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We explore the possibility of characterizing sperm cells without the need to

stain them using spectral and fluorescence lifetime analyses after multi-

photon excitation in an insect model. The autofluorescence emission spectrum

of sperm of the common bedbug, Cimex lectularius, was consistent with the pres-

ence of flavins and NAD(P)H. The mean fluorescence lifetimes showed smaller

variation in sperm extracted from the male (tau m, tm ¼ 1.54–1.84 ns) than in

that extracted from the female sperm storage organ (tau m, tm ¼ 1.26–

2.00 ns). The fluorescence lifetime histograms revealed four peaks. These

peaks (0.18, 0.92, 2.50 and 3.80 ns) suggest the presence of NAD(P)H and flavins

and show that sperm metabolism can be characterized using fluorescence

lifetime imaging. The difference in fluorescence lifetime variation between

the sexes is consistent with the notion that female animals alter the metabolism

of sperm cells during storage. It is not consistent, however, with the idea that

sperm metabolism represents a sexually selected character that provides

females with information about the male genotype.
1. Introduction
Fluorescence lifetime studies have been used to non-invasively assess the meta-

bolic state of cells by examining the redox ratio of the cell. The redox ratio, the

proportion of NAD(P)þ over NAD(P)H, represents the relative proportions of

glycolysis and oxidative phosphorylation in a cell. This procedure has, for

example, been successfully employed to identify stem cells compared with dif-

ferentiated cells, normal cells compared with cancer cells and sperm cells in

different compartments [1–10]. Some concerns have arisen over the use of

monoexponential fluorescence decay models in some of these applications,

because the presence of several redox-related autofluorescent molecules, such

as free and protein-bound NAD(P)H, as well as free and protein-bound flavins,

would require bi- or triexponential decay models [11]. Because flavins and

NAD(P)H vary in their fluorescence excitation and emission spectra, it is desir-

able to augment the lifetime analyses in metabolic mapping with examinations

of spectral properties.

Animal sperm cells may be a particularly interesting target in which to

compare lifetime analyses and metabolic mapping, for at least three reasons.

(i) Sperm dysfunction has been suggested to be the single most important factor

of known aetiology to cause infertility in humans [12]. Many molecular
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mechanisms that disturb sperm function involve aspects of cell

metabolism and the action of oxygen radicals [13]. Animal

sperm cells may be an easily assessable model with which to

pilot fluorescence lifetime technology in order to examine

aspects of cell metabolism and oxygen radical production.

(ii) Sperm cells of several species can switch between the

oxidative phosphorylation and glycolysis pathways. However,

for most species the overall concentration, or even the presence,

of flavins and NAD(P)H is unknown. (iii) Variation in sperm

characters is large across species, as well as within species—a

striking pattern that requires an evolutionary explanation but

has been largely restricted to sperm morphology [14]. It has

been suggested that much of the variation in sperm cells is

shaped by sexual selection taking place after mating (postcopu-

latory sexual selection, PSS). This hypothesis postulates that

sperm cells reflect the genetic quality of the male. Selection for

sperm cells that are the most successful in fertilizing the eggs

will represent selection for male genotypes producing these

sperm [14–16].

Selection at the level of the sperm cells happens if sperm

of one male is superior to sperm of other males within the

same female, a concept called sperm competition [14–16],

or if females select the sperm of specific males only (called

cryptic female choice [17]; if exclusively based on the charac-

teristics of this male’s sperm: sperm choice). Competition

among sperm implies that sperm metabolism is involved to

at least some degree in the contest between sperm on their

way to fertilization. The idea that evolution proceeds via

these forms of PSS has empirical support. For example, the

success of sperm competition varies between males and

within females [18], and sperm characters and females were

experimentally shown to co-evolve [19]. However, in PSS, it

is not known how exactly sperm from different males out-

compete each other, or what characteristics females could

use to select specific sperm genotypes. While, in principle,

sperm metabolism may carry information about the produ-

cing male (i.e. be related to a male’s genotype), a number

of objections exist for this suggestion. First, sperm cells age

over the course of their cellular lifetime and thereby show

altered metabolic activity (reviewed in [20]) and fertilization

success [20–22]. If the metabolic activity is closely correlated

to the age of sperm cells, it will provide only limited infor-

mation about the genotype of the producing male. Second,

the metabolic rate and oxygen radical production of sperm

extracted from the male did not predict sperm metabolism

if sperm of that same male were examined after sampling

from the female [9]. Selecting male genotypes based on the

oxidative metabolism of their sperm is, therefore, difficult.

Third, ejaculated sperm can be stored alive for extended

periods inside the female reproductive tract across many

animal species. While the longest recorded post-ejaculation

lifespan is 30 years in some ants [23], sperm of other insects,

reptiles, decapods and bats are also known to be especially

long-lived in the female tract [24–27]. The occurrence of

extended sperm storage durations in diverse taxa suggests

that one or more female mechanisms to delay the ageing of

the sperm cell have evolved repeatedly and are partly

based on similar mechanisms [27]. One way to achieve a

delay in sperm deterioration during storage would be for

females to manipulate the cellular metabolism of the stored

sperm in such a way as to reduce oxidative damage, a

major cause of cellular ageing. In support of this suggestion,

the sperm cells of two insect species showed both a reduced
metabolic rate and a reduced production rate of intrasperm

oxygen radicals during sperm storage within the female,

but not within the male [9,10]. However, as females interfere

with sperm metabolism, the suitability of sperm metabolism

as an indicator of the genetic quality of the male is reduced.

Here, we employ fluorescence lifetime imaging (FLIM)

and autofluorescence spectroscopy to (i) assess the presence

of flavins and NAD(P)H and (ii) test assumptions of the

PSS and the female manipulation hypotheses. We do so in

a model system of sexual selection research, the common

bedbug, Cimex lectularius, by comparing spectral and lifetime

properties of the intrinsic fluorescence of sperm cells

extracted from the male and the female. We used two evol-

utionary models to make a priori predictions about expected

patterns of variation in sperm metabolism. Under the

female sperm manipulation hypothesis, the variation in

sperm metabolism should be larger in females than across

all males, or should fall outside the sperm metabolic vari-

ation observed within males (figure 1, bottom panels). By

contrast, if females select sperm cells based on metabolic par-

ameters of these cells (an assumption of PSS), the variability

in sperm metabolism measured in females should only be a

subset of that seen in males (figure 1).
2. Material and methods
2.1. Study animals
Male and female bedbugs were obtained from a standard culture

maintained for several years at the University of Sheffield (UK)

[28–30]. Males and females were taken from large mixed-sex lab-

oratory cultures, where they can be found to copulate regularly

when kept together [31,32]. Prior to the measurements, females

were separated from males for 1–3 days.

2.2. Sample preparation
Male storage containers for sperm as well as the female storage

organs were dissected just prior to the measurements as

described previously [10,32,33]. Sperm were dissected out on a

microscopic slide into a drop of phosphate-buffered saline

(PBS) and kept in PBS for a few seconds to a few minutes

before the measurements. Sperm were not counted, but there

were several hundred sperm cells per sample. In samples from

both sexes, sperm showed different densities from dense aggre-

gations of several hundred cells to individualized sperm. All

measurements were carried out at room temperature.

Solutions of 50 nM MitoTracker green (Invitrogen, M-7514)

and 3 mM ethidium bromide (Sigma, E-1510) were applied

according to the manufacturers’ instructions.

2.3. Two-photon autofluorescence imaging
and spectroscopy

Measurements were performed with the multi-photon tomograph

DermaInspect (Jenlab GmbH, Jena, Germany) described in more

detail elsewhere [5–9]. Briefly, the system consists of a tunable

femtosecond (fs) laser source (MaiTai XF1 with a DeepSee

unit; Newport/Spectra Physics, Newport, USA), a scan-detector

module and beam-steering and high-NA focusing optics. The

scan-detector module contains a pair of galvo-scanning mirrors, a

beam expander and a dichroic mirror to separate excitation and

signal light. The fs laser provides sub-100 fs pulses at a repetition

rate of 80 MHz in the tuning range of 710–920 nm with an

output power of 0.5–1.1 W depending on the centre wavelength.

The focusing optics are used for focusing the laser light onto the
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sample and for collecting the signal light. To record an image, the

laser focus is pixel-wise scanned over the sample area and exclu-

sively excites fluorescence within the focal volume by two-photon

absorption. Signal light that reaches the focusing optics is synchro-

nously pixel-wise detected and its intensity displayed in grey-scale

images. In the FLIM mode, the arrival time of the signal photons is

measured by time-correlated single-photon counting (TCSPC) [34].

The signal arrival time can be used to determine the fluorescence

decay times for each pixel. A false-colour representation of the

decay times leads to FLIM images. The multi-photon tomography

provides optical sections with a maximum field of view of 250 �
250 mm perpendicular to the optical axis at an adjustable depth

between 0 and approximately 200 mm. It provides subcellular resol-

ution of about 0.3 mm laterally and 1–2 mm within the axial

direction [5]. The temporal resolution used was approximately

200 ps. The fluorescence decays were fitted using commercial fitting

software (SPCImage; Becker & Hickl GmbH, Berlin, Germany),

taking into account the instrument response function which had

been determined previously by recording the second harmonic

generation signal from a sample of crystallized urea placed at the

focus of the focusing optics. During the measurements, the scan-

ning time for an image of 512 � 512 pixels (256 � 256 pixels for

FLIM) was set to 7 s for fluorescence intensity imaging and 13 s

for FLIM. The mean laser power incident on the sample was

adjusted between 2 and 5 mW. The signals were detected with

photomultiplier tubes (for intensity, Hamamatsu H 7724; for

TCSPC imaging, PMH-100; Becker & Hickl GmbH). A broadly

transparent blue-green colour-glass filter (BG39) was used to

protect the detectors from residual laser light in all measurements.

For the spectral measurements, the laser focus was set to a

specific location of the sample, and the signals were guided by a

fibre in a non-descend geometry to a thermoelectric-cooled

charge coupled device-array spectrometer (BTC112; B&W Tek,

Newark, DE, USA) and recorded.

The spectrometer provides a wavelength-dependent resol-

ution of a few nanometres and operates in the range of

350–650 nm with a maximum transmission around 525 nm [6,7].

Two-photon images were taken at various excitation wave-

lengths ranging between 740 and 900 nm with the emission spectra

also being recorded. The autofluorescent molecules NAD(P)H and

flavins or flavoproteins are excited with 760 nm wavelength, while
emitting at 440–470 and 510–530 nm, respectively. If both com-

ponents are present, intermediate emission peaks are expected at

760 nm excitation or less. Under longer excitation wavelengths,

a spectral shift towards longer emission maxima is then expected

because of the preferred excitation of flavins. NAD(P)H can no

longer be excited at laser wavelengths above 800 nm.

2.4. Fluorescence lifetime measurements
The fluorescence decay was modelled as either mono-, bi- or

triexponential decay. Build-in statistics were used to compare
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the goodness of fit of the three decay curves. The deviation

between the data points and fitted curves is described by a

so-called chi-squared value. The best fit is observed if these

chi-squared values are 1 (higher and lower values are possible).

In the biexponential decay curves, the average lifetimes (tm)

were first compared, and later the two lifetime peaks (t1) and

(t2) were inspected separately. tm is calculated as tm ¼ a1t1 þ
a2t2, and, therefore, takes into account different intensities of

the fluorescence component lifetimes. Graphical presentations

were also examined using the software package SPCIMAGE

(Becker & Hickl, Berlin). The software allows an inspection of

the fluorescent molecule’s individual lifetime distribution and,

therefore, also of whether lifetimes t1 and t2 consist of one or

two peaks.
3. Results
3.1. Spectral analysis
Sperm autofluorescence emission peaked at approximately

490–500 nm under 740–800 nm excitation but shifted to

approximately 530 nm at excitation with longer wavelengths

of 850–900 nm (figure 2).
3.2. Fluorescence lifetime analysis
3.2.1. Decay components
Figure 3 shows the distribution of fluorescence lifetimes after

assumed mono-, bi- and triexponential fitting (a–c; example

from male).

Goodness-of-fit analyses showed a markedly improved

model fit of a bi- over monoexponential fit but not from bi- to

triexponential fit. Because the goodness-of-fit was not

markedly improved by fitting three components, the more

parsimonious biexponential fitting was subsequently used.

3.2.2. Average lifetime tm with biexponential decay
At excitation wavelengths of 740–780 nm the average lifetime

tm peaked around 1700–1750 ps, at wavelengths of 850–

900 nm around 700 ps. There was a marked intermediate

lifetime peak value at 1400 ps when sperm were excited at

800 nm (figure 4).

The autofluorescence lifetime may also be combined with

lifetime measurements of cellular staining reagents, such as

ethidium bromide (lifetime: 5000–6000 ps; Mitotracker:

2000–3000 ps; figure 5), and heads of sperm cells can be distin-

guished from sperm tails. Specifically, ethidium bromide
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stains red the nucleic acid in the nucleus of dead sperm cells

(figure 5; red arrows), which showed a mean lifetime of

tm . 3000 ps. Sperm heads of live cells (not stained with ethi-

dium bromide) appear as a strong green fluorescence (figure 5,

white arrow), whereas mitochondria in or around the sperm

tails stain faint green (figure 5, green arrows).

3.3. Variation between males and females
Mean lifetimes tm of sperm cells after excitation with 760 nm

showed larger variation in sperm cells extracted from females

than in sperm cells extracted from males: tm for all male

measurements was 1622 ps (range: 1538–1836 ps; standard

error: 29 ps¼ 1.8% of mean; figure 6). In females, however,

while the mean of all measurements was similar (1659 ps;

figure 6), the variation was much larger (range: 1264–2000 ps;

standard error: 44 ps¼ 2.6% of mean). These data indicate

that the sperm metabolic state within the female storage

organ is not a subset of the metabolic state observed in males.

Some of the variation between males and females in fluor-

escence lifetime was caused by large variation between

multiple samples from the same individuals. The difference
between mean sperm lifetime peaks in individual females

from which at least two sperm samples were measured indepen-

dently (n ¼ 6 females) was 276 ps. The respective difference in

males with at least two measurements (n¼ 2) was only 119 ps.

All six differences found in females were larger than the two

differences found in males. This small number is not amenable

to statistical analysis. However, we calculated the probability

that by chance the two lowest of eight samples belong to one

sex, and the six highest to the other. The probability is 0.035

(i.e. two-eighths multiplied by one-seventh) and hence below

the p , 0.05 probability commonly used in the biological

sciences. These data suggest that at least one aspect of sperm

function related to tm varies more within females than within

males; again, this is not a subset of that observed in males.

The variation in tm across females was examined in more

detail by separating the lifetime components under a biexpo-

nential decay model at 760 nm excitation. Both components

of the biexponential decay, t1 and t2, showed two peaks

each (figure 7). For t1, one peak occurred around 180 ps

(peak A), and one around 920 ps (peak B; figure 7). For t2

these peaks were around 2500 ps (peak C) and 3800 ps

(peak D; figure 7).

Peak D was present and pronounced in all three male

samples but in less than half of the female samples (six out

of 13). If the peak was present in females, it was smaller

and often shifted towards longer lifetimes of 3000 ps,

sometimes reaching up to 4500 ps (n ¼ 3 females).
4. Discussion
Insect cells have previously served as model systems in FLIM

technology, for example when addressing questions related to

chloride transport [35,36] or to the molecular interactions

between pathogenic viruses and the host cell [37]. Based on

the results presented here we, first, advocate FLIM as a

method to investigate sperm metabolism, because the method

is easily applicable, non-invasive and there is no need to stain

the sperm. The method is readily adaptable to other species

and, in fact, has been applied to sperm of a distantly related

species, the field cricket Gryllus bimaculatus (K Reinhardt, G

Breunig, A Uchugonova, K König 2010, unpublished
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observations). It is noteworthy that even baseline sperm metab-

olism data are rare for genetic model systems, whereas in other

model systems and in humans the relative amount of glycolysis

and oxidative phosphorylation in sperm metabolism is often

debated [38]. Our method will also be a useful addition to

those studies that compare sperm motility under different

experimental conditions, or for different species [39].

Second, we demonstrated how this method can contribute to

testing an open question in evolutionary biology. We provided
evidence that sperm metabolism is altered in the sperm storage

organ of female animals, in our case bedbugs, and argued that,

therefore, a metabolism-based selection of genetically superior

sperm is unlikely. We discuss both aspects below.
4.1. Sperm autofluorescence and sperm metabolism
Large concentrations of flavins, mainly FAD, in sperm

were revealed in a water strider, a species in the same
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insect order as the bedbug (Heteroptera). After one-photon

excitation with 351 and 458 nm, emission peaked around

510 nm [40]. The intense autofluorescence emission at

around 530 nm (excitation at 850 and 900 nm (two-photon),

figure 2b) is characteristic of flavins. However, the shift

from 490 to 530 nm with increasing emission wavelength

also shows that, unlike in the water strider sperm, additional

components were present in bedbug sperm. The additional

components very likely include NAD(P)H, because this

molecule emits around 450–480 nm when excited with

760 nm (two-photon) [11], as we have observed.

In addition to using spectral properties, we add to previous

fluorescence lifetime approaches studying the composition of

cells. The better fit of the bi- and triexponental over the mono-

exponential decay model in our study suggested—like the

spectral analysis—that two or more autofluorescence com-

ponents were present in bedbug sperm. The lifetime rather

suddenly shifted from mean values of tm � 1700 ps at excitation

wavelengths of less than 780 nm to much shorter lifetimes when

excited with longer wavelengths. The interim lifetime value

found at excitations of 800 nm suggests that the lifetime

switch is associated with excitation around this wavelength.

This pattern is consistent with a relatively sudden decrease of

the NAD(P)H contribution to the total signal at excitations

more than 800 nm.

By fitting two-exponential decays, we found four peaks of

lifetime distributions: for t1 at 180 ps (peak A) and 920 ps

(peak B; figure 7a) and for t2 at 2500 ps (peak C) and at

3800 ps (peak D; figure 7b). Peak A is in the range of fluor-

escent lifetime values for free NAD(P)H (0.2–0.4 ns) [5,41],

whereas peaks C and D are in the range of fluorescence life-

times of protein-bound NAD(P)H and free flavins (averaging

2–3 ns, but reaching up to 4 and 6 ns) [5,41–43]. These

suggestions would be consistent with the results of our tri-

exponential fit, where the 3800 ps peak may correspond to

free flavin, the 1500 ps peak to bound NAD(P)H and the

shortest peak to free NAD(P)H [44].

Flavins and NAD(P)H have an important role in cell

metabolism and their relative presence is used to characterize

the redox states of cells, including sperm [8,9,40,44]. Variation

in mean fluorescence lifetime may, therefore, be used to com-

pare sperm metabolic properties in males and females. We

are not aware of previous attempts to do so, except for two

studies in insects [9,10].

The autofluorescence lifetime method presented here is

also a convenient way to compare optical characteristics of

sperm metabolism with those provided by invasive physio-

logical and biochemical methods. Several papers examined

in sperm the enzyme activity of ATP metabolism related to

either glycolysis or oxidative phosphorylation [38,45–47].

However, a comparison with FLIM has, so far, only been

carried out once, in cancer cells [48]. Importantly, FLIM is

independent of cell density.

4.2. The significance of a female-mediated sperm
metabolism

We found greater variation in the fluorescence lifetime distri-

bution in sperm sampled from females compared with that

sampled in males (figure 5). This pattern is consistent with

the female sperm manipulation hypothesis, but not consistent

with the idea that sperm within the female sperm storage

organ represents an unaltered subset of the sperm function
found in males (figure 1). This result, suggesting metabolic

differences between sperm cells stored by the male and the

female, complements previous studies [9,10]. One of the

studies further showed that the sperm function measured in

the female does not mathematically predict the metabolic

rate of the same sperm in the male [9]. It is currently, therefore,

not clear how females may obtain information about the male

genotype (‘good genes’) from the male’s sperm function alone.

In conjunction with small heritable components of sperm traits

observed in other studies [49,50] and the observation that post-

copulatory function only explains a small part (,2%) of the

total variation in male reproductive success [51], our findings

add to the suggestion that sexual selection at the level of the

sperm cell (sperm choice or sperm competition per se) may

have lower evolutionary significance than is currently assumed

(see Introduction).

It is impossible with the present data to suggest by which

precise mechanism females manipulate sperm. However,

given that peak D (putative protein-bound NAD(P)H or free

flavin) was present in only half the sperm samples extracted

from females, a female interference with sperm metabolism

appears possible (see also [26]). Such interference was

observed previously when the reduced metabolic rate occur-

ring in sperm extracted from females, compared with that of

males, was correlated with a reduced production rate of

oxygen radicals [9,10]. Hypothetically, the data presented

here may be linked to the possibility that female insects, and

perhaps other animals [25,26], interact with sperm cell metab-

olism in such a way that the concentrations of flavins and

flavoproteins are reduced. Flavins and flavoproteins are

sources of oxygen radicals [52,53]. Females may also reduce

the metabolic rate of sperm, resulting in less protein-bound

NAD(P)H, compared with free NAD(P)H. As one theoretical

way to reduce sperm metabolism, it has been suggested that

females confine sperm at high cell density within the sperm

storage organ. This could reduce sperm activity and thereby

extend sperm lifespan [20].
5. Conclusion
We provide a proof of concept that two-photon FLIM is a suit-

able method to examine sperm characteristics without the

need to stain cells. We have used insect sperm cells as

simple models of cellular metabolism ex vivo but, given that

the insect cuticle possesses a defined autofluorescence, there

may be exciting prospects for the development of in vivo appli-

cations to address further medical as well as evolutionary

questions. The spectral and fluorescent lifetime components

of sperm cells can be used to infer that sperm undergo meta-

bolic changes when entering the female storage organ. How

these changes vary across species may be a fruitful approach

to look into explanations of the large diversity of sperm cells.
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