring substitute HCW personnel.

To compare non-HCW adults with HCWs, we randomly

selected a sample of adults equal in number and age to the

HCW population and compared their infection curves

(Figure 7). The two curves show the infections per day for

HCF-based HCWs and the same number of randomly

Figure 5. Infection curves comparing

baseline R0 = 1Æ4 and R0 = 2Æ0 epidemics.

Table 4. Population comparisons

Measure Adults

Health care

workers Students Total

Population 927 765 19 508 230 440 1 242 755

Number infected

throughout

epidemic

316 203 10 592 175 424 539 834

Overall serologic

attack rate

34Æ1 54Æ3 76Æ1 43Æ4

Protecting health care workers
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selected adults, respectively. The HCWs had a higher AR

(55Æ2%) than the randomly selected adult population

(32Æ8%), which indicates that HCWs are at greater risk for

illness than the general adult population. In addition,

Table 7 provides evidence of increased HCW risk of infec-

tion versus the general adult population. The table com-

pares the ARs of HCWs versus non-HCW adults by age,

and shows that HCWs have higher ARs than the adult

population across all adult age groups.

Finally, our HCW vaccine protection results are dis-

played in Tables 8 and 9. The model’s protection mecha-

nism is based on the product of coverage and efficacy. We

also include a delay mechanism such that when an AR

threshold is realized, the baseline level of protection

advances to a higher level of protection fostered by, for

example, epidemic awareness. Using this framework, we

can identify protection from a variety of devices including

vaccines, respirators, and face masks.

Table 8 presents the total AR with five different vaccina-

tion delay assumptions. A vaccine efficacy assumption

based on the Basta et al.’s study21 is fixed at 78% for each

assumption and the length of delay is triggered by an AR

threshold. Each run assumes that the vaccine is distributed

to all HCWs according to an increasing AR threshold. The

thresholds correspond to delays of 50, 43, 37, 25, and

0 days after the start of the epidemic. The change in AR is

small but steady for each delay assumption.

Table 9 demonstrates the relationship between HCW

vaccination coverage and AR. Five different coverage

assumptions are simulated. As in Table 8, the total AR runs

were generated based on a vaccine efficacy estimate of 78%

from the Basta et al. study.21 The coverage assumptions are

0%, 25%, 50%, 75%, and 100% coverage. We show in

Table 9 the overall AR realized under the efficacy–coverage

assumption and the reduction in risk caused by this level

of risk versus no protection. In addition, we made runs

that simulated the use of face masks by HCWs. We used

an efficacy value of 30% and a coverage level of 50%

derived from the MacIntyre et al.’s study.22 We interpreted

these values as an upper bound of protection and the over-

all AR of 42Æ7% represents a comparable risk reduction

estimate equal to vaccine protection at the 25% coverage

level (Table 9).

Discussion

Our study can help policy makers make key decisions by

illustrating how vaccinating HCWs in a timely fashion, by

making vaccines available and persuading HCWs to com-

ply, can reduce HCW illness and positively affect both the

health care system and the community. Maintaining an

adequate healthy HCW force is vital to any epidemic pre-

paredness plan. When making such plans, the key decision

makers must understand how a severe epidemic may affect

Table 5. Serologic attack rate among health

care workers (HCWs) and HCW family

members when varying number of patients

seen by HCW

Measure ⁄ Patients

per day

Number of patients seen by a clinical HCW each workday

10 30 50 70

HCWs

Total population 19 508 19 508 19 508 19 508

Total infected 10 448 10 786 11 000 11 180

Serologic AR (%) 53Æ6 55Æ2 56Æ4 57Æ3
HCW family members

Total population 36 938 36 938 36 938 36 938

Total infected 21 024 21 362 21 983 22 276

Serologic AR (%) 56Æ9 57Æ8 59Æ4 60Æ3
Total population, AR 43Æ0 43Æ5 44Æ3 45Æ4

AR, attack rate.

Table 6. Baseline epidemic morbidity effects

Measure Effects

Total morbidity 362 564

Peak infection period Day 38–48, 1 days >20 000

infections per day

Peak infection day 27 061 infections per day

School ⁄ work absenteeism 174 680 persons

School ⁄ work absenteeism 1 048 080 days

Unable to see patient 21 106

Caveats: 50% of symptomatic persons stay home (adults and chil-

dren) and then only infect others within the home. The asymptom-

atic rate for adults and children is assumed to be 33%. HCWs see

on average 30 patients per day, and the average length of stay at

home is 6 days.

Cooley et al.
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the available health care workforce. Although decision mak-

ers undoubtedly realize that HCWs will be at risk for infec-

tion, our study can help them forecast an epidemic’s effects

on HCWs and absenteeism by providing perspective,

benchmarks, and starting points on which to base their

planning.

In addition, our results demonstrate that vaccinating

HCWs in a timely fashion, which includes making the

Figure 6. Infection curves for students,

adults, and total Allegheny residents.

Figure 7. Infection curves for health care

workers and a matched sample of adults.
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vaccine available and getting HCWs to comply, can

have a positive effect on HCWs and, in turn, health care

system operations and the community. Further, although

the number of patients a HCW contacts each day affects

the overall AR among HCWs and affects their availability

to treat patients, in an epidemic, the increased patient

volume from influenza cases, disease exacerbations, and

psychological stress (i.e. ‘worried well’) and the decreased

availability of HCWs may force each HCW to see

more patients than usual. Decision makers can use our

information to consider how to manage the number of

patients each HCW sees.

By incorporating additional elements and analyses of the

health care system, our model extends the MIDAS’ initia-

tive work. Ferguson et al. developed large-scale mathemati-

cal models to explore the complex landscape of

intervention strategies using Southeast Asia (attempting to

contain the epidemic at its source),20 Great Britain, and the

USA as examples.9 Longini et al.11 also examined the possi-

bility of containing a flu epidemic at its source in a rural

region of Thailand. Germann et al.8 used a stochastic simu-

lation model to investigate the spread of a pandemic influ-

enza virus strain throughout the entire US population for

an R0 of 1Æ6–2Æ4 and the impact of different combinations

of antiviral agents, vaccines, and social-distancing measures

on the pandemic’s timing and magnitude. Eubank et al.23

developed a discrete event simulation approach to model

influenza propagation through Chicago, IL, using random

sample individual-specific activity structures, which pro-

vided the time, locations, and types of activities and

derived contact patterns for all individuals in the city. This

model assumed a fixed probability of transmission across

all social network classes, with transmission occurring as a

function of contact duration and proximity of contact. Six

scenarios were simulated, each with differing percentages of

cases diagnosed ⁄ treated and compliance with social-dis-

tancing directives.

There are also unique and important models outside of

MIDAS. For example, a study by Glass et al.24 addressed

the role of social distancing on the spread on influenza in

the USA and highlighted the powerful influence of school-

aged children, with school closure and keeping teenagers at

home reducing ARs by 90%. This model is agent-based,

with many characteristics similar to the MIDAS models

(e.g. emphasizing social networks characteristics and their

role in disease spread). One important difference is that

the Glass et al.’s model focused on a synthetic community

substantially smaller than those studied by the MIDAS

models. However, the results of this model and the MIDAS

model are relatively consistent. Another example is a sto-

chastic simulation model by Habler et al.25 derived from a

Table 7. Age specific attack rates in adults versus health care workers (HCWs)

Age range

(years old)

Adult population HCWs

Population

Number

infected

Serologic

attack rate (%) Population

Number

infected

Serologic

attack rate

16 < 25 126 860 70 236 55Æ4 3216 2115 65Æ8
25 < 45 350 988 129 084 36Æ8 8965 4752 53Æ0
45 < 65 293 325 96 252 32Æ8 5942 3079 51Æ8
65 < 75 110 618 30 930 28Æ0 1384 704 50Æ9
75+ 105 615 24 224 22Æ9 0 0 0

Table 8. The sensitivity of attack rate (AR) in response to

increasing delays in the distribution of vaccine to health care

workers

Delay in vaccination

from the start

of epidemic (days)

End of delay

trigger threshold

serologic AR (%)

Total population

serologic AR (%)

0 0Æ0 40Æ4
25 1Æ0 40Æ7
37 10Æ0 41Æ0
43 20Æ0 41Æ9
>50 >50Æ0 43Æ7

Table 9. Total attack rate for five vaccine coverage assumptions

Vaccine coverage

among health

care workers (%)

Total population

attack rate (%)

Main calibration rule

Risk

reduction

(%)

0 43Æ6 0Æ0
25 42Æ8 1Æ8
50 42Æ1 3Æ4
75 41Æ0 6Æ0
100 40Æ4 7Æ4

Cooley et al.
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model described in Longini et al.26 The simulated region is

a small urban US community infected by a H2N2 virus

with 1957–1958 pandemic properties. A notable feature of

this model is that the number and duration of contacts is

different on weekdays and weekend days. This is different

than all of the other models described earlier.

Gardam et al.27 explicitly represented the health care sec-

tor within the simulation framework. However, their model

has important differences from our Allegheny County

model, Their objective was to simulate the impact of pro-

tecting HCWs on the spread of the epidemic. Their study

region was the Province of Ontario in Canada (population

>13 million). The model they described is an equation-

based model and the compartment representing subjects

seeking treatment from HCWs is the only source of infec-

tions for the HCW population. In contrast, the HCWs in

the Allegheny County model can be infected by their

spouses, children, coworkers, random community members

they interact with, as well as patients seeking treatment.

The Gardam et al.’s study employs an epidemic with an

estimated R0 between 1Æ25 and 1Æ41, which is comparable

with the 1957–58 pandemic. Our Allegheny County model

results are based on an epidemic with an R0 equal to 2Æ0
and comparable with the 1918 pandemic.

Limitations

All computer models are simplifications of reality and pro-

vide decision makers with information on possible scenar-

ios and relationships, not policy decisions. Although our

current assumptions came from reference sources or previ-

ously published models, it is possible they may not hold in

the event of a severe influenza epidemic. Our model only

included HCFs that were identified in the ArcGIS Business

Analyst database and therefore did not include every out-

patient clinics in the county.

In addition, our model did not factor in potential psy-

chological effects on HCWs that may lead to further volun-

tary absenteeism.

Conclusions

Our Allegheny County model portrayed an epidemic with

a secondary AR that reproduced the Spanish influenza epi-

demic of 1918,7 and showed that vaccinating HCWs in a

timely manner, which includes getting the vaccine to

HCWs and having them comply with vaccination, can

modestly help reduce the overall AR. In a pandemic of this

severity, the AR for HCWs was nearly 60% higher (54Æ3%)

than that of all adults (34Æ1%). This HCW AR leads to

high work absenteeism. Our model may help decision mak-

ers limit the number of patients each HCW sees. Future

studies will investigate additional ways to protect HCWs.
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